
Securing Software Update Systems in GENI

Justin Samuel and Justin Cappos

Computer Science & Engineering
University of Washington

{jsamuel,justinc}@cs.washington.edu

Abstract

Software update systems are a known source of vul-
nerability. The Global Environment for Network Inno-
vations (GENI) project is highly exposed to these vul-
nerabilities. In order to secure GENI, it is necessary to
provide a method by which both new and legacy soft-
ware update systems can be protected. This document
outlines the plan for the design, implementation, and de-
ployment of a software update framework that can be
used to secure software update systems on GENI.

1 Introduction
Software update systems are critical to maintaining the
security of modern systems. When vulnerabilities are
discovered in software installed on client systems, these
security bugs must be patched in order to keep the client
secure. Software update systems running on the clients
have the responsibility of downloading and installing up-
dated versions of the software in a timely manner. The
ability for software update systems to function correctly,
especially in the face of a malicious adversary, is there-
fore paramount.

Despite their crucial security role, software update
systems have a significant number of attack vectors that
are unprotected. These allow an attacker to revert clients
to versions of software that have security flaws, deny a
client updates indefinitely, or even allow the attacker to
install arbitrary code [3, 4, 10]. Even worse, software
update systems are ubiquitous and so provide an attack
surface on every component in GENI. Furthermore, con-
ventional defenses like IDSes and firewalls are unable to
protect against these threats. As a result, an attacker with
a minimal amount of technical knowledge can cause a
huge amount of damage by attacking software update
systems [1].

However, solving the security problems in software
update systems isn’t as simple as building one secure
software update system and requiring that all devices
on GENI use it. The vast majority of the functionality
in modern software update systems goes into safely ap-
plying the software update to the application, including
running application-specific pre-installation and post-

installation code. This application-specific functionality
tends to be different for each software update system and
so attempting to replicate it in designing a single system
becomes intractable given the huge number and diversity
of software update systems and applications.

Without an easy-to-integrate framework for securing
software update systems, GENI projects will either make
no attempt at software update security or will fail to im-
plement it properly, as has been the case with projects
outside of GENI. Further, without the ability to secure
legacy software update systems, some portion of GENI
projects will continue to rely on existing insecure soft-
ware update systems.

We will address the vulnerabilities in new and legacy
software update systems used in GENI projects by de-
signing and implementing a secure software update
framework to protect these software update systems.
The framework will alleviate the need for projects to
choose between being insecure or creating their own—
and likely incomplete—solutions to these pervasive vul-
nerabilities. During the stages of the framework’s devel-
opment as well as after its completion, we will integrate
our framework with different software update systems
used within GENI in order to vet its usability. We will
also provide assistance to projects performing their own
integration of the framework with their software update
systems.

The remainder of this paper is organized as follows:
Section 2 provides general background on the vulnera-
bilities of software update systems and the reasons GENI
is at particular risk. In Section 3 we present the planned
architecture of our software update framework. Sec-
tion 4 discusses the integration of this framework with
GENI and Section 5 concludes.

2 Background

There are two major types of software update systems:
package managers and application updaters. Package
managers are software used to install and update mul-
tiple, separate applications on a system. Application up-
daters are different in that they only perform the role of
updating a single application or set of closely-related ap-



plications. Both are responsible for securely updating
installed software to newer versions released by devel-
opers who maintain the software. These updates can in-
clude new features but they can also be urgent updates
that fix critical security problems which have been dis-
covered in the software.

Major vulnerabilities in software update systems,
however, threaten the security of any system that is re-
liant on them. This threat is more than theoretical; there
already exist frameworks for exploiting common vulner-
abilities in software update systems [1]. These vulnera-
bilities are the result of problems ranging from imple-
mentation bugs to fundamental design flaws. Implemen-
tation bugs found in software update systems include re-
play attacks, where an attacker can trick a software up-
dater into installing old versions of software with known
vulnerabilities. In addition to other common implemen-
tation bugs, software update systems suffer from crucial
design flaws, as well [3, 4, 10].

