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Abstract

High-power sensors, such as steerable radars and pan-tilt-
zoom cameras, expose programmable actuators to applica-
tions, which actively control them to dictate the type, quality,
and quantity of data collected. Since networks of high-power
sensors are expensive to construct, maintain, and deploy, they
represent a scarce resource that multiple applications with
conflicting goals often share. However, existing mechanisms
are too coarse-grained to satisfy these conflicting goals. To
address the problem, this paper presents VSense, a virtual-
ization approach that augments virtual machines with virtual
sensors to enable fine-grained multiplexing between unmod-
ified applications. VSense represents each virtual sensor as a
state machine, interleaves state transitions (i.e., acutations) to
balance fair access to the physical sensor with its efficient use,
and employs an actuation-aware proportional-share scheduler
to ensure performance isolation between virtual sensors while
optimizing actuation overheads. We implement VSense in
Xen and prototype it using one example of a high-power sen-
sor with actuators—a PTZ camera—to multiplex concurrent
applications. Our results show that VSense efficiently iso-
lates the performance of virtual sensors, allowing concurrent
applications to satisfy conflicting goals. In a case study we
conduct, we show that concurrent applications receive tolera-
ble, but degraded performance—ranging from 1.5x less to 8x
less in our examples—than seen with a dedicated sensor.

1 Introduction

An emerging class of sensor networks (sensornets) con-
sists of nodes with high-power sensors that comprise one or
more programmable actuators. To achieve their goals, sens-
ing applications programatically actuate these sensors to con-
trol the type, quality, and quantity of data collected. As an
example, consider a network of pan-tilt-zoom (PTZ) camera
sensors used for both monitoring and surveillance: the mon-
itoring application continuously scans each road at an inter-
section in a fixed pattern, while the surveillance application
intermittently steers the cameras to track suspicious vehicles
moving through its field of view. Each application must alter
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the settings of three distinct actuators—pan, tilt, and zoom—
in different ways at different times to satisfy its goals.

Other examples of sensors with actuators include steerable
radars and weather stations. Scientists use networks of steer-
able weather-sensing radars to track tornadoes, detect rain-
fall intensity, and estimate three-dimensional wind direction
and velocity by steering the radar to scan specific regions of
the atmosphere [13]. Weather stations operate multiple at-
mospheric sensors and also expose simple actuators, such as
setting the sensing resolution, that weather monitoring ap-
plications use in different ways to balance energy, wireless
bandwidth, and storage.

Since high-power sensors are often costly to construct, de-
ploy, and maintain, they represent scarce resources that users
must share. Simple multiplexing approaches dedicate entire
sensors, including control of the actuators, to individual ap-
plications for a period of time, and schedule applications in
a coarse-grained batch fashion [3]. However, such coarse-
grained reservations prevent the fine-grained multitasking—
at the level of individual actuations—required for the camera
sensornet example above, and force a choice between either
monitoring the intersection or tracking the suspicious vehicle
during each coarse-grained time period.

In general, fine-grained time-sharing benefits any applica-
tion that values continuous access to sensor data and is willing
to tolerate a higher latency or lower resolution than possible
with a dedicated sensor. While coarse-grained reservations
are akin to early batch processing systems, fine-grained con-
current access to a sensor is similar to time-shared computing
systems, where multiple applications share a machine’s phys-
ical resources at a fine time-scale. As with early batch com-
puting systems, the deployment cost of high-power sensors
limits their number, but also increases the potential benefits
from fine-grained sharing. To realize this potential, this paper
presents VSense, a system for fine-grained multiplexing—at
the level of individual actuations—of high-power sensors.

VSense uses virtualization as a key enabler for providing
fine-grained concurrent access to sensors with programmable
actuators. VSense extends virtual machine monitors (VMMs)
to include virtual sensors (vsensors) that applications, run-
ning within guest virtual machines (VMs), actuate to drive
data collection based on their own distinct needs. The VMM
mediates access to the physical sensor to ensure safe opera-
tion and prevent physical damage, while balancing efficient
use of the sensor with the enforcement of per-VM fairness
bounds. Three key attributes of high-power sensors distin-
guish them from other devices, and impacts VSense’s ap-
proach to virtualizing them.



1. Since applications need the ability to control actuation
in order to drive their data collection, high-power sen-
sors must expose these actuators directly to the applica-
tion. Thus, unlike other virtualized I/O devices, such as
virtual disks or NICs, VSense cannot completely hide a
physical device’s actuators from its virtual counterparts.

2. High-power sensors are stateful: each actuation changes
the physical state of the device. Further, the current state
of the actuators determines the cost, measured in time,
to transition to a new state. Thus, handling both state
management and the inherent uncertainty of actuation
costs are key challenges.

3. Mechanical actuators are slow—sometimes incurring la-
tencies on the order of seconds. Consequently, VSense
must optimize actuation overheads while multiplexing
concurrent applications—somewhat analogous to disk
controllers that must optimize seek times to reduce head
movement and increase I/O throughput.

Existing techniques for virtualizing I/O devices do not
map well to stateful high-power sensors.  Such tech-
niques either hide much of physical device’s capabilities—its
actuators—from VMs to support a wide-range of devices, or
virtualize a layer beneath the device (e.g., its bus), which in-
creases performance but prevents multiplexing between VMs.
In contrast, VSense must expose the same actuators present
on a physical sensor to each of its vsensors. Additionally,
while recent mote OS techniques augment sensor platforms
with explicit resource control (PixieOS [14]) and concurrency
(ICEM [11]), they focus on “conventional” resources (CPU,
bandwidth, energy) and not control of sensor actuators. In
designing VSense, this paper makes contributions in three ar-
eas.

e Virtualizing Stateful Sensors. VSense employs a novel
finite state machine approach to track the state of each
virtual sensor as it actuates. VSense uses these state ma-
chines to implement a request emulation mechanism that
efficiently multiplexes independent streams of actuation
requests from multiple vsensors. Together these mech-
anisms intelligently group requests within each request
stream to optimize state restoration overheads incurred
when switching from one vsensor to another.

e Fair Actuation-aware Sensor Scheduling. In addition
to mimicking the physical sensor’s interface, VSense
employs a fair proportional-share scheduler, based on
Start-time Fair Queuing (SFQ), to allocate shares of
stateful physical sensors to each VM. However, a strict
proportional-share scheduler, while fair, can be very in-
efficient, since it ignores actuation costs when schedul-
ing sensor requests. We propose Actuator-aware Fair
Queuing (AFQ) to optimize sensor actuation costs and
expose an explicit tradeoff between fairness and effi-
ciency.

¢ Implementation and Experimentation. We implement
a prototype of VSense using the Xen VMM for a PTZ
camera and use it to conduct a detailed experimental
evaluation. Our results show that VSense is able to
efficiently isolate the performance of stateful vsensors,

allowing multiple concurrent applications in our case
study to satisfy conflicting goals. As one example, we
show that VSense is able to photograph an object every
23 feet moving at nearly 3 miles/hour along its trajectory
at a distance of 300 feet, while simultaneously support-
ing a security application that photographs a fixed point
every 3 seconds.

The rest of this paper is organized as follows. Sec-
tion 2 presents background on virtualization and its relation-
ship to high-power sensors. Section 3 through Section 6
present VSense’s design and implementation. We then eval-
uate VSense in Section 7, discuss related work in Section 8,
and conclude in Section 9.

2 Background

We first define a system model to guide our work and out-
line the challenges to fine-grained time-sharing of stateful
sensors. We then describe the advantages of virtualization
as the foundation for multiplexing sensors with actuators be-
tween concurrent applications.

