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A Mobile Programmable Radio Substrate for Any‐layer Measurement and Experimentation 

A Whitepaper Developed for GENI Subcontract #1740 

Executive Summary 

Wireless networks have become increasingly pervasive in all aspects of the modern life. Higher capacity, 
ubiquitous coverage, and robust adaptive operation have been the key objectives for wireless 
communications and networking research. Latest researches have proposed a myriad of solutions for 
different layers of the protocol stack to enhance wireless network performance; these innovations, 
however, are hard to be validated together to study their combined benefits and implications due to the 
lack of a platform that can easily incorporate new protocols from any protocol layers to operate with the 
rest of the protocol stack. 

GENI’s mission is to create a highly programmable testbed for studying the future Internet. This 
whitepaper analyzes GENI’s potentials and requirements to support any-layer programmable wireless 
network experiments and measurements. To date, there is a clear divide between the research 
methodology for the lower layers, i.e., the physical (PHY) and link layers, and that for the higher layers, 
i.e., from link layer above. For lower layer research, software defined radio (SDR) based on PCs and/or 
FPGAs has been the technology of choice for programmable testbeds. For higher layer research, PCs 
equipped with a range of commercial-off-the-shelf (COTS) network interfaces and standard operating 
systems generally suffice. The whitepaper studies the requirements needed to combine the two forms of 
testbeds into one while assuring seamless transition for the researchers – researchers will be more willing 
to conduct experiments on such a new platform if the learning threshold is sufficiently low. 

To date, the key obstacles for SDR technologies include the sampling rate and resolution of the 
analog-digital conversion (ADC) which limits the signal bandwidth and dynamic range that can be 
received. The PC-to-SDR interface speed is another key bottleneck, since most of the SDR plugs into a 
host PC that runs the user applications. The use of an FPGA-based SDR is a certain requirement for 
experimenting with state-of-the-art commercial standards such as Wi-Fi or WiMAX at their full capacity 
(of course, even more so for technologies beyond the state of the art). FPGA’s cell capacity dictates the 
complexity of lower layer protocols that can be supported, the additional line-rate measurement logic that 
can be programmed, and the user-friendliness for experimenter codes since they are usually not optimized.  

It is relatively easy to experiment higher layer protocols on testbeds based on COTS radios under 
realistic scenarios with a range of environment and mobility conditions.  This has not been the case for 
PHY testbeds which have typically been expensive to build with few prototypes available. One of the 
greatest values GENI can bring to the lower layer researchers is to help overcome the scale bottleneck by 
creating a shared use SDR testbed with a scale and setup sufficient to conduct realistic network 
experiments. The ready integration of SDR implementations with a standard yet programmable suite of 
higher layer protocols and the support for a range of meaningful scenarios will be top-priority tasks. 

The GENI Cognitive Radio being developed has been a promising candidate to realize this goal with 
its extensible multi-FPGA system, high bandwidth PC-SDR interface, and the Cognitive Radio Kit 
(CRKit) programming environment. Nevertheless, more programming and experimentation support will 
be essential to realize its full potential. 
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1. Introduction 

Future wireless communication devices must achieve high bandwidth, robust adaptive operation, and 
efficient spectrum usage to meet the exploding demands of wireless communication in a diverse range of 
conditions. Novel solutions are being studied in different protocol layers; in most cases, solutions for 
different protocol layers are studied and evaluated separately. Evaluation of the combined performance of 
solutions across all layers has been very costly and difficult, if not impossible. Traditionally, due to the 
very different knowledge needed for lower layer protocols, i.e., physical (PHY) and link layers, and 
higher layer protocols, i.e., from link layer above, they have been studied by different research 
communities using different analysis, simulation, and experimentation tools. 

When it comes to prototype implementation, lower and higher layer protocols also have very different 
processing requirements. Lower layer protocols process, transmit, and receive physical waveforms and 
thus require fast processing and high precision analog circuits; higher layer protocols, on the other hand, 
process binary data frames at comparatively much lower rates. Prototypes for the lower layer protocols 
have often been implemented with custom circuitries that are highly optimized and less programmable; 
nevertheless, in recent years, FPGA-based platforms have been adopted for programmability. Due to the 
expense and efforts needed to build such platforms, they are usually made in small quantities and 
validated with one or few radio links.  

On the contrary, prototypes for higher layer protocols can mostly be implemented on general-purpose 
computers with standard commercial off-the-shelf (COTS) wireless interfaces. Apparently of lower costs, 
these prototypes have been built in large quantities for studying complex network configurations 
involving large numbers of radio links, e.g., ORBIT [1] and many others [2-23]. 

To enable joint experimentation of solutions from both realms, integration is needed for not only the 
platform, but also the people and the experiment methodologies. A fully programmable platform must be 
based on a general-purpose computer (for higher layer protocols), FPGA (for lower layer protocols), and 
arbitrary waveform radio front ends. Protocols must be implemented, executed, and analyzed by 
researchers from both realms. This is possible only if the experiment methodologies can conform to the 
practice in both realms. This essentially creates a loose federation among researchers by contributing 
their efforts to develop mutually compatible modules for a common platform, such that they can expect to 
draw from each other the protocol pieces that make up a complete system for meaningful evaluation. In 
this way, lower layer researchers benefit from the opportunity to experiment with networks at practical 
scales with realistic network traffic, while higher layer researchers benefit from the incorporation of novel 
pre-standard wireless technologies. To further enhance cost effectiveness of realizing a sufficiently large 
network of such platforms, it makes even more sense to enable remote shared access to a large pool of 
these devices through a central control framework. This is exactly the National Science Foundation’s 
vision for creating the Global Environment for Network Innovations (GENI) testbed, through which such 
programmable radio devices will be controlled for all layer experimentation. 

