Prototype DieselNet Controller Module

Prototype DieselNet Controller Module

Contents
IR 00U 0 Yo L6 o 0) o 1
0] 004000 T) oy 2PN 1

1. Introduction

An overview of a prototype DieselNet Controller module for ORCA has completed by
Brian Lynn and David Irwin. They have also provided notes to the Kansei team on
how to adapt it to the Kansei project.

There are two files attached:
dieselnet-controller.tar.gz - The controller source and build.

dieselnet-python.tar.gz - Simple python scripts for calling
into the controller via XML-RPC.

2. Summary

Provided by Brian Lynn on May 6, 2009:

Attached is the DieselNet controller for ORCA. The controller is the module
responsible for obtaining a lease from ORCA to use resources provided by the DOME
testbed. For example, the controller provides the interface that our DOME portal will
use to integrate with ORCA.

[do not yet have are the handlers, which will do the DOME-specific functions
implementing the ORCA join and leave events. That will be coming out later.

Comments for adapting the controller to Kansei, should you care to, are near the end
of this email.

The DieselNet controller is based on code that David Irwin wrote and he provided
much guidance. If you have questions, please direct them to both David and me.

There are two files attached:

dieselnet-controller.tar.gz - The controller source and build.
dieselnet-python.tar.gz - Simple python scripts for calling

Ver. 1.1 www.geni.net 1

Prototype DieselNet Controller Module

into the controller via XML-RPC.
For my testing, | built ORCA as described by the 4/20 ORCA release:

https://geni-orca.renci.org/trac/wiki/instructions

[used the tomcat provided by the RENCI January 29 "go release:"

https://geni-orca.renci.org/trac/
https://geni-orca.renci.org/trac/wiki/Deploying

To build the DieselNet controller:

$ mkdir controllers
$ cd controllers
$ tar zxf dieselnet-controller.tar.gz
$ cd dieselnet
$ source envvars
[you may need to edit envvars]
$ mvn clean
$ mvn package

To install the controller:

start tomcat
- it's best to always start clean:
$ cd <tomcat directory>
$./stop.sh
[you may need to "pkill java" to really stop it]
$ cd webapps
$ rm -rf orca
$cd../logs
$rm*
$cd.
$./start.sh
login to the ORCA administration:
- http://localhost:8080/orca
- user: admin password:
install the dieselnet controller:
- select admin tab
- select Install Package
- browse to controllers/dieselnet/target/
- choose orca.controllers.dieselnet.tar.gz
- click install
- select user tab
- select Start Controller

Ver. 1.1 www.geni.net

Prototype DieselNet Controller Module

- choose DieselNet controller

- click create

- it should be "running" if you select View Controllers
select View Reservations

[there should be nothing, but as you request a lease it

will show up here]

If you want to test the DieselNet controller:

$ tar zxf dieselnet-python.tar.gz
$ cd dometest
$ python reqexp.py
[refresh View Reservations and it should show up |
$ python leases.py
[requests status from the controller]

Should you want to adapt the controller to Kansei:

- Copy the files into a kansei directory under controllers

- Generate an ORCA guid for kansei. Replace all references to the DOME guid
(de7e9e4d-5dc4-4a7f-8180-7d437c50d634) with your guid.

- You'll need to go through the various files and replace references to DieselNet or
DOME with kansei.

- You'll need to rename the dieselnet subdirectories to kansei, and rename the
source files (e.g. DieselnetController.java to KanseiController.java)

- Once it builds as kansei, you can change the code to be specific to your
requirements. The source files that you would need to customize are
DieselnetController.java (which does all of the actual work), and
DieselnetHandlers.java (which receives the XML-RPC calls).

- Brian

Provided by David Irwin on May 7, 2009:

I thought I'd elaborate a little bit on how Brian is going about integration. DOME's
testbed management software (like nearly all other testbed management software)
combines the functions of all three GENI entities---the experimenter control tools,
the clearinghouse, and the aggregate manager---in a single software artifact.

The experimenter control tool is the part of the DOME web portal where users go to
upload their experiments (in the case of DOME, entire VM images) and request
resources (in the case of DOME, nodes in the bus network) for some duration (with
some start and end time). The aggregate manager is the part of the DOME testbed
that goes out and "pushes the buttons" to satisfy approved requests by either
uploading an experiment and starting VMs or halting an experiment by shutting

Ver. 1.1 www.geni.net 3

Prototype DieselNet Controller Module

down VMs. The Clearinghouse is the part of DOME that approves research
requests (i.e., authorizes users, approves/modifies/fails requests based on resource
availability, user priority, or user privileges).