2.1 System Model

Our work assumes a network of high-power sensors,
where each sensor (i) consists of one or more programmable
actuators that applications may control, and (ii) attaches to
a node that has local processing, storage and communica-
tion capabilities. For the purposes of this work, we assume
each sensor attaches to an embedded x86-class node capable
of running modern VMMs. VSense multiplexes the sensor
across multiple applications that run on this node. We model
each application as a stream of actuation and sensing requests
of the form: [AjAz...A;S;...Sw]T, n >0, m > 0, where A;
and §; denote an individual actuation and sensing request, re-
spectively.

Intuitively, each application continuously issues one or
more actuation requests to “prepare/steer” the sensor, fol-
lowed by one or more sense requests to gather data. In
our camera sensornet, for instance, a monitoring application
might issue a repeating pattern of pan and tilt requests to steer
the camera, followed by one or more capture requests to re-
trieve images. We assume the stream of actuation and sense
requests from different applications are independent of one
another. To enable fine-grained time-sharing, VSense must
interleave these requests on the underlying physical sensor.

2.2 Multiplexing Stateful Sensors

Assuming the above system model, we now outline the
primary challenges to fine-grained time-sharing of sensors
with actuators. Consider two users—Alice and Bob—that
time-share a single PTZ camera. Assume that Alice issues
a pan, followed by a capture, denoted by P,C, and that Bob
issues a similar sequence P,Cjp, where the subscripts a and b
denote the user issuing the commands, respectively. Consider
a naive schedule that interleaves these requests in the follow-
ing order on the camera: P,P,C,Cp. In this case, the camera
pans to position 0,, as requested by Alice, and then pans to a
position 6y, as requested by Bob (see Figure 1(a)).

Thus, executing Alice’s capture command C, next results
in an erroneous picture, since the camera’s lens is at pan po-
sition 6, when Alice expects the camera’s lens to be at pan
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Figure 1: Examples showing why request interleaving is challenging in stateful sensors.

position 0,. The problem arises since the camera is stateful—
Bob’s actuation leaves the camera in a different state than Al-
ice left it. This simple example also illustrates why naive
time-slicing using time quanta is not appropriate for stateful
devices. Since both Alice and Bob alter the camera’s state
during their time-slice, they have no guarantee about the de-
vice’s state at the beginning of any time-slice.

A straightforward solution to dealing with stateful devices
is to restore the previous state prior to switching from one
user’s request stream to the next. The approach has been
proposed previously to address virtualizing stateful devices
in general [8], and is similar to CPU schedulers that per-
form state restoration during a context switch, by saving one
thread’s program counter and CPU registers before restoring
those of another. Thus, the sensor would restore Alice’s state
prior to executing the capture command C,, ensuring that she
captures a meaningful image.

However, in this example, state restoration is clearly
wasteful, since it involves re-executing the P, pan command
to move the camera back to position 6,, as shown in Figure
1(b). The naive interleaving combined with state restoration
renders the initial execution of P, useless. Further, wasteful
actuations are still possible when the camera uses a better in-
terleaving, such as P,C,P,Cp. In this case, suppose that Alice
subsequently issues new requests P>C2, which execute after
Bob’s requests. Restoring the camera to position 6, is not
necessary prior to executing the new pan Pf. Instead it is
more efficient to directly move from the current position 6y
to the position indicated in Paz, as shown in Figure 1(c). These
simple examples highlight two important insights.

First, an arbitrary interleaving of actuation commands
across users is problematic. Specifically, interleaving any
actuation command Aj, from Bob is not desirable when ex-
ecuting any of Alice’s actuation or sensing requests: Bob’s
actuation may inadvertently modify Alice’s state and trigger
wasteful state restoration procedures prior to switching back
to Alice. Instead it is more efficient to execute a group of
requests from Alice of the form AjA;...A,S] ... Sy, Where
each A; represents a single actuation such as pan or tilt, before
switching to Bob, since this avoids needless state restorations.
In the above example, this implies executing the sequence
P,C, for Alice before switching to Bob’s requests P,Cp, and
then back to Alice.

Second, the multiplexing mechanism must take into ac-
count each user’s state before switching contexts, since state

restoration may be necessary if the underlying sensor is in a
different state than the expected state. However, both actua-
tions and state restorations incur high overheads because (i)
mechanical actuation is slow and, more importantly, (ii) the
time to restore the previous state is not fixed—it is a function
of the sensor’s current state and its next state. Consequently,
limiting both actuation and state restoration overheads is im-
portant.

2.3 Why Virtualization?

The scenarios above highlight the challenges that arise
when multiplexing a sensor at the level of individual actu-
ations between applications with conflicting demands. Ad-
dressing the multiplexing problem does not necessarily re-
quire virtualization—a custom application-level scheduler
could solve the same problem. However, virtualization is an
attractive mechanism for fine-grained multiplexing of stateful
sensors that has two key benefits:

e Device Abstraction. Virtualization provides the ab-
straction of a dedicated vsensor to each user. The vsen-
sor provides the same functionality, albeit slower, as the
underlying physical sensor. Specifically, vsensors ex-
pose slower “virtual actuators” that are equivalent to the
physical sensor’s actuators. Thus, applications control
each vsensor and its exposed actuators as if it were dedi-
cated, and remain oblivious of the underlying multiplex-
ing.

e Strong Isolation. The device abstraction promotes
strong software isolation: multiple instances of unmod-
ified sensing applications use their virtual sensor as if
it were a dedicated physical sensor. Strong isolation
also extends to performance: each user’s performance
is a function of its share of the device’s resources.
Shares guarantee a minimum fraction of a vsensor’s
resources—in this case actuation time. For instance, a
fair proportional-share scheduler would allocate a frac-
tion w; /Y, ;w; of the physical sensor’s time to each vsen-
sor with weight w;.

These benefits motivate a virtualization layer that sup-
ports fine-grained multiplexing of high-power sensors with
actuators. However, existing methods for virtualizing tradi-
tional I/O devices, such as disks and NICs, do not apply to
sensor devices. These techniques focus on either emulating
a complete physical bus to support running unmodified de-
vice drivers inside a guest VM, or using a generic virtualized
driver for each class of device that forwards I/O requests to
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Figure 2: VSense architecture overview.

a corresponding back-end driver for the physical device. The
former case does not support multiplexing since it attaches
each device to the virtual bus of only a single guest VM. The
latter case hides the physical device’s actuators to ensure the
virtualized driver applies to a range of different physical de-
vices.

Fair-share sensor multiplexing also differs from fair-
sharing of traditional I/O devices, since sensor applications
control actuators directly to influence the data they gather.
For instance, even I/O-intensive applications use the filesys-
tem interface to read and write data, and do not concern them-
selves with the low-level details of the disk head’s position
or the placement of data on disk. As a result, virtual block
devices attached to VMs need not expose the physical disk
head’s position. Additionally, the fine time-scales, mechani-
cal instability, and jitter associated with adjusting a disk head
makes accounting problematic, which is not an issue for rel-
atively large and slow sensors.

Hence, a virtualization layer for sensors with actuation ca-
pabilities must differ from traditional methods for virtualizing
I/O devices. The following sections address this problem by
presenting the design and implementation of VSense.

3 VSense Design Overview

VSense assumes each node runs a modern VMM, such
as Xen [1] or VMware [18]. Each node is capable of run-
ning multiple concurrent VMs, one for each user or appli-
cation. Traditional VMMs virtualize a node’s physical re-
sources, such as the processor and memory, and provide per-
formance isolation across VMs. VSense extends traditional
VMMs by adding virtualization support for sensors with ac-
tuators.