This whitepaper follows one potential experimental workflow for a researcher to remotely access 
such a testbed for protocol development, deployment, and execution of their experiments to identify the 
testbed’s required features. The whitepaper also reviews literature on experimental research in wireless 
communication and networking, so that the testbed can be designed with features meeting these needs. 
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The remaining of the whitepaper is organized as follows. Section 2 presents a survey of representative 
wireless testbeds in place today to identify their design goals and challenges. Section 3 gives an overview 
of the GENI Cognitive Radio hardware and software components. Section 4 analyzes the requirements 
and procedure for integrating custom any-layer code with the GENI Cognitive Radio and, at the same 
time, point out issues that have not been adequately addressed. A case study is presented based on the 
scenario of integrating student code from a coding theory class at Clemson University. Section 5 
discusses the useful experiment supports for any-layer wireless experiments. The whitepaper concludes in 
Section 6. 

2. Survey of Existing Wireless Testbeds 

The survey was not meant to be comprehensive. Nevertheless, a representative set of 45 wireless testbeds 
were examined in four groups to identify their experimentation objectives, design features and challenges, 
and programming tools. 

2.1 Experimentation Objectives 

According to their focused protocol layers, the surveyed testbeds can be categorized into four categories: 
channel emulation testbeds [24-27], physical layer testbeds [28-42], COTS radio based higher layer 
testbeds [2-23], and full stack programmable testbeds [43-45]. A few testbeds such as TWINE [46] and 
Emulab [6] developed frameworks to also incorporate software emulated entities. The GENI Cognitive 
Radio, as introduced in Section 3, will be a full stack programmable testbed with a control framework 
supporting remote shared access over Internet. 

2.1.1 Channel Emulation Testbeds 

Channel emulation testbeds are designed to programmatically inject radio channel impairments to the RF 
signals sent between radios under test in a controlled environment, so that the impairments due to a 
variety of channel conditions expected in different realistic scenarios can be tested without uncontrolled 
disturbances and interferences. Channel emulation can be achieved by 1) recreating a close replica of the 
physical environment of interest in the testbed, such as that pursued by the Illinois Wireless Wind Tunnel 
project [24]; 2) connecting radios’ antenna ports with shielded RF cables and analog signal conditioning 
elements (amplifier, attenuator, combiner, divider) [25]; 3) FPGA boards that digitally apply arbitrary 
channel effects between radio antenna ports, such as the CMU Emulator [26] and the JHUAPL ACTION 
testbed’s Amplitude, Phase, and Frequency Control module [27]. 

Channel emulation testbeds address a critical aspect for wireless experimentation that is otherwise 
very hard to achieve, i.e., repeatability. The received signal of any radio sensitively depends on the 
surrounding environment – movement of any object (even very small ones), radiated signal from any 
source, and changing thermal noise can all result in significant differences in experiment results. Channel 
emulation testbeds isolate the radio from such variable conditions to the most extent and apply only 
controlled effects to the tested radio signal, such that reproducible experiments and valid comparison 
among different algorithms under same conditions are achievable. Hence, the objectives for such testbeds 
focus on repeatability of experiments, while their utility depends on the range and accuracies of 
producible channel effects. 
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To emulate any channel effect, the effect must be first recorded with separate channel sounding 
equipments. The recorded effects are then extracted into channel models that can be emulated. The two-
step approach unavoidably loses a certain extent of accuracy in the radio test results. 

2.1.2 Physical Layer Testbeds 

Physical layer testbeds for MIMO [31-41], MIMO/OFDM [28, 30, 42], and cellular standards such as 
WCDMA [47], GSM [29] and LTE [31] are surveyed. Most of these testbeds are custom made for their 
specific target technology using a mixture of personal computers (PC), general purpose processors, DSP, 
FPGA, integrated circuit chips, signal generators, and RF attenuators, while several recent efforts have 
developed platforms for flexible reprogramming of a wider range of custom physical and link layer 
protocols [43, 45, 48-50]; among them, the Ettus USRP/USRP2 radio [49], the Rice University WARP 
radio [45], and the Lyrtech small form factor SDR [50], are now commercially available. 

Physical layer testbeds implement the transmit and receive chains of a communication system. These 
testbeds’ primary objectives are for validation of custom transmit and receive algorithms and 
measurement of signal and link level performance. Some attempts have been made to integrate such 
testbeds with protocols above the link layer [43, 44], though all are still in working progress. For example, 
since the Hydra radio testbed [44] is based on USRPs plugged into host PCs, it can be integrated with 
higher layer protocols and applications running on the PC. The end-to-end application experimentation 
capability with Hydra has been verified with a point-to-point link, while its current key limitation is the 
PC processing time for more complex PHY algorithms. The delay and buffer size for data transfer on the 
PC-USRP interface also presents an important limit on the turn-around time of PHY and link protocols 
implemented on PC; hence, the consensus has been to implement as much of these functions as possible 
on the radio’s FPGA. However, USRP and the more recent USRP2 both have limited free space on their 
FPGAs (Altera Cyclone EP1C12Q240C8 [51] for USRP and Xilinx Spartan 3-2000 [52] for USRP2) to 
allow additional custom logic for this purpose [53]. 

The bandwidth between the PC and the USRPs also presents a limiting factor for the achievable 
signal bandwidth. USRP employs USB 2.0 (480 Mbps) for this interface, allowing it to send/receive a 
total of 16 MHz symbol rate (equivalent to 4 MHz baseband, half-duplex, complex I-Q signal); USRP2 
employs 1 Gbps Ethernet to raise this limitation to 50 MHz symbol rate (12.5 MHz baseband, half-duplex, 
complex I-Q signal). It is useful to contrast this limit with the baseband signal bandwidth for various 
popular commercial standards: IEEE 802.11 a/b/g requires 20 MHz, IEEE 802.11n requires 20 or 40 MHz, 
and WiMAX requires 1.25~20 MHz. It is apparent that to experiment such standards and advancement 
beyond them require substantial down-scaling of their bandwidth with the current USRP boards. Moving 
as much of the PHY and link algorithm implementation to the FPGA can overcome the bandwidth and 
turn-around time limitations over the PC-USRP configuration, provided the implementation can fit in the  
FPGA onboard USRP. 