Many software update systems have a complete lack
of security, while others have serious design flaws such
as reliance on the security of a single, online key as well
as lack of selective trust delegation [6]. By having se-
curity rely solely on the download of files from the up-
date repository over HTTPS, these systems have a very
weak single point of failure through which all clients
can be compromised. The most obvious failure case
with this model is when a repository that provides the
software updates is compromised, resulting in all clients
being subject to installation of arbitrary, malicious soft-
ware. Even in cases where security comes from cryp-
tographic signatures on software or metadata, existing
software update systems suffer complete loss of secu-
rity in the event of a single key compromise, a prob-
lem which has previously threatened millions of systems
worldwide [5, 9].

2.1 Vulnerability of GENI
The GENI infrastructure is at risk from software up-
date system insecurity for several reasons. These in-
clude risks common to any testbed as well as risks to
which GENI is more susceptible because of its unique
resources and flexibility.

Programmable networking components make
man-in-the-middle attacks easier. A large part of what
sets GENI apart from testbeds like PlanetLab is the con-
trol over the center of the network. However, this pro-
grammability increases the likelihood that an attacker
may control the center of the network. Our previous
work [4] has shown that an attacker that can launch
a man-in-the-middle attack can compromise most soft-
ware update systems. Since GENI is so widely pro-
grammable, software update systems on GENI are much
more vulnerable than on other networks.

GENI runs diverse end host software. It seems
likely that researchers will have the flexibility to load
an operating system of their choice onto some subset
of GENI end hosts (possibly using virtualization). As
a result, GENI will run a much broader set of software
update systems than other networks. This means that
GENI will need to worry about security holes in many
more software update systems than other networks.

Service composition increases vulnerability to at-
tack. GENI is likely to have services that provide im-
proved functionality to clients. However, the compro-
mise of a service may provide the attacker with the abil-
ity to compromise a large number of clients. For ex-
ample, a compromised data transfer service provides an
attacker with man-in-the-middle capabilities, while the
compromise of a software provisioning service may give
an attacker full control over all of the managed clients.

GENI will have a high rate of software updates.
Resources on GENI are likely to be configured and re-
configured on a repeated basis (for example, as a dif-
ferent researcher uses the resources). In many cases,
these reconfigurations will be the direct result of a soft-
ware update system. Since the rate of software updates
is higher, the potential for attack is greater.

The resources on GENI are attractive to attackers.
The GENI facility has a vision of providing researchers
access to a wide variety of advanced hardware. The
GENI infrastructure is highly desirable because it will
allow researchers to conduct experiments and test proto-
cols at a scale, speed, and level of control not supported
by current networks and testbeds. However, these char-
acteristics also make GENI attractive to malicious par-
ties. Unauthorized parties may try to use GENI’s infras-
tructure as a high bandwidth way to launch DDOS at-
tacks, as a distributed malware hosting service, or even
as a platform for cyber warfare.

3 Architecture
Our design provides a universal software update frame-
work and corresponding set of libraries that are only re-
sponsible for the aspects of software update systems that
impact security. Other aspects of software update sys-
tems, such as pre-installation and post-installation tasks,
remain the responsibility of the specific package man-
ager or application updater that uses our framework. It
is because of this wide variety of case-specific needs
that it is important to provide a general framework to
secure software update systems rather than a software
update system implementation that is usable by only a
few projects.

In order to provide a general security layer for soft-
ware update systems, our framework provides three ma-
jor components: a developer push mechanism, a reposi-
tory library, and a client library.

2



The role of the developer push mechanism is to take a
software update that is ready for release and create secu-
rity metadata for it that is signed by the developer’s key.
Both the software and signed security metadata are then
uploaded to the repository using the developer’s creden-
tials. This developer-signed metadata will ultimately be
used by the client library when determining trust in in-
dividual updates that are available for download.

The repository library receives software updates from
developers and is responsible for making these software
updates available to clients. This process involves main-
taining a list of software updates for this application and
the associated developer and software update metadata.
The repository keeps an online private key [4] that it uses
to attest to the freshness of the data that is served. How-
ever, this key is rotated frequently and is not otherwise
trusted, thus a compromise of the key only allows freeze
attacks for the period of validity of the key. Our use of
selective trust delegation allows the client library to rea-
son about whether a developer should be trusted rather
than forcing the client to trust the repository to make this
determination.

The client library performs several actions. First, the
client library must retrieve updates from the repository
library without compromising security (for example, it
must prevent endless data and slow retrieval attacks [6]).
Next, the client must reason about the security metadata
it retrieved in order to decide which software updates
should be downloaded. Finally, the client must down-
load the various files of which the software updates con-
sist and make them available to the software update sys-
tem for installation.