VSense provides a virtual sensor abstraction by attaching
a vsensor to each virtual machine. To a VM’s applications,
a vsensor operates like a slower version of the physical sen-
sor that has identical functionality (including actuation capa-
bilities); an application designed to run on the physical sen-
sor should also run unmodified on the corresponding vsensor.
VSense resides in the VMM or a privileged control domain—
domain-0 in Xen—and decides how to interleave requests
from each vsensor on the underlying physical sensor (see Fig-
ure 2). Sensor virtualization involves two key functions.

e Maintaining Sensor State Machines. In Section 4, we
describe how VSense tracks the current state of each
vsensor as well as the physical sensor (Section 4.1), and
uses the information to infer critical sections in the re-
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Figure 3: Constructing and interleaving critical sections.

quest stream that execute as atomic units (Section 4.2).
VSense uses the state information further to perform in-
telligent state restoration when context switching from
one vsensor to another (Section 4.3). Each technique
serves to reduce mechanical actuation cost.

e Actuator-aware Fair Scheduling. In Section 5, we de-
scribe VSense’s use of a proportional-share scheduling
algorithm to fairly allocate control of the physical sen-
sor’s actuators to vsensors according to an assignment
of weights (Section 5.1). To optimize mechanical actua-
tion while maintaining fairness, we describe an actuator-
aware fair queuing (AFQ) algorithm that defines a trade-
off between strict fairness and efficient actuation (Sec-
tion 5.2).

Following our system model, each vsensor receives

a stream of actuation and sensing requests of the form
[A1...A;S)...Su]T, and VSense determines the interleaving
of these requests on the physical sensor. The challenge is
to determine an interleaving that isolates performance, while
optimizing both actuation overheads and state restorations
cost. VSense employs a two step process to determine an
interleaved schedule (see Figure 3). First, VSense groups re-
quests within each vsensor request stream to construct atomic
units—analogous to critical sections—to issue to the physical
sensor. After transforming each request stream into a stream
of critical sections, VSense then determines an interleaving
of the critical sections to optimize actuation costs.

In the first step, VSense transforms a request stream into
a sequence of critical sections by grouping requests that have
the form A;fSi*. The regular expression captures a key char-
acteristic: each critical section consists of zero or more ac-
tuations, followed by one or more sensing requests, all from
the same vsensor. Notice that, by executing this group of
requests atomically, VSense prevents interleaving of actua-
tions from other vsensors that might modify the current sen-
sor state, which in turn avoids needless state restoration over-
heads. Importantly, VSense automatically infers these critical
sections from each vsensor request stream without requiring
any VM-level support—consistent with our goal of running
unmodified applications.

VSense then employs an enhanced fair-share scheduler
that is actuation-aware. Scheduling and interleaving occurs
at the granularity of critical sections; our enhanced scheduler
determines an ordering of critical sections that reduces actu-
ation costs. The challenge lies in balancing fairness with ac-
tuation efficiency: VSense provides a configurable schedul-



ing parameter to determine an appropriate balance between
these two objectives. The scheduler also enables performance
isolation and fair resource allocation by assigning a user-
specified weight w; to each vsensor and allocating a mini-
mum fraction w;/Y.;w; of the time on the physical sensor to
Vsensor i.

Finally, VSense must track the state of each vsensor and
that of the physical sensor and perform state restoration
whenever it detects a state mismatch at the time of a “context
switch”—i.e., switching from one vsensor’s critical section
to another. VSense uses a finite state machine (FSM) for the
physical sensor and each vsensor to track its current state, and
employs an intelligent state restoration mechanism to further
reduce the restoration overhead.

4 FSM-driven Interleaving

In this section, we present the state machine approach
VSense employs to track the state of each virtual and physical
sensor. VSense uses state machines for two key tasks: (i) to
automatically infer critical sections from the request stream
seen at each vsensor, and (ii) to perform state restoration that
minimizes overhead.

4.1 Sensor State Machines

VSense uses finite state machines to track the state of each
physical and virtual sensor, where a state is a specific setting
of each sensor actuator. We use the term actuator broadly
to include both mechanical actuators, as well as other non-
mechanical settings of interest. For instance, a PTZ camera’s
state includes both the pan, tilt, and zoom position of its lens,
as well as the image resolution and shutter speed settings.
Pan and tilt are true mechanical actuators that require a motor
to alter, while zoom, shutter speed, and image resolution are
settings of the lens, camera, and CMOS sensor, respectively.
Each actuation modifies the state of one or more of these pa-
rameters, causing the sensor to transition from one state to
another.

VSense employs a virtual state machine (VSM) to track
the current state of each vsensor and a physical state machine
(PSM) to track the state of the physical sensor. The state of
a vsensor (and hence the VSM) changes only when the cor-
responding application actuates it. In contrast, the state of
the physical sensor (and the PSM) depends on which vsensor
request is currently executing on the physical sensor. Thus,
the PSM and VSM state machines allow VSense to track the
state expected by each user, as well as the current state of the
underlying physical sensor. Whenever VSense switches from
one vsensor to another, it compares the states of the VSM and
PSM. If there is a state mismtach, VSense must perform state
restoration, by issuing actuation commands for each state pa-
rameter that is out-of-sync, to synchronize the vsensor’s state
with that of the physical sensor.

As an example, assume that Alice’s virtual camera has the
state pan = 0, tilt = 0, zoom = Z, (for simplicity, we ignore
other camera settings here). Suppose the PSM of the physical
camera has the state pan = 0, tilt = ¢, zoom = Z;,. Thus, the
two state machines are out-of-sync along the pan and zoom
dimensions but in-sync along the tilt dimension. VSense syn-
chronizes Alice’s VSM state with the PSM by issuing a pan
command to move the camera from 6, to 6, and a zoom com-
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Figure 4: Request emulation and deriving critical sections.

mand to change the zoom setting from Z, to Z,. No syn-
chronization action is necessary along the tilt dimension. We
refer to this strategy as eager state restoration since VSense
synchronizes states eagerly at “context switch” time.

4.2 Inferring Critical Sections

Given a sequence of requests arriving at each vsensor,
VSense automatically groups requests that the physical sen-
sor should execute atomically. As explained earlier, to min-
imize state restoration overheads, VSense attempts to group
a sequence of zero or more actuation commands, followed
by one or more sense requests from a vsensor into a critical
section to avoid interference between actuation commands of
competing users. However, automatic derivation of such crit-
ical sections is non-trivial. The difficulty stems from the na-
ture of sensing and actuation requests, which are typically
blocking system calls executed synchronously on the under-
lying physical sensor. Since applications block on these calls
until completion, vsensors only see a single request at a time,
which does not permit batching multiple requests into atomic
units.

VSense must enable asynchronous execution of blocking
requests in order to “batch” requests into a group and execute
it atomically as a critical section. To address the problem,
we employ a novel mechanism that emulates the execution of
requests on the vsensor and defers their actual execution on
the physical sensor. Request emulation allows the vsensor to
behave as if the request actually executed on the sensor and
allows the blocking call to complete. Emulation requires the
vsensor to capture all state changes that result from executing
the request by transitioning a vsensor’s VSM to the new state
dictated by the request. From the application’s point-of-view,
the request appears to complete successfully on the vsensor,
allowing it to continue execution by issuing subsequent re-
quests. VSense queues each of these emulated requests and
defers execution on the physical sensor until a later time.

