
A High Level Rule-based Language for Openflow
A Proof of Concept based on Floodlight

Mehdi Mohammadi
Computer Science Department

Western Michigan University

MI, USA

mehdi.mohammadi@wmich.edu

Abstract—This paper proposes XML-Defined Network

policies (XDNP) a new high level language based on XML

notation to describe network control rules in Software Defined

Network environments. We rely on existing OpenFlow

controllers specifically Floodlight but the novelty of this project is

to separate complicated language- and framework-specific APIs

from policy descriptions. This separation makes it possible to

extend the current work as a northbound higher level abstraction

that can support a wide range of controllers who are based on

different programming languages. By this approach, we believe

that network administrators can develop and deploy network

control policies easier and faster.

Keywords—Software Defined Networks; Openflow; Floodlight;

SDN compiler; SDN programming languages; SDN abstraction.

I. INTRODUCTION

By Software-Defined Network (SDN) technology, network

engineers and administrators can control and manage network

services through abstraction of lower level functionality. This

end can be achieved by splitting the system that makes

decisions where to send the packets (control plane) from the

underlying systems known as data plane that just are in charge

of forwarding packets to the selected destinations. In order to

be practical, SDN needs some mechanism for the control plane

to interact with the data plane. OpenFlow [1] is such a protocol

that has been used in network research community in recent

years. There are couples of OpenFlow controller frameworks

such as POX
1
, NOX

2
, Beacon

3
, Floodlight

4
, Trema

5
,

NodeFlow
6
 and Ryu

7
. The emerge of OpenFlow simplified

network management by providing high level abstractions to

control a set of switches remotely. An OpenFlow framework

requires network engineers or administrators to write code

programs to control and manage data traffic in their network

and control network devices. However, one potential problem

that network engineers face is that the programming languages

that support OpenFlow are complex and administrators are

required to know much irrelevant information to develop and

1
 http://www.noxrepo.org/pox/about-pox/

2
 http://www.noxrepo.org/

3
 https://openflow.stanford.edu/display/Beacon/Home

4
 http://www.projectfloodlight.org/

5 http://trema.github.io/trema/
6
 http://garyberger.net/?p=537

7 http://osrg.github.io/ryu/

deploy a control policy. The problem will be more prohibitive

for a beginner network engineer who does not have a good

background in the programming language of the controller.

There are other challenges for programmers including [2]:

interaction between concurrent modules, low-level interface to

switch hardware, and multi-tiered programming model. A

simple and unified language in a higher abstraction level that

does not depend on a specific language can fill this gap. We are

thinking about a text-based scheme like XML by which a

human-friendly semantic of operations is developed for policy

description. XML has been used widely in network

management and configuration protocols like NETCONF. This

work can be annexed to the current Openflow controller as a

top layer service.

II. RELATED WORKS

XML documents are widely used to describe systems, to

configure or control them. One attractive usage is code

generation. There are several works that try to use XML

notation as a representation of source codes. JavaML [3] is

such a work that represents java source code in XML notation.

The source code representation in JavaML is in a way that

constructs like superclasses, methods, message sends, and

literal numbers are all directly represented in the elements and

attributes of the document content. XML notation is also used

in another work named srcML [4] by which structural

information is added to unstructured source code files. srcML

aims to enhance source code representation by adding syntactic

information obtained from parse tree.

In [5], Liang et al. proposed a proof of concept to use XML

as a description for OpenFlow Networking experiments. They

defined networking experiments in a hierarchical model in

which the experiment is in the highest level, and each

experiment contains information, topology, deployment,

control, and output components. However, they just provided

the format description, but not mentioned by which way they

generated their XML parser. Furthermore, they have not

provided a full evaluation of their system in the real

environments. Our work differs from their work in the way we

design a platform by which network engineers can describe

their network control rules by XML notations regardless of the

underlying topology or network elements. In other words,

Liang’s work focuses on description of network environment

not the control of network traffic and behavior.

There are several works and projects aim to propose a

higher level abstraction above the OpenFlow APIs in their

development frameworks [2, 6-8]. Frenetic [2] which has been

implemented in python emerged with some simple rules

including predicate-action pairs, in which actions support

filtering, forwarding, duplicating, and modifying packets. Later

it included other more complicated operators like packet

processing functionalities [6]. Pyretic [8] as a modern SDN

programming language based on Frenetic and beyond the

current parallel composition operator, presents two more

complex abstractions: sequential composition operator and

applying control policies over abstract topologies. By these

abstractions the development of modular control programs

becomes simpler.

III. SOFTWARE DEFINE NETWORKING

Software-Define Networking defines two separate layers as

the new architecture of network environments. A data plane

that is supposed to do operations like buffering packets,

forwarding, dropping, tagging and collecting packet statistics.

Control plane on the other hand, may have the algorithms to

track the dynamic topology of the network and has route

processing capability. Control plane usually consists of a

separate powerful machine called controller. The control plane

uses its computed data and the data plane’s statistics to

manage and govern a set of dependent switches by installing

or removing packet forwarding rules over them.

OpenFlow as a realization of SDN follows this two-layer

architecture. In a typical OpenFlow network, if a switch can

find a rule match to the received packet in its flow table, then

it proceeds with that rule. Otherwise, the packet is sent to the

controller for more processing. Controller examines packet

header and establishes a rule based on that packet. The next

similar packets arrived to the switches then are not required to

go to the controller since the switches have appropriate rule to

process them. Although forwarding packets to the controller

increases their latency but it occurs not very much.