The KU Agile Radio [43], on the other hand, adopts a fully embedded solution to implement the radio 
protocols on a Xilinx Virtex II FPGA (much higher cell counts than those for USRP and USRP2) and a 
PowerPC digital signal processor (DSP). The KU radio currently supports full-duplex transmit and 
receive of up to 30 MHz baseband signal [54]. Since the DSP runs Linux, the standard TCP/IP stack and 
existing research prototypes of higher layer protocols and applications can potentially be integrated for 
experimentation. This, however, has not been reported in the KU radio developers’ publications. 
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2.1.3 COTS Radio Based Higher Layer Testbeds 

COTS radio testbeds are the most proliferate to date. They are relatively less costly to build than other 
types of testbeds, programmable in the network layer and above (with a subset of tunable link layer 
parameters exported by COTS radios), and suitable for experimenting a wide range of protocols and 
applications. Most COTS radios, e.g., those based on IEEE 802.11 (Wi-Fi), IEEE 802.15 (Bluetooth), 
IEEE 802.15.4 (Zigbee), IEEE 802.16 (WiMAX), allow tuning only a subset of radio parameters such as 
the transmit power, channel, and modulation schemes; the rest of the physical and link layer protocols are 
inaccessible. Since these radios are mostly developed for use with general purpose computers, existing 
and new higher layer protocols and applications programmed to run on PCs can be quickly integrated for 
experimenting with the radios. 

COTS radio testbeds have been used for experiments in laboratories and actual deployments for 
purposes from validating network properties (e.g., connectivity, link quality, and achievable throughput), 
monitoring network usage pattern (e.g., [12]), to protocol and application performance evaluation (link, 
network, transport, application, and cross-layer protocols). 

2.1.4 Full Stack Programmable Testbeds 

Despite the abundance of COTS radio testbeds, it is easy to notice their common limitation in 
incorporating advanced solutions at and below the link layer, which are crucial for a range of emerging 
applications. For example, recent studies of vehicle networks with COTS radio testbeds [55, 56] have 
identified severe link quality fluctuation and multipath effects as the main causes for throughput 
degradation. Prior theoretical physical and link layer research have suggested methods to mitigate such 
effects, such as using MIMO/OFDM to improve link quality and tolerate multipath effects, it is 
logistically expensive, if not impossible, to implement these methods on the same network to validate 
their potential strengths and limitations. The few that did set out to attempt the design of a solution for 
comprehensive system testing have resorted to the use of FPGA-based radios integrated with general 
purpose computers [43-45]. Clearly, their objectives have been focused on validation of comprehensive 
solutions with flexibly programmable components for each layer. 

Key features of [43] and [44] have been discussed in Section 2.1.2. Rice University’s Wireless open-
Access Research Platform (WARP) [45] also adopts a fully embedded architecture, utilizing a FPGA 
board (Xilinx Virtex 4) and a variable number of RF daughterboards. Each RF board can accommodate 
up to 40 MHz wide signal, and multiple RF boards can be used at the same time for MIMO research. The 
WARP radio FPGA board also features a gigabit Ethernet interface and a few multi-gigabit interfaces that 
can be used to interface with external devices (e.g., PCs). WARP does not have a general processor 
onboard; hence, full stack experiments will require external PCs running higher layer protocols and 
applications to be tethered to the radio via the Ethernet interface. 

2.2 Programmable Testbed Features and Challenges 

The utility of any testbed lies in its range of programmability for studying different configurations, 
protocols and in its modeling accuracy for realistic conditions. 
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2.2.1 Channel Emulation Testbeds 

Channel emulation testbeds condition the radio signal between the transmitting and receiving radios under 
test. According to the classification in Section 2.1.1, the first type (emulation facility) of such testbeds’ 
programmability range is determined by the number of interesting scenarios that can be replicated in the 
controlled environment, and its accuracy depends on the proper scaling of radio power, injection of 
background noise and interference, and the geometry and mobility patterns of all modeled radios and 
obstacles. The Illinois Wireless Wind Tunnel [24] provides a good demonstration of this approach. It is 
expected that conducting experiments requires extensive investment and personnel support to design, 
create, and execute each specific scenario. 

The second and third types (analog and digital signal conditioning) of such testbeds utilize, 
respectively, analog and digital radio conditioning elements, which define the range of programmable 
channel effects that can be accurately realized. The former can only model stationary channels (or 
snapshots of extracted mobile channels), while the latter can achieve the full range of possible time-
variant channel effects. The usefulness of the digital channel emulation testbeds is determined in the 
available channel models for it to generate time-variant effects; acquiring channel models requires a 
physical layer testbed capable of capturing channel effects for each scenario under real conditions. The 
most commonly encountered channel models for narrowband mobile cellular communications are well 
known and easily available for emulation [57], while emerging multi-component multi-carrier (e.g., 
MIMO/OFDM) channels and urban vehicular network channels remain to be modeled for emulation. 

2.2.2 Physical Layer Testbeds 

Physical layer testbeds feature full implementation of the physical layer and, for most cases, its 
accompanying link layer protocols. Programmable physical layer testbeds are based either on software 
running on general purpose processors, FPGA, or a combination of both. 

The software radio approach has been attractive for its low cost. For a moderate price (e.g., $2000 for 
an Ettus USRP board with a dual ISM band radio front end), researchers can develop their protocols on 
their PCs (desktop, laptop, or single-board PC) to conduct experiments. While the software complexity is 
virtually unlimited (as complex as the PC can handle), the achievable signal bandwidth is constrained by 
the PC-to-radio interface bandwidth and delay (see Section 2.1.2), and the signal fidelity (waveform error 
tolerance) is constrained by the transceiver board’s analog-to-digital and digital-to-analog conversion 
(ADC/DAC) resolution.  

The FPGA approach implements the bulk of the physical and link layers on the FPGA chip. In some 
cases an onboard DSP processor can be incorporated to share the processing load [43]; in such cases, 
decision on the placement of logic in FPGA or DSP must be carefully made to avoid delay and bandwidth 
bottlenecks posed by the DSP-FPGA interface bus.  