To ensure correctness in the presence of request emula-
tion, VSense classifies all sensing and actuation requests as
either safe or unsafe. Emulating safe requests does not alter
an application’s control flow because it does not return data to
the application. In general, all actuation commands are safe
since applications do not observe their effects until gathering
data from subsequent sense requests. For example, emulating
a change in the camera’s pan position is possible by “mov-
ing” the virtual camera’s pan setting. Emulating the effect
of panning by changing the vsensor’s state without changing
the physical sensor’s state does not alter the application’s cor-



rectness since it does not change the application’s inputs. In
contrast, unsafe requests return data to the application that
alters its control flow. In general, sense requests are unsafe
since they return data which VSense cannot emulate; VSense
must execute them on the physical sensor with an appropriate
setting of the actuators to return correct data.

Thus, it is possible to emulate the execution of a sequence
of safe (actuation) requests and defer their actual execution.
Hence, VSense continues in request emulation mode until
an unsafe request arrives, which causes it to flush the queue
of deferred (safe) requests. VSense groups all flushed safe
requests with a corresponding unsafe request into a single
atomic unit, and issues this request block to the physical sen-
sor for execution as a critical section. From an application’s
point-of-view, unsafe requests block until the critical section
completes execution and the result of the unsafe (sense) re-
quest returns. Overall, safe requests execute asynchronously
and unsafe requests execute synchronously, without any ap-
plication modifications; the application continues to make
blocking calls where each call appears to execute normally
as a synchronous operation.

As an example, consider how Alice’s virtual camera sen-
sor maps onto a physical camera. Assume that Alice issues a
pan command to position 6,. Pan is an actuation command
that is safe to emulate. Request emulation involves triggering
a state transition in the VSM, causing the virtual camera pan
position to change to 0,, as shown in Figure 4. The figure
also shows that VSense queues the request for deferred exe-
cution. Once the blocking pan completes, Alice’s application
continues execution and issues a tilt command to position ¢,.
Since tilt is also a safe command, request emulation contin-
ues, triggering another state transition in the VSM to capture
its effects. Next, Alice’s application issues a capture com-
mand.

Since capture is a sensing request, it is unsafe; only the
physical sensor is able to capture the correct image and re-
turn it to the application. Hence, VSense groups the capture
command with the batch of pending requests in the deferred
execution queue to form a critical section consisting of a pan,
tilt and capture. This group is sent to the physical camera
for execution as an atomic unit. Note that, while VSense has
already emulated the execution of pan and tilt on the virtual
camera, it must still execute these actuation commands on
the physical camera in order to capture the correct image. Al-
ice’s application blocks until the critical section executes and
returns the results of the capture request.

4.3 Intelligent State Restoration

VSense interleaves critical sections from different vsen-
sors on the physical sensor and performs state restoration
when switching from one user’s critical section to another.
Section 4.1 describes a simple eager state restoration strat-
egy that compares the VSM state at the end of the previous
critical section to the current PSM and synchronizes the PSM
state by issuing the appropriate actuation commands. How-
ever, such eager state restoration imposes a higher overhead
than necessary.

Recall the example from Section 2.2, where Alice issues
a critical section P,C,, followed by a second critical section
P2C2. The pan P, in the first critical section causes the camera

to move to position 0,. After this critical section completes,
suppose that Bob’s request P,C), executes next, causing the
camera to pan to a different position 6,. Before executing
Alice’s second critical section, the eager restoration strategy
restores the pan state of the camera by moving it from the
current position 6, to position 6,. As depicted in Figure 1(c),
the approach is wasteful, since the second critical section in-
cludes a new pan request Pg that moves the camera to position
02; it may be more efficient to move the camera directly from
0y to 93 instead of executing two pan actuations.'

VSense employs an intelligent state restoration strategy to
reduce this overhead. Let VSM,,., denote the VSM state
at the end of the previous critical section, and let VSM,,,,
denote the current VSM state. Observe that the set of safe
requests in the critical section cause the vsensor to transi-
tion from VSM ., to VSM_, during request emulation. Let
VSMprey NVSM,,r denote the set of state parameters not
modified by the safe requests. Our intelligent state restoration
strategy only restores the state of those parameters not mod-
ified by the subsequent critical section, which are precisely
those in the set VSM o) NV SMeyyy.

VSense need only consider these state parameters when
comparing and synchronizing with the physical state ma-
chine; other state parameters will be modified by actuation
requests in the critical section and need not be restored. In the
Alice and Bob example, VSM ., N V.SMy,;, includes the pa-
rameters zoom and tilt, but not pan. Since the second critical
section modifies the pan parameter, VSense does not restore
it. Thus, our intelligent restoration strategy avoids wasteful
actuations by not restoring the settings that VSense will mod-
ify in the critical section.

One caveat of the strategy is that it will not work for actua-
tion commands that use relative, rather than absolute, values.
A relative actuation specifies an action in relation to the ac-
tuator’s current setting. For instance, an actuation that pans
the camera by 30° to the right or increases the lens aperture
to the next f value, instead of specifying an absolute pan
position or an absolute aperture value. Such relative actua-
tion commands will not execute correctly if VSense does not
restore the physical camera state to the previous user state.
However, since VSense encounters all safe actuation requests
during request emulation, it knows whether the actuation re-
quests in the critical section specify absolute or relative val-
ues. VSense simply sets a flag if it encounters an actuation
request with relative values, and, if the flag is set, performs
full eager restoration prior to executing the critical section.

5 Actuation-aware Fair Queuing

In the previous section, we described how VSense uses
state machines to group requests from a vsensor into criti-
cal sections. We now describe how VSense schedules crit-
ical sections from different vsensors on the physical sensor.
VSense employs an enhanced proportional-share scheduler
that: (i) allocates a certain minimum share of the sensing and
actuation resources to each vsensor, and (ii) optimizes me-
chanical actuation costs incurred while scheduling requests

ITo see why, suppose 8, = 50°, 8, = 30° and 62 = 75°. Eager
restoration will involve pans 50° — 30° — 75° = 65°, while a direct
pan from 50° to 75° requires only a 25° movement.



from different vsensors. We first describe how to adapt a
proportional-share scheduler to schedule sensor requests and
then propose an actuation-aware enhancement that optimizes
actuation costs when scheduling requests.

5.1 Proportional-share Sensor Scheduling

The design of proportional-share schedulers has seen
significant attention over the past two decades. Several
proportional-share scheduling algorithms exist for CPUs [9,
7], NICs [6, 2, 10, 21], and disks [16]. We base our approach
on Start-time Fair Queuing (SFQ) [9], a proportional-share
scheduler originally designed for weighted fair sharing of
CPUs and NICs. A proportional-share scheduler such as SFQ
assigns a weight w; to each vsensor and allocates w;/}. jw;
of the physical sensor’s time to vsensor i. Controlling the
weight assignment alters the share and performance of a vsen-
sor’s acuators: a smaller weight results in a smaller share and
slower actuation. For example, a weight assignment in a 1:2
ratio for Alice and Bob results in an allocation of 1/3 and 2/3
of the physical sensor’s time, respectively.

An ideal fair scheduler guarantees that over any time inter-
val [t1,1,], the service received by any two vsensors i and j is
in proportion to their weights, assuming continuously back-
logged requests at each vsensor during the interval. Thus,

Wilt112) w VVt<tl h) _ Wilth)
o2l — 2 or equivalently, —4122 — = 0, where
W;(t1.12) q y v v

W; and W; denote the aggregate service each vsensor receives
over the mterval [f1,22]. In our case, the aggregate service de-
notes the total time the (dedicated) physical sensor consumes
scheduling a vsensor’s request during the interval.

Ideal fair scheduling is possible only if the physical sensor
is able to divide each vsensor actuation into infinitesimally
small time units. Since VSense schedules at the granular-
ity of critical sections, enforcing the ideal notion of fairness
is not possible. Instead SFQ bounds the resulting unfair-
ness due to this “discrete” granularity scheduling by ensuring
that | Yil1l2) " h) Wil l‘ 42) | < ( + f/ ) for all intervals [t1,1],
where l’”“x is the max1mum length of a critical section from
vsensor i. Intuitively, the unfairness bound is a function of the
maximum length of time SFQ allocates the physical sensor—
the maximum length of a critical section—to each vsensor.