3.1 Application to New Systems
As software update systems are developed for new ap-
plications on GENI, these can be secured using the com-
ponents described above. New software update systems
are written such that they makes calls to the client library
in order to check for the existence of updates and obtain
files that are part of an update. Upon successful return
from these calls to the client library, a software update
system can perform any required updates using the ob-
tained files without needing to perform further security
checks on those files. Security has been guaranteed by
our framework’s client library.

If our client library detects problems with the updates
or any part of the process of obtaining the updates, it
raises an exception. The software update system using
the client library can handle this exception in a manner
appropriate for the situation. For example, the software
update system may log the failure, notify an administra-
tor by email, notify a user through a graphical interface,
etc. The action to take in the event of detection of an
anomaly cannot be generalized by our framework for all

software update systems because the appropriate action
to take will vary widely.

In order to release a new version of software that will
be successfully retrieved by the client library, develop-
ers use the developer push mechanism provided by our
framework. On the software project’s repository, the
repository library then generates new metadata which
covers the latest release pushed by the developer. At this
point, the release is available to clients.

3.2 Application to Legacy Systems
In order to secure software update systems across all of
GENI, it is not only important to secure newly devel-
oped software update systems but also to secure existing
software update systems. To secure these legacy sys-
tems, two additional components are used. The first is a
legacy interception library that intercepts traffic from a
legacy software update system and translates it into calls
to the client library. The second is a tool that simplifies
the process of pushing software updates that originate
from a legacy repository.

In essence, legacy systems are protected using the
same client library, repository library, and developer
push mechanisms as are new systems. The difference
is that instead of modifications being made to the legacy
software update systems, all communication they make
with repositories is intercepted and passed through the
client library. As the client library requires specific
metadata generated by the developer push mechanism
and repository library in order to ensure security (meta-
data which the legacy repository does not have), the re-
lease maintainer uses the legacy repository retrieval tool
in conjunction with the developer push mechanism to
simplify pushing software that originates from a legacy
repository. This legacy repository retrieval tool must un-
derstand the metadata format of any legacy repository
that it supports.

Throughout the actual update process, the legacy soft-
ware update system remains unaware of the security be-
ing added to its update process. If the client library
detects security violations when retrieving updates, the
legacy interception layer causes the legacy update sys-
tem to see what appears to be a generic TCP connec-
tion failure. Note that if the legacy update system uses
HTTPS and correctly validates SSL certificates, either
its update URL or its trusted certificates must be mod-
ified in order to secure the legacy system in this way.
This allows all software update systems to benefit from
the security provided by our framework’s client library.

4 Integration with GENI
The development of the secure software update frame-
work will consist of three distinct, one-year stages. Each
stage will enable integration with a larger number of

3



projects. In the first year, the focus will be on creating a
cross-platform software update framework that secures
the process of checking for, retrieving, and authenticat-
ing updates. At this point, the framework will protect
software update systems from vulnerabilities including
replay and freeze attacks that can be perpetrated by a
man-in-the-middle attacker. In the second year, the soft-
ware update framework will support key management
and selective trust delegation. These are essential as-
pects of the long-term security of any software update
system. In the third year, we will implement in the
framework the tools necessary to secure legacy software
update systems.

In order to obtain early integration experience as well
as to allow GENI projects to benefit from increased secu-
rity as soon as possible, we will perform incremental in-
tegration with other projects. It is important to note that
the specifics of our integration plan will need to adapt to
both the evolving nature of many GENI projects as well
as the impact of design decisions in the software update
framework that will be made later in the framework’s
development.

The first GENI projects to be integrated with the se-
cure update framework will be Million Node GENI [7]
and Raven [8]. Integration with these projects will begin
after completion of the first stage of the software update
framework’s implementation. The Million Node GENI
project develops an application that runs on many end-
user systems across multiple platforms, including Win-
dows XP and Vista, Mac OS X, and Linux. The Mil-
lion Node GENI project has written a standalone appli-
cation updater which is installed alongside their applica-
tion on end-user systems. This application updater has
the responsibility of securely obtaining and installing
updates. Though this application updater does protect
against some known attacks, it is vulnerable to endless
data attacks and slow-retrieval attacks. Integration with
the first stage of the software update framework will pro-
vide protection against these attacks.