While FPGA size is the utmost determinant on the complexity of algorithms it can afford, the 
availability of a repository of reusable protocol implementations is crucial to the wide adoption by a 
larger networking research community. For example, it will be utmost useful to have a reference open 
source implementation of the Wi-Fi and WiMAX PHY and link layers for research groups to expedite 
studies on improving or revolutionizing such techniques. Some efforts of building such repositories have 
been begun; e.g., the GNU radio archive [58] and the WARP repository [59]. 
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Integration with higher layer protocols and applications has been envisioned [43-45] but not realized 
due to radio performance limits and the lack of an accessible programming platform. 

2.2.3 COTS Radio Based Testbeds 

COTS radio based testbeds have supported researches that require either none or limited radio control. An 
immense number of network performance measurement (connectivity, throughput, configuration 
comparison), protocol experimentation (routing, clustering, transport, distributed control, database/peer-
to-peer data sharing, information processing), and field application (environmental monitoring, social 
networking, community Internet service) studies fall in this category. Most of them needed little or no 
visibility and programmability into the link layer beyond choosing the radio power and vendor provided 
modulation levels. 

COTS radio testbeds have been used for studying network optimization for varied mobility, radio 
condition, traffic distribution, or energy efficiency by tuning radio and protocol parameters (power, 
modulation, scheduling parameters). The need to programmatically control these parameters has driven 
several open source radio driver projects such as MadWiFi [60] for Wi-Fi radios and TinyOS [61] for 
IEEE 802.15.4 radios. WINLAB’s ORBIT testbed at Rutgers University is by far the largest COTS radio 
testbed, featuring 400 Wi-Fi radios and various other wireless radios (Bluetooth, Zigbee, SDR, and 
WiMAX). The recent GENI Open WiMAX base station project [62] will be the first of its kind that 
enables radio level programmability for WiMAX. In addition to their programmable features, their 
testbed management and control frameworks have provided valuable tools and experiences in managing 
large scale network resources, experiment execution, and data archiving.  

2.2.4 Full Stack Programmable Testbeds 

GNU radio, the WARP radio, the KU radio, and the GENI Cognitive Radio are four most recent hardware 
platforms that are provisioned to support full-stack programmability. 

Several programming frameworks have been developed based on the GNU radio (with the Ettus 
USRP and radio boards). For example, Virginia Tech’s OSSIE SDR software [63] is a GNU-radio based 
open source implementation of the US military’s Software Communication Architecture (SCA). The 
OSSIE software provides a complete development suite for designing arbitrary and dynamic waveform 
applications (PHY and link layer protocols) based on a Linux based CORBA programming environment. 
Similar to Hydra [44], however, the framework has not integrated protocols above the link layer for 
experimentation. The source codes developed for GNU-radio based testbeds are mostly open source C 
codes under the GNU public license. 

Contrary to the GNU radio testbeds, the WARP radios adopt a FPGA-based approach to develop all 
PHY and link layer protocols in FPGA. The WARP development environment is based on the Xilinx 
System Generator software that compiles researcher implementation with the required platform firmware 
to synthesize the FPGA bit stream for uploading. Most researcher codes are expected to be in VHDL, 
while it’s possible to convert C source codes into equivalent VHDL for synthesis. 

The KU radio, as reviewed in Section 2.1.2, combines the efficiency of FPGA/VHDL and flexibility 
of  DSP/C design environment. KU radios, however, are currently not publicly available. 
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GENI’s ORBIT Cognitive Radio Platform (OCRP) will be introduced separately in Section 3. Also a 
FPGA-centric platform, the OCRP radios adopt an innovative multi-FPGA configuration together with an 
integral compiler support to maximize parallel processing across multiple FPGAs to boost up processing 
speed of complex protocols. Full stack programmability is one of OCRP’s envisioned objectives; the 
realization, however, still demands substantial development effort to enable flexible protocol integration 
and widely acceptable programming and experimentation supports. 

The key challenges for realizing a new genre of full stack programmable testbed are beyond software 
integration. More importantly, such testbeds will attain their full utility only when people from across 
various traditionally separate fields of wireless communications and networking come together to jointly 
develop novel protocols in all layers and integrate them for experimentation. For example, researchers 
studying higher layer protocols and applications will benefit from experimenting with cutting edge radio 
protocols with superb performance, while researchers studying PHY and link layer protocols will benefit 
from an easily deployable network with real applications running on real network scales. Missing the 
participation from either side will limit the usefulness of such testbeds. 

Frequency agility is another often overlooked challenge. The USRP, WARP, and GENI OCRP radios 
all feature wide-band (e.g., 50 MHz-2.2 GHz) radio transceivers. It is, however, very important to 
understand that the receivable signal frequency depends on the adopted antenna as well. Currently there is 
no commercial antenna that can receive signals at arbitrary frequencies across such a wide range. For 
experiments that focus on a specific narrow frequency band, choosing a matching antenna for the band 
will suffice.  For experiments that wish to study agile frequency adaptation, new solutions must be 
developed to enable antenna frequency programmability. 

2.3 Testbed Programming Methods and Tools 

The testbed programming methods for the surveyed testbeds are summarized here to identify the different 
modes of programming support that researchers from different areas have been accustomed to. 

2.3.1 Channel Emulation Testbeds 

The CMU channel emulator is developed over the Emulab testbed control framework. Users first 
create an experiment by uploading an ns script at the testbed webpage to specify the number of nodes and 
the type of network to connect the nodes. Once the experiment is created, users can proceed to configure 
the channel model, node mobility, and test applications via xml scripts. Optionally, there are java utilities 
provided for network visualization and experiment dispatch. 