We define the SFQ algorithm for scheduling critical sec-
tions in VSense as follows. For ease of exposition, we will
use the terms critical sections and requests interchangeably:
SFQ maintains a queue of pending requests for each vsensor.

e Upon arrival, the scheduler assigns each request rlk with
a start tag S(r¥), where S(rk) = max(v(A(rf),F(ri 1)),

14 ]
r¥ denotes the k" request of vsensor i, F(rX~!) denotes
the finish time of the previous request, v(¢) represents
virtual time, described below, and A(#) represents the ac-
tual arrival time of the request. The start tag of a request
is the maximum of the virtual time at arrival or the finish
tag of the previous request.

k
e The finish tag of a request is F(r¥) = S(r¥) + %, where

l,’f denotes the length of the k' request and w; denotes
the weight assigned to vsensor i. Intuitively, the finish
tag of a request is its start tag incremented by the length

of time required to execute the entire critical section,
normalized by the vsensor’s weight. To enable precise
computation of /X, SFQ computes the finish tag after the
request/critical section completes execution. Once SFQ
computes a request’s finish tag, it computes the start tag
of the next request in its queue.

e The scheduler starts at virtual time 0. During a busy
period—when the scheduler is continuously scheduling
requests on the physical sensor—SFQ defines the virtual
time at time ¢, v(¢), to be the start tag of the request cur-
rently executing. At the end of a busy period, SFQ sets
the virtual time to the maximum finish tag of any request
completed during this busy period. The virtual time does
not increment when the physical sensor is idle.

e The scheduler always schedules the request with the
minimum start tag next, ensuring that it schedules the
vsensor with the minimum weighted service thus far.
This is the key property that ensures each vsensor re-
ceives its fair share of the psensor over time. Note also
that scheduling the request with the minimum start tag
implies that the virtual time during a busy period is al-
ways equal to the minimum start tag of any request in
the system.

Intuitively, SFQ advances start and finish tags in weighted
proportion to each request’s length; thus, the request with the
minimum start tag represents the vsensor that has received
the least service in proportion to its weight. In this case, an
actuation request’s length corresponds to the time it takes to
execute the request on the dedicated sensor. SFQ has sev-
eral salient properties that are useful when scheduling request
from vsensors.

First, a vsensor is unable to accumulate “credits” for any
unused allocation from the past. The property ensures fair-
ness since a vsensor is unable to remain idle for a long period
of time, accumulate credits, and then hoard the sensor once
active, thereby starving other well-behaved vsensors. The
“use it or lose it” property derives from assigning a start tag
that is at least equal to the virtual time in the system; since
virtual time advances so long as some vsensor is active, the
start tag cannot lag behind that of the least-serviced vsensor.

Second, and a direct consequence of the above property is
that SFQ fairly reallocates any unused resources among ac-
tive vsensors in proportion to their weights. Thus, if a vsen-
sor does not use its fair share allocation, SFQ automatically
reallocates the unused sensor capacity among the active vsen-
sors. This work-conservation property ensures that SFQ does
not waste capacity that is potentially useful to active sensors.
Work-conservation is a property of SFQ that requires no ad-
ditional mechanisms. For example, if three vsensors have
weights 1:1:1, each receives a share of 1/3 if all three are
active. However, if a vsensor becomes idle, its start tag stops
advancing, and SFQ automatically schedules requests from
the others, causing their start tags to advance faster and in
proportion 1:1 (resulting in 50% allocation for each). When
the idle vsensor becomes active again, the respective shares
revert back to 33% each. We demonstrate this behavior ex-
perimentally in Section 7.



5.2 Actuation-aware SFQ

While our adaptation of the original SFQ algorithm to
schedule sensors is straigtforward, its use is not without prob-
lems in our context. The primary difficulty arises due to the
high mechanical actuation costs of sensors. SFQ enables fair
sharing of the physical sensor while completely ignoring ac-
tuation costs when scheduling requests. By not considering
actuation costs, SFQ, while fair, yields significant inefficien-
cies. As an example, consider three users Alice, Bob and
Carol who share a PTZ camera. Suppose that Alice issues
a pan request to position 30°, while Bob and Carol issue
pan requests to positions 75° and 40°. Assume the cam-
era is currently at position 25°, and Alice, Bob and Carol
have start tags of 10, 11 and 12. SFQ services these re-
quests in the order of Alice, Bob, and Carol, triggering pans
from 25° — 30° — 75° — 40° (total of 85° pan movement).
However, since Alice and Carol’s requests are “close” to each
other, it is more efficient to service the requests in the order
Alice, Carol, Bob. The reordering incurs a lower total pan
overhead of only 50° (25° — 30° — 45° — 75°). Since SFQ
is actuation-oblivious, it does not account for actuation over-
heads when scheduling requests. To address this limitation,
we present an enhanced actuation-aware scheduler that opti-
mizes these overheads.

By simply considering requests in order of their start tags,
SFQ misses opportunities to optimize actuation overheads.
In contrast, our actuation-aware fair queuing (AFQ) consid-
ers both start tags (for fairness) and actuation costs (for ef-
ficiency). Rather than considering the request with the least
start tag, AFQ chooses k pending requests with the smallest
start tags, one from each vsensor; kK > 1. Given this batch
of k requests, AFQ then reorders these requests to minimize
the physical sensor’s total actuation time, and schedules these
requests in that order. In the above example, AFQ would de-
termine that scheduling requests in the order Alice, Carol and
Bob yields a lower total pan time and reorder them.

For a sensor with a single actuator, the problem is analo-
gous to a disk controller that strives to optimize seek over-
heads to increase global I/O throughput. However, sen-
sors consist of multiple independent actuators (e.g., pan, tilt,
zoom, etc., for a PTZ camera). As a result, the general prob-
lem of minimizing actuation time across multiple actuation
dimensions is equivalent to the well-known NP-hard Trav-
eling Salesman Problem (TSP). AFQ uses the greedy nearest
neighbor heuristic for TSP that greedily selects the next “clos-
est” request in terms of actuation time. For small values of &,
a brute force search that tries all permutations is also feasible.

AFQ’s parameter k defines a tradeoff between fairness and
efficiency for stateful actuators: the higher the value of k the
more efficient, but less fair, the schedule. Thus, if Kk = 1, the
approach reduces to pure SFQ by choosing a batch of one
request with the least start tag. Larger values of k allow more
opportunities for optimizing actuation cost at the expense of
greater unfairness. In Section 7.3, we show that a value of k
that is close to half the number of vsensors N in the system
strikes a good balance between fairness and efficiency.

dom-0 VM 1 VM 2
app1 || app2
'“‘}“ T | front-end | [ front-end |
i‘j || B
XenBus I !
Xen hypervisor

physical
sensor

Figure 5: VSense’s implementation using Xen’s split-driver
framework to serve as a communication channel and a user-
level listener in domain-0 to maintain vsensor VSMs and ex-
ecute scheduling policies. Each request passes from appli-
cation — front-end driver — back-end driver — listener —
device.

6 VSense Implementation

We have implemented VSense in the Xen VMM, a widely-
used open-source virtualization platform, to virtualize two
representative examples of sensors with actuators: the Sony
SNC-RZ30N PTZ Network Camera and the DavisPro Van-
tage2 Weather Station. In this paper, we concentrate on the
PTZ camera, since it exposes multiple actuators with a range
of settings, whereas the weather station only exposes a single
coarse actuator—sensing rate settings of 5, 10, and 15 min-
utes. VSense enables applications in each VM to actuate both
devices using their standard protocols. Below we detail how
VSense integrates into XenLinux’s virtual device framework
and combines the elements—inferring critical sections, in-
telligent state restoration, and AFQ—from the previous sec-
tions.