Brian is interfacing his experiment control tool (the web portal) with Orca's
implementation of the GENI slice controller and his aggregate manager with Orca's
implementaion of the GENI aggregate manager. Once this is done, DOME will be
capable of using the Orca implementation of the GENI Clearinghouse; importantly, it
will still use its own DOME-specific researcher web portal and DOME-specific
aggregate manager functions. For now, these two entities, as before, will

function as part of the same software artifact (although they are logically separate
and in the future should be capable of being physically separate). So DOME users
will go to the same web portal and use the same tools as they did before; there
should be little change in their end-user experience and minimal impact on his
existing system. Brian is using the Orca web portal primarily as an administrative
console, which users won't necessarily interact with.

This initial integration requires minimal changes to the DOME software, since Brian
just has to interpose on (1) the place where his software is issuing a user request to
a policy that approves/schedules it and (2) the place where approved requests get
satisfied by re-imaging nodes and executing researcher code. The slice controller
integration he sent you is (1)---it uses a simple XML-RPC interface that Brian's web
portal uses to pass requests to the Orca slice controller.

XML-RPC is simply an easy way to integrate two bodies of code written in two
different languages; these calls are not meant to traverse a network and are not
meant to be "public” GENI methods (which in Orca use SOAP instead of XML-RPC).
You can think of these calls as being essentially local procedure calls (if Brian had
written his other code in Java he would have just used local procedure calls), and
Orca's slice controller as being a logical extension of Brian's researcher

web portal. Brian's requests for resources are pretty simple right now (they could
get more complex later): each experiment gets the entire network of buses and
Brian's aggregate manager identifies the experiment using an ID assigned by the
web portal. The code that the experiment should run is identified by another ID.
These are set as "configuration properties” in Brian's controller, and they will be
sent both to the Clearinghouse (which doesn't do anything with them) and then to
Brian's aggregate manager.

Brian's aggregate manager will know what to do with these properties to instantiate
the right experiment with the right code. For now, I believe his aggregate manager
assumes that the code is pre-staged on the nodes out-of-band, so it's only function is
to start and stop the experiment. As Brian articulated, he is working on a "handler
package" for Orca that specifies what the functions should do when an experiment
starts and stops----for Brian these functions will invoke XML-RPC calls to his
equivalent of an aggregate manager and pass the appropriate IDs for the specific
experiment.

Ver. 1.1 www.geni.net 4

Prototype DieselNet Controller Module

My feeling is that Kansei's structure is probably similar (although I don't exactly
know). You have some portal where a user uploads code and requests resources (in
the form of collections of sensor nodes) for some duration; you have some
scheduler that applies a policy to determine who/when/where someone should get
resources; you have something that takes approved requests and "pushes the
buttons" to (re)image nodes and start/stop an experiment. The first step in
integrating with Orca (and GENI) is logically (if not physically) dividing your code so
that you can offload the authorization/scheduling policy to a GENI Clearinghouse.
Thus, the web portal passes requests (via XML-RPC or local procedure calls) to the
Orca slice controller (which then forwards them to the Clearinghouse at the right
time), and at the appropriate time (before the experiment should start) the Orca
slice controller passes approved requests to an Orca aggregate manager. The Orca
aggregate manager calls the aggregate manager part of your system when
experiments should start and stop----and then your system does whatever it needs
to do to start/stop an experiment.

For now, anything beyond separating out a Clearinghouse's
authorization/scheduling policy can be done out-of-band (e.g., pre-staging
researcher code) using your existing tools to keep things simple, as Brian as done.
In the simple case (and you should start with the simple case), Orca's existing
Clearinghouse policy is enough to get you started; it approves requests for
collections of "things" (e.g., sensor nodes) over time (given the start and end time)
and space. Right now it will approve any request as long as the nodes are available
during the specified time period (i.e., no priorities, no sophisticated per-resource
authorization policies, just first-come-first-served). These policies can be changed,
but right now I don't see a pressing need to change them.

Let me know if you have questions.

-David

Ver. 1.1 www.geni.net 5