2.3.2 Physical Layer Testbeds 

Programming physical layer testbeds today typically requires C/C++ and/or hardware description 
languages (HDL). Matlab has been a popular environment/language as well for algorithm development 
and software verification. Matlab can be used for generating executable binaries for processors (e.g., PC 
or DSP) and FPGA; however, the former often suffers from substantial loss of efficiency, while the latter 
requires partnering FPGA vendor tools which require HDL codes as their default input for generating 
FPGA binaries. Python is also popular for linking C/C++ modules for running on processors. GNU radio 
and USRP based testbeds, embedded radio testbeds (e.g., KU radio [43], BYU MIMO radio [64]), and 
commercial SDR development boards (e.g., Lyrtech [50]) all require some or all of these programming 
methods.  
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For most PHY and link layer researchers, it remains a major hurdle to use HDL for developing 
advanced protocols (there are certainly those proficient of both, but they will be the relative few). The gap 
is not just due to less emphasis on HDL training; one major reason is the lack of open source HDL 
libraries for many standard functional blocks (e.g., coding/decoding algorithms). It is, on the other hand, 
relatively easy to find open source C/C++ libraries, or Matlab blocks that come with its digital signal 
processing and communications toolboxes.  

It will be tremendously useful to enable flexible translation of C/C++ code into HDL. Various 
academic and commercial tools exist, though most of them have their respective constraints. Below is an 
example list of these tools and constraints: 

 FpgaC is an open source initiative for an ANSI-C to HDL compiler. 

 C-to-verilog.com is a commercial but free online tool. The tool requires uploading ANSI-C code 
to the website for HDL synthesis. The company can provide an off-line version for local installs 
on a case-by-case basis. 

 All leading FPGA vendors provide their own C-to-hardware compilers. A few tools that are not 
platform specific are: Altium Designer (C/C++) [65], Nallatech (ANSI-C) [66], Impulse (ANSI-C) 
[67], Mentor (ANSI-C++, System-C) [68].  

 There is a growing industrial trend to adopt C-like (but not C) languages for high level design and 
synthesis into FPGA. System-C and Handel-C are examples of two such languages. With 
reasonable effort, existing C code may be converted to these formats following certain guidelines. 

While some of the above tools provide optimization features to accelerate the converted hardware 
performance, most of them expect the C source code has certain level of structural similarity to the 
anticipated FPGA implementation to result in efficient FPGA designs. 

2.3.3 COTS Radio Testbeds 

COTS radio testbeds are more often used to study protocols and applications above the link layer, and 
in some cases, the link layer protocol itself. Since COTS radio testbeds are based on PCs and standard 
operating systems (Linux, Windows, MAC, etc.), the full range of programming methods can be used. 

In cases where the research interests lie inside the firmware (link layer protocols and configurations), 
open source firmware is needed. Madwifi [60] is one popular firmware for Linux platforms. Intel also 
releases the firmware source for its Wi-Fi chipsets to allow customization [69]. 

One important observation to be noted about COTS radio testbeds is their easy integration of any 
COTS radios to the platform without needing to modify any higher layer protocols and applications. The 
radio vendors will provide the drivers to install the radios as standard communication devices on the host 
machine, such that the protocols and applications can choose to access these radios through standard 
network configuration commands (ifconfig/ipconfig). 

2.3.4 Full Stack Programmable Testbeds 

Despite the potential of many existing testbeds to support full stack programmable experiments, none 
of them have been fully developed and published. This section discusses one possible future 
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programming environment that can most efficiently integrate the existing resources and encourage usage 
by researchers with different backgrounds to collaborate. 

The key value of the full stack programmable testbed is not only its programmability but also the 
potential of resource sharing. For higher layer researchers to access advanced radio prototypes on this 
testbed, it is important that they see them as yet another communication device via a standard interface. 
For radio researchers to conduct experiments at network scale and with real application/protocol traffic, it 
is important that they come as a standard suite that can operate independent of the radios. For cross-layer 
researchers, they will expect the ability to access, revise, and recompile the source code of a selected 
subset of the radio, protocol, and application modules. 

Attempting to come up with a whole new development environment will be a costly and time-
consuming effort.  The only way to lower the development threshold is to reuse as much as possible the 
existing resources. For example, if possible, it will be important to design the SDR hardware as a stand-
alone radio that interfaces with a PC host as a standard communication device. This will not only allow 
all the higher layer protocols and applications be reused without any further efforts, but it will also 
simplify the design of the development and experiment control framework. 

3. GENI Cognitive Radio: A Building Block for Any-layer Wireless Testbeds 

The GENI Cognitive Radio, also known as the OCRP, is being developed at WINLAB, Rutgers 
University and University of Colorado, Boulder. The detailed specification can be referred to at [70]. 

3.1 OCRP Hardware 

The OCRP radio hardware possesses a number of important design features that makes it a desirable 
building block for an any-layer programmable wireless testbed: 

 Multi-FPGA platform with processor core: The project will leverage a system and network on 
chip builder (SNOC-builder) solution to program multiple FPGAs. The project proposes to 
specifically investigate tight time synchronization across the multiple FPGA cores. The gigabit 
interconnects among multiple FPGAs are critical for achieving accurate time synchronization and 
avoiding latency bottlenecks for real-time signal processing. 

 High bandwidth PC-to-OCRP interface: Currently a gigabit interface is used for PC-to-OCRP 
interface. This is to be sufficient if the radio processing is kept onboard OCRP; thus, a host PC 
can treat an OCRP as a regular Ethernet device and direct higher layer packets to the Ethernet 
interface. 

 Wide range of tunable carrier frequency: A number of radio front-ends can be used with OCRP. 
The widest tunable frequency range is from 100 MHz to 7.5 GHz. Note that proper antennas need 
to be selected for each radio range. 

 Competitive ADC/DAC speed and resolution: ADC/DAC speed and resolution is a critical factor 
for waveform fidelity. While OCRP does not employ the most aggressive ADC/DAC available 
today, its top-of-the-line RF module’s specification (250 MSps 12-bit ADC, 1 GSps 16-bit DAC) 
is competitive with other academic SDR platforms. 
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3.2 OCRP Software 

The OCRP software has two main parts: the software for deploying VHDL designs on multiple FPGAs, 
and the software for experimental support (development, deployment, execution, and measurement). 