High-power sensors are typically character devices that
transfer streams of data to applications. Our example sensors
use serial connections—RS-232 and USB— for communica-
tion. In Linux, user-level applications use character device
files to interact with character devices. Each character device
file supports 5 basic functions: open, close, read, write,
and ioctl. Drivers typically use open and close to track
the user-level applications using the device, read and write to
transfer data to and from the device, and ioctl to actuate the
device. To virtualize device drivers, Xen uses a “split-driver”
approach that divides conventional driver functionality into
two halves: a front-end driver that runs in each VM and a
back-end driver that typically runs in domain-0, a privileged
management domain. Details of the split-driver approach can
be found in [1].

Figure 6 depicts VSense’s Xen implementation. To build
VSense, we implemented a generic front-end character driver
for Xen that passes the front-end’s open, close, read, write,
and ioctl requests to the back-end driver, which executes them
and returns the response. As with other character drivers, the
front-end/back-end communication channel supports multi-
ple threads to permit asynchronous device interactions. In
VSense’s current implementation the back-end driver passes
requests to a user-level listener using the back-end’s read and
write system calls: the listener receives new requests us-
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For both benchmarks, the distance moved by the actuator is roughly linear to the time and energy required to complete the

actuation.

ing read and issues request responses using write. The lis-
tener includes the logic to infer critical sections, perform state
restoration, and schedule actuations, and uses the sensor’s
conventional device driver as the mechanism to actuate the
physical device.

Using a user-level listener in lieu of a kernel-mode listener
has two main advantages. First, some sensor manufacturers
release binary-only device drivers for Linux that are only ac-
cessible from user-level. Second, implementing the FSM and
scheduler at user-level simplifies debugging. Since the domi-
nant latency for our example sensors is actuation and not data
transfer, as we show in Section 7.1, the overhead of mov-
ing data between kernel-space and user-space is negligible.
For sensors where data transfer is the dominant cost, VSense
could integrate the functions of the user-level listener as a sep-
arate kernel module that interacts with the back-end driver.

VSense’s front-end and back-end drivers are reusable with
different types of sensors since they act only as a communi-
cation channel for character device requests; we use the same
pair for both the PTZ camera and the weather station. Sensor-
specific state machine and scheduling functions reside in the
user-level listener, which we customize for each device. The
listener maintains a vector and queue for each vsensor that
stores the current setting of its actuators and its backlog of
deferred safe requests, respectively. When a safe request ar-
rives, the listener associates a start tag with it, places it an the
end of its vsensor’s queue, and changes the actuator’s vector
entry. When an unsafe request arrives, the listener flushes the
deferred vsensor requests in order of minimum start tags to a
common queue used by AFQ. As soon as k requests arrive or
time ¢ passes since the last scheduling opportunity, the AFQ
scheduler reorders the requests in the common queue using
the greedy nearest neighbor heuristic, issues them to the de-
vice driver of the physical sensor, and returns the response, as
described in Section 5.2.

One consequence of request emulation using critical sec-
tions is that applications do not perceive errors from actua-
tions. Since our implementation defers critical sections un-
til an unsafe request arrives, we also defer any errors as a
result of actuations to the execution of an unsafe request.

From — To Latency Percentage
application | — front-end 0.24 usecs | 7.1x107%
front-end — back-end 6.35 usecs | 1.9x10~%
back-end — listener 286 usecs 8.51x1073
listener — camera 274 usecs 8.15x1073
camera — listener 3.35 secs 99.7
listener — back-end 17 usecs 5.1x107%
back-end — front-end 27 psecs 8.0x10~%
front-end — application | 229 usecs | 6.8x1073
total 3.36 secs 100

Table 1: Latency breakdown for a sample vsensor actuation
of the Sony PTZ camera in our Xen implementation. The
dominant factor in the request latency (> 99.7%) is the time
to actuate the camera. Our implementation imposes compar-
atively little overhead (< 0.3%).

Thus, applications only perceive errors as a result of unsafe
(sense) requests, and not the actuation causing the request.
We are currently exploring how the approach potentially af-
fects application-level failure diagnosis strategies.

7 Experimental Evaluation

We evaluate VSense using the Sony SNC-RZ30N PTZ
Network Camera. PTZ cameras are a common example of
of a sensor with actuators; the SNC-RZ30N exposes the three
obvious actuators—pan, tilt, and zoom—that we concentrate
on, along with many non-obvious actuators, including reso-
lution setting, shutter speed, backlight compensation, night
vision, and electronic stabilization, that influence an image’s
fidelity. We first benchmark the capabilities of the PTZ cam-
era to determine both the time and energy to actuate it, and
the overheads incurred by VSense’s virtualization layer (Sec-
tion 7.1). Our evaluation then addresses three questions:

e How do different approaches to state restoration
affect performance? We compare the efficiency—
as measured by the time to complete each actuation
request—of eager state restoration and intelligent state
restoration using critical sections. We show for our
workloads that inferring critical sections and using in-
telligent state restoration performs 3x better than an ea-
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ple eager approach in our sample workloads for two different scheduling policies—FIFO and AFQ. The number of requests
completed (a) is 3x more and the average latency to satisfy each request (b) is 3x less using the intelligent approach.

ger approach that restores state on each context-switch
(Section 7.2).

e How strong is performance isolation and what are its
limits? We evaluate SFQ and AFQ’s ability to enforce
performance isolation between vsensors. We show that
SFQ enforces performance isolation, but is inefficient.
We then explore how AFQ’s batch size parameter de-
fines a tradeoff between performance isolation and effi-
ciency. We find that in practice a batch size equal to half
the number of active vsensors strikes a good balance be-
tween fairness and efficiency (Section 7.3).

e Can concurrent applications satisfy conflicting goals
using VSense? The ultimate judge of VSense’s util-
ity is whether concurrent applications are able to satisfy
conflicting goals. We use case studies of three different
applications—fixed-point sensing, continuous monitor-
ing, and object tracking—to demonstrate VSense’s abil-
ity to satisfy concurrent goals (Section 7.4). We show
that these applications receive tolerable, but degraded
performance (ranging from 1.5x less to 8x less), when

running concurrently for varying weight assignments.
Each experiment runs on a Mac-Mini with an Intel T5600

CPU running at 1.83Ghz, 1 gigabtye of RAM, and a single 80
gigabyte SCSI disk. The node runs the Xen hypervisor (ver-
sion 3.2) with an Ubuntu Linux distribution using kernel ver-
sion 2.6.18.8-xen in both Xen’s privileged domain-0 VM and
in each guest VM. Each VM uses a file-backed virtual block
device to store its root file system image. The PTZ camera
is capable of panning between —170° and 170° and tilting
between —90° and 25° of center, while supporting 25 differ-
ent optical zoom settings (1x to 25x). The camera’s direct
drive motor allows precise control of pan and tilt increments
as small as 1/3°.

In addition to our application case studies, our evalua-
tion uses both deterministic and random workloads. The de-
terministic workloads perform continuous scans in a single
plane—either pan or tilt—of the camera’s lens in a single di-
rection, while the random workload repeatedly requests a ran-
dom setting of the pan, tilt, and zoom actuators and captures
an image. Each sequential scan captures an image every 10°

starting at one extreme of the plane (e.g., (—170° for pan and
—90° for tilt) and moving to its other extreme (e.g., 170° for
pan and 25° for tilt). The workloads stress VSense by forc-
ing the camera’s lens to move to its extreme points in every
direction, while also satisfying random requests.