The Raven project provides a suite of tools that in-
clude both a package manager as well as utilities for ad-
ministrators to collectively manage their systems. Ad-
ministrators have the ability to install, upgrade, and
remove arbitrary software from systems using Raven.
Though Raven is based off of Stork, a package man-
ager which was designed for security, it is vulnerable
to known threats posed by man-in-the-middle attackers.
Raven’s security will therefore benefit from integration
with the first stage of our software update framework.

The second year of our framework’s development will
provide selective trust delegation as well as key manage-
ment capabilities. The proper design and implementa-
tion of this functionality in software update systems is
essential for their long-term security. These are chal-

lenging problems that we have observed security ex-
perts have had a hard time getting right [11]. The secu-
rity ramifications of various trust delegation models and
key management approaches will be considered care-
fully. We will solicit a great amount of feedback during
this stage before implementing a solution. Once imple-
mented, we also hope to integrate these changes with
Million Node GENI as well as working with the Tor
project [12] to integrate our framework with their ap-
plication updater [13].

In the third and final year of our framework’s develop-
ment, we will extend its security mechanisms to support
legacy systems. This will include the ability to interpose
on the insecure communication with update repositories
that is performed by many existing software update sys-
tem. The specific GENI projects we integrate with at
this time will largely depend on which legacy software
update systems are employed within GENI at that time.
This will likely include existing software update systems
with known security issues [14, 2].

5 Conclusion
The vulnerabilities in software update systems, though
pervasive, can be addressed. Leaving the task of pro-
tecting against these vulnerabilities to each implementa-
tion of a software update system, however, leaves many
projects faced with a choice between diverting their al-
ready limited resources toward addressing these prob-
lems or focusing on innovation with insecure systems.
By protecting both new and legacy software update sys-
tems used within GENI from known and exploitable vul-
nerabilities, this project assures that GENI will remain
secure. This is helpful not only to the individual projects
but also to the entirety of GENI, both in terms of security
as well as reduced potential for negative publicity from
compromises. The software update framework allows
this increased security to be achieved without burdening
developers.

References
[1] Francisco Amato. Isr-evilgrade. http:

//www.infobyte.com.ar/down/
isr-evilgrade-Readme.txt.

[2] Apt - Debian Wiki. http://wiki.debian.
org/Apt.

[3] Anthony Bellissimo, John Burgess, and Kevin Fu.
Secure Software Updates: Disappointments and
New Challenges. In1st USENIX Workshop on
Hot Topics in Security, pages 37–43, Vancouver,
Canada, Jul 2006.

[4] Justin Cappos, Justin Samuel, Scott Baker, and
John Hartman. A Look in the Mirror: Attacks on
Package Managers. InProc. 15th ACM Conference

4



on Computer and Communications Security, pages
565–574, New York, NY, USA, 2008. ACM.

[5] Paul W. Frields. Infrastructure re-
port, 2008-08-22 UTC 1200, Aug 2008.
https://www.redhat.com/archives/
fedora-announce-list/2008-August/
msg00012.html.

[6] S. Baker J. Cappos, J. Samuel and J. Hartman.
Package Management Security. Technical Report
08-02, Department of Computer Science, Univer-
sity of Arizona, 2008.

[7] MillionNodeGENI - GENI: geni - Trac.
http://groups.geni.net/geni/wiki/
MillionNodeGENI.

[8] ProvisioningService - GENI: geni - Trac.
http://groups.geni.net/geni/wiki/
ProvisioningService.

[9] Critical: openssh security update, Aug 2008.
http://rhn.redhat.com/errata/
RHSA-2008-0855.html.

[10] Justin Samuel and Justin Cappos. Package Man-
agers Still Vulnerable: How To Protect Your Sys-
tems.;login: Magazine, Feb 2009.

[11] Thandy attacks / suggestions. http:
//archives.seul.org/or/dev/
Dec-2008/msg00010.html.

[12] Tor: anonymity online. http://www.
torproject.org/.

[13] Thandy: Automatic updates for Tor bun-
dles. https://git.torproject.org/
checkout/thandy/master/specs/
thandy-spec.txt.

[14] Yum: Yellow Dog Updater Modified.http://
linux.duke.edu/projects/yum/.

5