The former is based on the SNOC-Builder tool, which in turn leverages various Xilinx tools. 
According to the GENI cognitive radio project proposal, currently the software assumes users to provide 
their own high level FPGA allocation schemes and the VHDL files for each FPGA to begin synthesis. 

The latter is termed the Cognive Radio Kit (CR-Kit) [70]. The CR-Kit has just released its R3 
architecture. The CR-Kit aims at providing a library of pre-programmed modules as building blocks for 
typical communication systems while allowing users to add their own customized blocks into the system. 
When completed, the CR-Kit will provide a number of “default blocks” that are standard to most users 
and need not be changed (unless a user chooses to), and it will provide an “application block” where users 
can plug in their own “radio applications”. Note that “applications” in the radio context actually refers to 
the PHY and link layer protocols. The default blocks currently include the Ethernet interface to the host, 
the packet processor that handles outgoing/incoming packets from/to the host Ethernet interface 
before/after the “application block”. 

Like the SNOC Builder, the CR-Kit also assumes users to have the VHDL files for their custom radio 
application to be synthesized with the rest of the standard blocks for loading onto the OCRP FPGA. A 
trial use of the system was conducted at Clemson.  A remote user at Clemson accessed two OCRP nodes 
at WINLAB with the following procedure (now available as a tutorial at [71]): 

1. Install Xilinx ISE Design Suite with MATLAB Simulink plugin.  The version of the Xilinx suite 
matters. For example, we experienced some command options that changed from v.10.1 to v.11.5, 
causing the OCRP partition script to have errors. 

2. Install Mentor Graphics ModelSim.  

3. Compile Xilinx libraries for ModelSim. 

4. Download the OCRP source tree from http://svn.orbit-lab.org/. 

5. Complete MATLAB path configuration. 

6. Open OCRP model file in Simulink and use the Xilinx System Generator block to synthesize the 
net list and generate the bit file. 

7. ModelSim will be called automatically after the previous step (co-simulation option in System 
Generator block). The ModelSim test waveform should be defined before this will work. 

8. With the successfully generated FPGA bit file, it can be loaded onto the OCRP nodes for 
execution. According to the GENI Cognitive Radio team, the bit file loading will be integrated 
into the ORBIT management framework (OMF). It is under development now; hence, it was 
necessary to load the bit file through a remote desktop connection to the two Windows PCs that 
host the two OCRP nodes. In the remote desktop, Xilinx iMPACT tool is used to load the bit file. 
Execution begins automatically after loading. 
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3.3 Experiment Control Software 

One of the planned goals for the GENI Cognitive Radio project is to integrate OCRP nodes with OMF. It 
is, however, not specified in the proposal the extent of integration that will take place. Through 
discussions with the project team, it was mentioned as desirable to integrate OCRP with Linux hosts 
(instead of Windows). 

The latest R3 architecture for OCRP has defined the Ethernet packet format from the host [72]. The 
current definition can potentially allow two modes of packet handling: 

1. OCRP as standard network device: In this mode, the host should send all packets as Ethernet 
frames with host derived source and destination MAC addresses, such that the packet is passed to 
RF after minor processing at the packet processor. It is necessary that OCRP implements a built-in 
ARP function. Currently the architecture shows a TCP/IP block inside the packet processor, which 
appears only needed for multiplexing control and data packets, since TCP and IP should already be 
running on the host. 

2. OCRP as a stand-alone device without a host: In this case, it is expected that test applications, 
transport protocol (e.g., TCP), and network routing should be on implemented on OCRP.  This, 
however, seems quite complex to enable.  In the current architecture, no soft processing unit is 
exposed to the users (the proposal mentioned using the soft processing DSP units for internal 
scheduling and resource allocation). 

The first mode seems more practical and flexible in reuse of higher layer protocols and applications.  To 
complete the design, however, CR-Kit should provide an “Ethernet driver” to run on the host, such that 
higher layer protocols and applications will simply send and receive Ethernet packets via the driver 
exactly identical as on Ethernet, while the driver takes care of converting the standard Ethernet packet 
into the OCRP format as defined in the R3 architecture.  Once this is done, the full stack integration can 
be considered complete. 

4. Recommendations for Enabling Any-layer Programmable Experiments with OCRP 

For researchers of diverse backgrounds to conduct any-layer programmable radio experiments, especially 
mobile scenarios, this section summarizes recommendations of key features with OCRP. 

4.1 Any-layer Programmable Experiments: Definition and Requirements 

We consider an any-layer programmable experiment being a network experiment that utilizes one or more 
programmable prototypes in any parts of the network protocol stack. To enable such experiments, the 
platform must facilitate loading, programming, and measuring metrics in any protocol layer(s). 

While any platform that allows programming any layer protocols satisfies this definition, we are 
interested in only those that 1) require minimal effort to set up full stack experiments and 2) need changes 
only in the layers of interest to each specific researcher. Only so will researchers from different layers be 
attracted and justified to devote their efforts in developing research prototypes for the platform. 
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4.2 Maximal Application and Higher Layer Protocol Code Reuse 

For PHY researchers to conduct a full stack experiment, they should ideally be able to take a number of 
“working images” of an operational network protocol stack and plug in their specialized PHY 
implementation. There should be a library of such images allowing users to specify, for example, their 
desirable application, transport, routing protocols, and network architecture. The images may also provide 
a set of default PHY and link layer protocols that the users can execute with no effort to verify the 
baseline performance of the network. Then, researchers can load their novel protocols to replace the 
default ones for comparative study. This approach not only allows the reuse of many existing well-known 
protocol modules (such as the base images provided in the ORBIT repository), but also provides a 
template to help new users to start using the platform and make only incremental changes to the testbed 
software, resulting in a least-resistance learning curve. 

4.3 Maximal Physical and Link Layer Code and Development Environment Reuse 

An existing and continuously growing resource of PHY and link layer implementations are now found in 
various academic repositories: GNU radio, WARP, OSSIE, and possibly others. It will be valuable to 
systematically integrate these resources to operate with the GENI OCRP nodes. The architectural 
similarity among these testbeds and OCRP makes it very possible to achieve full integration with 
relatively small interface supports. And, if C-toHDL converting tools can be made available to GENI, it 
will be even easier to port the existing software implementations onto the OCRP FPGA for major 
performance improvements. 