7.1 Benchmarks

Figure 6(a) shows the time to alter the settings of the
pan, tilt, and zoom actuators as a function of distance. Each
point in the graph reports an average of 10 independent trials.
The benchmark validates two underlying assumptions of our
work. First, the camera’s mechanical actuators are slow: pan-
ning all 340° takes 9 seconds, tilting all 115° takes 3 seconds,
and zooming from 1x to 25x takes 4 seconds. Second, the
time to set an actuator is dependent on its current state. For
pan, tilt, and zoom the time is roughly linear to the distance
the actuator must move. We also report energy consumption
in Figure 6(b), which follows the same linear trend, to em-
phasize the point that actuation consumes not only a sensor’s
time, but also its energy. While both are critical resources,
this paper focuses on multiplexing in time and leaves energy
as future work.

Table 1 reports the overhead VSense imposes on a single
vsensor actuation request and its response as it flows from
the application to the camera and then back to the applica-
tion. Xen adds two additional layers in the flow—the front-
end and back-end device driver—while VSense adds an ad-
ditional layer by using a user-level listener in domain-0. As
Table 1 shows, the overhead of these additional layers are
minimal compared (order of useconds) to the overhead of ac-
tuating the camera (order of seconds). Thus, the speed of me-
chanical actuators does not preclude the increased overhead
of virtualization.

7.2 State Restoration

As discussed in Section 4, different approaches to state
restoration are independent of the scheduling policy that de-
termines the interleaving of critical sections. However, the
state restoration approach does have a significant impact on
the camera’s throughput—the number of requests it is able
to satisfy in a given time period. Figure 7 compares the
simple eager state restoration approach with our intelligent
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Figure 9: SFQ maintains its work-conserving properties
when applied to actuators.

approach that infers critical sections and defers their execu-
tion until an unsafe request occurs. We examine the effects
of state restoration using two different scheduling policies—
FIFO and AFQ—with five vsensors executing the random
workloads described earlier.

Figure 7(a) shows the progress of completed requests on
the physical sensor for each state restoration approach (Ea-
ger or Intelligent) and scheduling algorithm (FIFO or AFQ)
pair, while Figure 7(b) plots the average latency to satisfy
each request. As expected, for both scheduling algorithms,
the intelligent approach is significantly more efficient: it is
able to complete nearly 3x as many requests during the same
30 minute time period with 3x less latency on average per re-
quest. Also as expected, AFQ is more efficient than FIFO for
intelligent state restoration, completing more requests with a
lower average latency.

Interestingly, for eager state restoration both FIFO and
AFQ complete about the same number of requests with a sim-
ilar average per-request latency. The reason is that the over-
head of the eager state restoration strategy completely dwarfs
any efficiencies derived from the scheduling algorithm. The
result highlights the importance of deferring state restoration
to gain efficiency: a poor state restoration strategy may cancel
any benefits from a better scheduling algorithm.
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Figure 10: While SFQ enforces performance isolation over
many requests, it may diverge slightly, due to high state
restoration costs, over short intervals of time.

7.3 Performance Isolation: SFQ and AFQ

SFQ enforces performance isolation between vsensors—
each vsensor should receive actuator performance in propor-
tion to its weight or share—while AFQ relaxes SFQ’s fair-
ness bounds to ensure efficient use of each actuator. We first
demonstrate SFQ’s performance and limitations when used
for actuators and then present results from our AFQ exten-
sion.

7.3.1 SFQ

The primary attribute that determines vsensor performance
is the relative speed of its actuators. Our adaptation of SFQ
advances virtual time in relation to the time each actuation
takes on the dedicated sensor, which we denote as vsensor
time. Thus, the more vsensor time each actuation takes the
slower the actuator. Figure 8 shows the total vsensor time
of two vsensors with different weight assignments using our
variant of the SFQ scheduling algorithm; each vsensor exe-
cutes the continuous scan workload. The figure demonstrates
that a straightforward use of SFQ for actuators isolates vsen-
sor performance: the cumulative vsensor time SFQ allocates
is in proportion to the assigned weights.

Another important characteristic of SFQ is work-
conservation: it automatically reallocates idle resources to
vsensors in proportion to their weights. Figure 9 demon-
strates VSense’s responsiveness to fluctuating workloads. We
use three vsensors in the experiment—vsensor-1, vsensor-2,
and vsensor-5—where vsensor-1 and vsensor-2 run the con-
tinuous scan workload and vsensor-5 runs the random work-
load; vsensor-5’s workload sends actuation requests for 500
seconds and halts for 500 seconds in a repeating loop. As
expected, when vsensor-5 becomes inactive, SFQ reallocates
the idle actuation time to vsensor-1 and vsensor-2 in propor-
tion to their weights: the result is that each vsensor’s rate
of progress, measured as the rate its vsensor time increases
every 50 seconds, immediately increases for vsensor-1 and
vsensor-2 during vsensor-5’s idle periods. Thus, SFQ main-
tains its work-conserving properties in our new context.

While SFQ enforces performance isolation over large
numbers of requests, high state restoration costs may cause
it to perform unfairly over short intervals. To demonstrate the
point, Figure 10 shows how the cumulative vsensor time pro-
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Figure 12: AFQ exhibits less fairness as the batch size increases (a) in terms of the average latency per request. For this
experiment, batch sizes of 4 and greater are unfair, and exhibit much less performance isolation (b) than SFQ.

gresses over the course of an experiment. Since each work-
load includes 100 requests, at any point in time the cumulative
vsensor time for each vsensor should be in proportion to the
assigned weights. The experiment uses five vsensors—four
running the continuous scan workload (1-4) and one running
the random workload (5).

The result demonstrates that over short time periods SFQ
is not always fair: during the period 0-100 seconds both
vsensor-3/vsensor-4 and vsensor-1/vsensor-2 receive similar
performance that is not in proportion to their weights. Fur-
ther, vsensor-1/vsensor-2 receive similar performance by time
200 and vsensor-3/vsensor-2 receive similar performance up
to time 400, which diverges from the weight assignments.
However, as before, as VSense services larger numbers of
requests, performance converges to the assigned weights (by
time 550 seconds).

7.3.2 AFQ

Since SFQ does not take into account stateful actuators it
may be inefficient, since it schedules requests based on strict
fairness. Figure 11 demonstrates that increasing AFQ’s batch
size parameter increases the efficiency of the actuators. The
experiment uses random workloads from 5 vsensors to stress
the actuation of the system. The experiment shows that both

the average throughput to complete requests (a) and the total
number of requests completed (b) increases, as the batch size
increases; for this experiment, each increment in the batch
size results in roughly a 10% improvement for both metrics.
However, AFQ’s efficiency gain causes the scheduler to di-
verge from strict fairness, as we show next.

Figure 12(a) shows the cumulative request latency for the
first 50 requests for each of five vsensors as a function of
batch size, using the same five vsensors and workloads as
Figure 10. The cumulative request latency is the sum of the
latencies (equivalent to each vsensor’s makespan) to satisfy
all requests at each vsensor; as also demonstrated above, effi-
ciency, in this case cumulative request latency decreases with
batch size. As expected, SFQ, which corresponds to a batch
size of 1, exhibits the strong performance isolation seen in
Section 7.3.1. However, as the batch size increases, strict per-
formance isolation decreases and causes the height of the bars
to approach each other. Figure 12(b) plots the cumulative
vsensor time over the course of the experiment for a batch
size of 4; comparing the result with Figure 10 in the previ-
ous section demonstrates that AFQ exhibits less fairness with
larger batch sizes. For these workloads, a batch size of 3 ex-
hibits a nice balance—20% performance improvement over
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Figure 13: VSense is able to satisfy conflicting goals from multiple concurrent sensing applications. A continuous monitoring
application (a) and an object tracking application (b) both maintain tolerable performance for varying weight assignments,
while competing with a fixed-point sensing application with weight 1.