IV. THE PROPOSED SYSTEM

Our XML translator consists of a lexical analyzer (lexer)

and a syntax analyzer (parser). Lexer tokenizes the input file

and matches the tags, attributes, identifiers, constant values and

so on based on regular grammars. Syntax analyzer on the other

hand performs syntactic analysis of the input file and if it does

not found any problem in this step, generates appropriate Java

source code. The overall architecture of the system is depicted

in the following figure.

Figure 1. The overall architecture of the system

A. Language Specification

The overall design of an XML file to be used as control

program should follow the format of figure 2. Rule description

is defined in a hierarchical structure in which at the top level,

we define the class name in the SDN element. Then a list of

rules contacting zero or more rule elements should be

declared. Inside each rule, one or more conditions are

expressed. To have compositional conditions, condition

elements support logical operators which are stated by

attribute “connector”. For example, if a condition element has

an “or” connector, it will be joined to the previous condition

by logical “or” operator in java source code. The conditions

themselves comply with a simple pattern “variable op value”.

Variables can be chosen from src_ip (source IP), dest_ip

(destination IP), src_prt (source port) and dest_prt (destination

port). The current supported operator is equal sign. Value can

be a port number or IP address. An example of XML file is

shown in figure 3 and its Java source code is presented in

Appendix A.

The XML sample contains two rules. The first one says

that all the packets who are going to IP address 10.0.0.2 or

who they are coming from IP address 192.168.0.1 should be

forwarded to port 1 of the switches (which assigned to IP

address 10.0.0.1). The second rule indicates that each packet

originated from Telnet service (port 23) should be dropped

(specified by port 0). This example shows that it is possible to

implement all network policy management schemes and

services like firewalls or load balancing with this XML

notation.

B. Lexical Analizer

We designed our lexer with LEX format by which we

defined the matching patterns for XML elements, attributes

and literals that are needed in a typical network controller. The

SDN

Attributes

Rules

Conditions

Action

Attributes

Figure 2. Format of a policy description file

source of lexer file has to be fed to Flex to generate a c source

code. Tag names are considered as keywords in the script and

are required to comply exactly with the XML specification.

C. Syntax Analizer

The grammar section of translator is defined in syntax

analyzer. We used YACC tool to generate the translator. In its

input file, we define all the tokens that are introduced in the

lexer, grammar production rules that examine the syntax of the

XML file and the output associated with each production rule

leading to code generation for XML file. Syntax analyzer

description follows the BNF notation for Context Free

Grammars.

Each string in the input xml file that is not matched to the

designed tokens and rules will cause an error to the program

and termination of the program with an error message.

V. CONCLUSION

This paper described a new approach of software-defined

networks which presents a higher level of abstraction compared

to current software-defined network programming languages.

We defined a script language based on XML notation by which

network administrators can define control policies without

concerning about the complexities of underlying controller

framework. Indeed, this will make software-defined

networking easier and more attractive for network

administrators.

This work opens up the opportunity of using service

oriented architecture and web services as a model of

collaboration between SDN controllers (e.g. a controller offers

load balancing or firewalling).

Extending this work to support more API’s and more

complicated scenarios is intended to be done in the future

works. Technically, examining and manipulating other

OpenFlow headers is possible by this approach. Supporting

more controller frameworks with different languages is also

planned for next phases.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker and J. Turner, "OpenFlow:

Enabling Innovation in Campus Networks," SIGCOMM

Comput.Commun.Rev., vol. 38, pp. 69-74, mar, 2008.

[2] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J.

Rexford, A. Story and D. Walker, "Frenetic: A Network

Programming Language," SIGPLAN Not., vol. 46, pp. 279-

291, sep, 2011.

[3] G. J. Badros, "JavaML: a markup language for Java source

code," Computer Networks, vol. 33, pp. 159-177, 2000.

[4] J. I. Maletic, M. L. Collard and A. Marcus, "Source code

files as structured documents," in Program Comprehension,

2002. Proceedings. 10th International Workshop On, 2002,

pp. 289-292.

[5] J. Liang, Z. Lin and Y. Ma, "OF-NEDL: An openflow

networking experiment description language based on XML,"

in Proceedings of the 2012 International Conference on Web

Information Systems and Mining, Chengdu, China, 2012, pp.

686-697.

[6] C. Monsanto, N. Foster, R. Harrison and D. Walker, "A

Compiler and Run-time System for Network Programming

Languages," SIGPLAN Not., vol. 47, pp. 217-230, jan, 2012.

[7] C. J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen,

C. Schlesinger and D. Walker, "NetKAT: Semantic

Foundations for Networks," SIGPLAN Not., vol. 49, pp. 113-

126, jan, 2014.

[8] C. Monsanto, J. Reich, N. Foster, J. Rexford and D.

Walker, "Composing software-defined networks," in

Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation, Lombard, IL, 2013, pp.

1-14.

<SDN class="Demo">

 <rules>

 <rule>

<condition>destIP=10.0.0.2

</condition>

 <condition connector="or">

 srcIP=192.168.0.1

</condition>

 <action>outPort=1

 </action>

 </rule>

 <rule>

 <condition>srcPort=23

 </condition>

 <action>outPort=0

 </action>

 </rule>

 </rules>

</SDN>

Figure 3. A sample XML policy description