For PHY researchers to study specific challenges in the PHY and link layer protocols, or for higher 
layer researchers to study the impacts of different lower layer protocols, it is useful to start with a working 
implementation and incorporate controlled changes into the protocols. Open source implementation of 
representative protocols, such as IEEE 802.x radio protocols, OFDM, or MIMO signaling schemes, will 
be ultimately useful. Such resources are readily available in the aforementioned open source SDR 
repositories. Establishing the utilities to link or convert these repositories to be compatible to OCRP will 
substantially enhance the GENI OCRP testbed’s utilization. 

These radio protocol repositories have been initiated by respective research projects. In addition to the 
open source resources they offer, these projects have also made efforts to develop graphical user 
interfaces for displaying the commonly useful protocol options, parameters, and performance metrics. It is 
recommended that GENI can incorporate the useful interfaces from these well established development 
environments but extend it with additional features that will ease the use by researchers from a wider 
range of diverse backgrounds. 

4.4 Flexible Programming with Both FPGA and On-board Processor 

As surveyed above, some existing testbeds feature FPGAs with on-board processors which allows Linux 
programming, e.g., [43]. OCRP’s FPGA boards also feature on-board processors; on the other hand, the 
current architecture utilizes the processor for timing control and resource allocation without mentioning 
support for user programs. Enabling flexible programming and interfacing the two will have tremendous 
benefit in allowing fast prototyping by programming the processor while allowing performance 
optimization via FPGA programming.  
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4.5 Challenges and Recommendations for Experiment Monitoring and Debugging 

Conducting wireless networking experiments faces a number of key challenges: 

 RF monitoring for valid interpretation of measurement and debugging 

Wireless transmissions and protocol performances depend sensitively on the noise, 
interference, and signal strengths perceived by the nodes (transmitting and receiving nodes alike). 
The lower the protocol layer of interest is, the more accurate information of the radio 
environment is crucially required.  

RF spectrum analyzers have been used to date for experiment monitoring. For logging 
protocol-specific activities, commercial hardware and software packet sniffers have been 
developed for Wi-Fi networks. These functions can all be realized using an SDR node such as 
OCRP. However, monitoring operation must be carried out continuously and cannot be time 
shared with a node used for experimentation. Hence, it is recommended that dedicated 
experiment monitoring OCRP nodes be developed. It may also be recommended as a best 
practice experimental setup to always pair an experimental OCRP node with another collocated 
monitoring OCRP node.  

It is also noted that for debugging novel protocols, especially the lower layer ones, the timing 
and bandwidth requirements can be substantial. Since these protocols will most suitably be 
implemented in the FPGA, it is expected that data logging circuits will be useful for researchers. 
It is recommended that one or few standardized measurement blocks and conventions be 
developed and defined with the OCRP release, such that researchers can reuse a standardized 
measurement FPGA block that will all take care of the logging into onboard storage that the users 
can retrieve later with normal Linux commands. 

Of course, this does not preclude the need for researchers to log protocol specific data on the 
experimental nodes. Efficient logging requires substantial onboard resources (memory access and 
storage). It is recommended that the release of OCRP be accompanied with a number of 
measurement configuration and data archive guidelines and examples.  

 Confirmation of radio configuration and surrounding setup 

It is foreseeable that circumstances exist when the experiments won’t execute properly due to 
component failure or unexpected mis-configurations (e.g., wrong antenna attached or loose 
contact). While the software components can be easily verified remotely, physical components 
and surrounding conditions are harder to check. This is even more problematic if such 
disturbances occur during the experiment.  In our own research experiences, when wireless 
measurements are conducted in an area not totally closed from moving parts (people, objects, 
doors), the resulting data could exhibit phenomena that are hard to deterministically validate 
without detailed recording of the environment. 

This is certainly a challenge that does not have one perfect solution. On potential 
recommendation is to install video cameras that can stream and record the experiment venue for a 
first order detection of any unexpected behavior. To verify the correct hardware configuration, 
such as the antenna, it is recommended to setup a standard logging system when the onsite staff 
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install and remove any parts of the hardware (for example, a mandatory sequence of webpage to 
enter the model number of the components on each device). 

 On-site support for experiment setup and trouble-shooting: 

Unlike a wired network testbed that seldom needs to alter its physical and network topology, 
an important value of a wireless network testbed is the range of different scenarios that it can be 
tested on.  It is possible to identify and maintain a number of scenarios using separate hardware at 
different sites to minimize the configuration overhead and chances for mis-configurations; it is, 
however, expected that such setups will require routine checkups to assure all software and 
hardware components are correct as specified and fully functional. On-site support is crucial, and 
it is recommended that such maintenance routines be standardized (fixed time, fixed list of check 
items, standard logs accessible by researchers) for efficiency and accuracy. Video or camera 
snapshots of up-to-date views of the devices may be useful as well. 

4.6 Designing and Supporting Experiment Scenarios 

The range of supported scenarios determines the core values of a wireless testbed. While there can be 
an infinite number of different scenarios possible, it is recommended that a representative set of 
scenarios be identified and maintained, such that most researcher needs are met. 

Identifying useful scenarios can by itself be an open research question. It is possible to solicit 
community input to such scenarios (for example, calling for scenarios with justifications through 
GENI’s website), and then identify the right site to realize it. Of course, the number and scale of 
scenarios require proportional investment on the hardware and personnel costs. Various means are 
possible to couple the creation of scenarios and the resources. For example, it is possible to solicit 
proposals through GENI spiral solicitations or other NSF programs for proposals describing one or 
few scenarios, justifying the focused wireless effects that can be supported, and offering to host a 
number of OCRP nodes for realizing the scenarios.  