SFQ with similar fairness properties—between performance
and fairness; in practice, we have found that a batch size of
roughly half the number of active vsensors generally strikes
the appropriate balance.

7.4 Case Study

Our final set of experiments consider how three example
camera applications with distinct performance metrics per-
form on VSense. The applications include:

¢ Fixed-point Sensing. Pan and tilt the camera’s lens to a
point and repeatedly capture images at a regular interval.
The performance metric for this simple application is the
sensing rate of image captures.

e Continuous Monitoring. Continuously pan in incre-
ments of 65° and capture an image. The application-
level performance metric is the time to complete each
340° scan. This application mimics conventional secu-
rity applications.

e Object Tracking Periodically scan a pre-defined path
along both the pan and tilt axes and capture images ev-
ery 10°. The application-level performance metric is the
latency between each image capture. A latency too large
and the camera will lose the object its tracking.

The fixed-point sensing application using a dedicated
sensor has near video quality: its sensing rate is 11 im-
ages/second with a steady inter-image interval of 0.09 sec-
onds. However, even on a dedicated sensor, actuation does
have a significant effect on performance. Our random work-
load, which moves to a random location and captures an im-
age, reduces the average sensing rate to 0.3 images/second
with an average inter-image interval of 3.35 seconds (the in-
terval is not steady since the camera moves a different dis-
tance between each image). Similarly, two fixed-point sens-
ing applications—at a distance of 180°—are both able to cap-
ture 0.2 images/second with a steady inter-image interval of
4.65 seconds (since their distance apart does not change). We
use these sensing rates for comparison in our case study be-
low.

We run both the continuous monitoring (Figure 13(a)) and
object tracking (Figure 13(b)) application against the fixed-

point sensing application. In both experiments, the fixed-
point sensing application maintains a weight of 1, while we
vary the weights assigned to continuous monitoring and ob-
ject tracking. Figure 13 shows the results, where the leftmost
y-axis plots the application’s performance metric, the right-
most y-axis plots the fixed-point sensing application’s perfor-
mance metric (sensing rate), and the dotted line depicts the
performance of the application on a dedicated sensor. The
results demonstrate that VSense is able to satisfy conflicting
demands of concurrent applications, as long as the applica-
tions tolerate less performance than possible with the dedi-
cated sensor, which ranges from 1.5x to 8x less performance
for the different weight assignments in this experiment. As
we describe below, the reduced performance is still capable
of satisfying real-world application-level goals.

As one example, with a 1:30 weight ratio, the continuous
monitoring application is able to pan all 340° in 20 seconds.
Thus, in the real-world, the monitoring application is able to
capture 4 distinct points 113 feet apart (e.g., four doorways)
at distance of 100 feet from the camera every 5 seconds 2.
The fixed-point sensing application is able to simultaneously
maintain a sensing rate of nearly 0.2 images/second, allowing
it to continuously capture a single point (e.g., a nearby inter-
section) in spite of the monitoring application. Likewise, for
a 1:3 weight ratio, the object tracking application is able to
scan a pre-defined path every 10° and capture images every 6
seconds, which is suitable for tracking a moving object at a
distance of 300 feet moving at 2.66 miles/hour (e.g., a person
walking) for up to 1779 feet (over 1/3 mile) of the object’s
motion with 25x zoom. Of course, both the specific speed
and the total distance tracked are dependent on the object’s
trajectory, its distance from the camera, and the camera’s op-
tical zoom and resolution settings 3. During the tracking, the
fixed-point sensing application maintains a sensing rate of 0.3
images/second. These case study results, combined with our
evaluation of state restoration, SFQ, and AFQ, demonstrate

2The example assumes the points are along a circle with radius
100 feet with camera’s lens as its center.

30ur example assumes that the object’s trajectory is along a cir-
cle of radius 300 feet with the camera’s lens as its center.



the potential of multiplexing sensors at the level of individual
actuations.

8 Related Work

Our work adapts existing techniques from many different
areas, including sensor networks, platform virtualization, and
proportional-share scheduling, to virtualize stateful sensors
with actuators. We briefly review important topics in each of
these areas.

Mote-class sensor networks primarily use virtualization
as a mechanism for safe execution and reprogramming,
as demonstrated by Maté [12], since motes are generally
not powerful enough to execute multiple applications con-
currently. While some recent mote-class OSes incorpo-
rate threads and time-sharing [4], the energy constraints of
motes prevent them from using high-power sensors with
rich programmable actuators, such as PTZ cameras or steer-
able weather radars. PixieOS [14] uses proportional-share
scheduling techniques (in the form of tickets) to enable ex-
plicit conventional resource control (CPU, memory, band-
width, energy) by individual mote applications; we ex-
tend similar proportional-share scheduling techniques to the
equally important actuation “resources” of high-power sen-
sors. Finally, ICEM also encounters a problem with block-
ing calls to peripheral devices when abstracting devices [11];
ICEM solves the problem for mote power management by ex-
posing concurrency to drivers through power locks. In con-
trast, VSense does not change the application/device inter-
face to support unmodified applications, and, instead, char-
acterizes actuations as either safe or unsafe and uses request
emulation to “complete” blocking calls asynchronously.

We build on Xen’s [1] basic abstractions for virtualizing
I/O devices in VSense [8, 19]. Modern VMMs, including
Xen and VMware, focus on virtualizing the hardware at the
lowest layer possible (e.g., the PCI bus, the USB controller,
etc.) to support unmodified device drivers. However, virtual-
izing at this layer requires the physical device to attach to a
single VM and “pass-through” device requests to the physical
bus [20]. We virtualize at the protocol layer—the character
device file interface—so VSense can interpret each vsensor
request and control their submission to the physical sensor.
VSense’s FSM that tracks the state of each vsensor is simi-
lar to shadow drivers [17], but we use them to ensure correct
operation and enforce performance isolation and do not fo-
cus on reliability. Many prior approaches structure device
drivers as state machines; the technique is natural for stateful
devices [15].

Our adaptation of SFQ [10] is complementary to vari-
ants of proportional-share schedulers in other domains (CPU,
disk, NIC), including recent work on energy [5]. To the best
of our knowledge, this work is the first to apply the concept
to stateful devices, such as sensors, where the “resource” is
the time incurred to transition the device to a desired setting.
Similar tradeoffs between efficiency and fairness also present
themselves in prior work on proportional-share disk schedul-
ing [16]. We apply the concept to sensors, but nearly every
device exposes similar, though often obscure, actuator set-
tings (e.g., wireless NICs expose a myriad of settings). We
leave for future work how these concepts may apply to other

types of stateful devices with actuators.

9 Conclusion
VSense adapts the virtualization paradigm to multiplex
the “resource” of controlling a sensor’s actuators. For high-
power sensors with rich actuation capabilities, control of the
actuators is a sensing application’s most important resource
since it determines the type of data the sensor collects. Even
though these high-power sensors represent scarce resources
that are costly to deploy, applications are currently unable to
share them at fine time scales. We know of no prior work
addressing fine-grained multiplexing of sensors. VSense el-
evates control of sensor actuators to a first-class resource in
high-power sensor networks, along with CPU, memory, disk,
bandwidth, and energy, to enable fine-grained sharing in these
settings, and demonstrates its utility for real applications in a
detailed case study.
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