4.7 Education and Training 

To utilize an any-layer programmable testbed effectively to advance research, a number of techniques 
deserve standardized training for the community or, even better, integration into the curriculum. The 
use of such as testbed is by itself transformative in research and education, as it naturally requires 
students and researchers to contemplate on wireless network problems with a holistic view. The 
learning curve for the setting can be, however, simplified if the platform is designed with clean 
separation of concerns – that is, a user should need to involve in “programming” only the protocols 
they choose to, and expect the other protocols above and below to be functional as given. Thus, the 
researchers will only need a minimal set of bootstrapping training sessions to learn the use of the 
testbed. 

For example, the CR-Kit has planned to include a series of tutorials to introduce the OCRP 
architecture and the procedure for programming a radio module. To date, the tutorials are still under 
development and the full scope has not been set in stone. It is recommended that either the CR-Kit 
tutorials or a separate project can develop at least two such series of tutorials – one will be intended 
for the group of typical “higher layer researchers” who are more familiar with Linux network testbed 
operations but have less clues about FPGA, while the other will be intended for the group of typical 
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“lower layer researchers” who are more familiar with Matlab and C simulation environments but have 
limited knowledge about Linux and higher layer protocols and even FPGA programming. It is 
expected that FPGA programming may be the least familiar for most researchers in either group.  It is 
recommended that such tutorials be based on a simple but reasonably complete example involving all 
protocol layers, such that the users can incrementally achieve the following learning goals: 

 To set up the necessary remote system environment and launch the example experiment without 
modifying anything. 

 To learn how to choose and configure protocols in different layers from a library of standard and 
contributed protocols. 

 To learn how to modify, compile, and reload protocols in different layers and conduct new 
experiments. 

It is understandable that it is impossible such tutorial covers the full basics of each programming 
languages and tools, but it is recommended that the narratives in the tutorial account for the diverse 
backgrounds of the researchers, i.e., provide at least sufficient details that explain the essential steps, 
and provide links to additional references or topical keywords when needed. 

4.8 Software Licenses 

Clemson has taken a trial exercise to install and configure the necessary software to identify the 
absolutely necessary procedure to enable remote use of the OCRP platform for experimentation. The 
exercise was discussed in Section 3.2. Through this exercise and discussion with the WINLAB team, 
it was found that the licensing issue was one of the top challenges to be addressed. Take the CR-Kit 
example, it is expected that: 

1. If a remote user chooses to create/extend/modify the FPGA design, the user will need his/her own 
licensed Xilinx ISE software to develop and compile the FPGA design, and licensed ModelSim 
software for simulation validation. 

2. For any user to use the CR-Kit’s MATLAB development environment, the user must be licensed 
for MATLAB with Simulink. 

3. For any user to load a compiled FPGA design onto OCRP using Xilinx tools, each user requires a 
Xilinx license. 

While requirements 1 and 2 are clearly understood and easily achievable by most academic 
institutes to date through campus licensing, donation, or low-cost academic pricing purchases, the 
third requirement was not clearly understood so far. Based on the language in the Xilinx license 
terms, there is ambiguity in whether remote users leveraging a license held by the OCRP hosting site 
(e.g., WINLAB) to upload their compiled bit files to the OCRP FPGA is acceptable.  The following 
lists three relevant statements from the Xilinx End User License Agreement [73]: 

3.(1) Node-Locked (per-User) Seat.  If Xilinx has issued to Licensee a (FLEXlm) node-locked 
Seat, then Licensee may allow the Software to be (a) installed on and accessed from only 
the specific machine(s) allowed by the applicable Authorization Codes, (b) used by only 
one User (at a time) for each one Seat for such Software that has been issued to Licensee by 
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Xilinx, and (c) used for the sole purposes of developing, synthesizing, testing and verifying 
designs only for Xilinx Devices. 

3.(2)  Floating (concurrent-User) Seat.  If Xilinx has issued to Licensee a (FLEXlm) floating Seat, 
then Licensee may allow the Software to be (a) installed on and accessed from any number 
of machines, (b) used by up to the number of concurrent Users that is equal to the number 
of Seats for such Software that have been issued to Licensee by Xilinx as determined by the 
applicable Authorization Codes, and (c) used for the sole purposes of developing, 
synthesizing, testing and verifying designs only for Xilinx Devices. 

4.(b) General Restrictions.  Except only to the extent otherwise expressly allowed under Section 
3 (License Grants) above (or under applicable laws notwithstanding these restrictions), 
Licensee is not licensed to, and agrees not to: … omitted … (vi) hypothecate, rent, lease, 
loan, lend, time-share, sublicense, distribute or otherwise transfer the Software to any other 
individual, corporation or other legal entity; … omitted … 

Considering the current ORBIT control framework and other control frameworks (e.g., Emulab, 
Planetlab, etc.), it is expected that the FPGA programming and uploading will be done in three steps: 
1) remote users program and compile their FPGA design using their own institute Xilinx software and 
license, 2) remote users upload their bit files to the control framework server, and 3) the server 
programs the FPGA using its local Xilinx license. According to the license terms above, these three 
steps do not appear to violate the agreement for either node-locked or floating licenses. 

5. Conclusions 

This whitepaper surveys the up-to-date wireless research testbeds’ objectives, design features, and 
key challenges to identify the expectation and essential features to be enabled in GENI’s cognitive 
radio testbed in support of any-layer programmable experimentation. It is concluded that the OCRP 
hardware platform is competitive and sufficient for a wide range of wireless research. At the same 
time, it is also pointed out that the current CR-Kit software architecture for OCRP does not have a 
number of needed features required for cleanly structured any-layer experiments. The importance of 
standardized experiment monitoring, measurement, and data collection support requires substantial 
on-board resource; it is recommended to develop a shared library of FPGA blocks and design 
templates to facilitate the ease of programming and efficient use of the OCRP hardware resources to 
support such standard functionalities. 

Further efforts on education and training also play a crucial part in promoting the wide use of this 
resource in wide wireless research communities. The supported experiment scenarios will also be 
core to the testbed’s value. Enabling creative ways to solicit and realize new and forward looking 
experiment scenarios, possibly at multiple sites by multiple teams will be ultimately useful.  
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