wiki:WiMAXGoalsStrategy

Version 2 (modified by hmussman@bbn.com, 11 years ago) (diff)

--

Goals

GENI WiMAX Spiral 4 Goals

Harry Mussman (GPO)

a) Goals for GENI WiMAX site deployments:

Satisfy needs of local research experiments
Support multi-site experiments, e.g., MobilityFirst
Support remote experimenters

Support multi-site applications?

Are we missing something? support for instruction?

b) Sol 2 base station deployments:

Update to include OMF/OML structures, including LoginService
Add GENI AM API

Complete, and update to new software that support multiple VLANs, etc.
Connect via switch to I2 backbone, via OF switches if there

Consider how to setup multi-site slice, and include other GENI resources
Consider federated operation
Consider adding WiFi AP to support dual-homed experiments, e.g., MobilityFirst

c) Sol 3 base station deployments:

Consider 3.6GHz operation?
Study commercial campus deployments, to understand coverage and applications: U Colorado, Boulder; Northern Mich U; UMass Dartmouth
Order Airspan base stations and related items, for delivery 1/2012
Complete installation within Spiral 4! (within 1 year)

Decide on how to provide ASN-GW for handover
Consider open-source ASN-GW? or ASN-GW from Airspan?
How could we use Wisconsin mobility engine?

Airspan Deployment Plan for Univ Colorado at Boulder

d) Mobile stations:

Reference MS is Linux netbook, with Intel WIMAX modem card, internal or external
Reference vehicular MS?
Reference handset MS? Need to be able to unlock Sprint-supported device?

e) Experiment support:

Move to OMF/OML, for better support and for easier sharing
Consider alternate techniques for throughput measurements
Consider how to setup multi-site slice, and include other GENI resources

GIMI project committed to supporting WiMAX sites

How can we make it easy for experimenters?

f) Other topics:

Interworking with carriers (Clemson)
Use of carrier resources, i.e., WiNTeB
How could we add LTE? any match of equipment, frequencies and mobile stations?

g) CONCERN:

Do not have resources to do all of the above! how do we decide?
What is the best way to support campus projects?
What is the best way to support experimenters?

GENI WiMAX Spiral 5 Goals

Harry Mussman (GPO)

a) Where necessary, complete deployments planned for Spiral 4:

Get experimental frequency from the FCC, that does not interfere with Clearwire services
Install Airspan base station(s), with local NetSpan management system
Optional when multiple cells: backhaul control and data traffic to central equipment site
Add OMF/OML structures, including LoginService
Connect via switch to I2 backbone, via OF switches if there
WiFi access point for dual-homing operating on custom PC node
Vehicular mobile station operating on custom PC node
Fixed “mobile station” for remote experimenters operating on custom PC node

b) Plan local research experiments for Spiral 5

Focus on goals, configurations, steps
Identify necessary extended site capabilities needed in Spiral 5

c) Complete deployments of necessary extended site capabilities needed in Spiral 5, from this list of options: (technology supplier or coordinator shown)

Additional base station (Rutgers WINLAB)
Custom PC nodes ("yellow nodes") (Rutgers WINLAB)
Login Service plus OMF/OML services operating on custom PC node (Rutgers WINLAB)
Connection to I2 (coordinated by BBN)
GIMI I&M services (UMass Amherst/NYU Poly)
Multiple base-station management service operating on custom PC node (Rutgers WINLAB)
Data-path gateway service operating on custom PC node (Rutgers WINLAB)
Mobility/handover/multi-homing service (coordinated by Wisconsin/Clemson)
WiFi access point for dual-homing operating on custom PC node (Rutgers WINLAB)
Vehicular mobile station operating on custom PC node (Rutgers WINLAB)
Fixed “mobile station” for remote experimenters operating on custom PC node (Rutgers WINLAB)
Unlocked Android WiMAX/WiFi handsets. (Wisconsin)

d) Support unified GENI operations:

Forward site monitoring information to the central monitoring server (Rutgers WINLAB)
Cooperate with Rutgers WINLAB and Clearwire to avoid interference with Clearwire’s services
When necessary, do an “emergency stop” of your transmissions.

e) Complete and support experiments:

Local research experiments
Experiments by remote experimenters, including those at tutorials
Classroom instruction experiments by students (NYU Poly)
Multi-site experiments, e.g., MobilityFirst (Rutgers WINLAB)

f) Concern: how can we get all of this done?

Common platforms and services
Clear plans, good schedules
Close cooperation!!

Lab Experiments to Teach Wireless Basics

GEC15 presentation:
Thanasis Korakis (NYU Poly)

Funded project (1/13 - 12/13) to define lab experiments for students to teach wireless basics
To be executed on GENI wireless sites, using both WiMAX and WiFi
Overview and status slides

What are next steps?

  • Early versions of lab experiments to be provided by GEC16

Multiple Site Experiment: Mobility First

GEC14 presentation:
Kiran Nagaraja (WINLAB)

slides

Overview of current Mobility First multiple-site experiment.

What additions are needed?
1) Add WiFi AP to each site.
2) L2 path from MS to core

Experiment done without human intervention, by using x2 MAC addresses, and emulating packet loss to fake mobility.
Consider these as possible sites by GEC13: WINLAB; BBN; NYU Poly; UCLA; Colorado.

Extensions

Introducing LTE Equipment

GEC14 discussion:

Moderator: Harry Mussman (GPO)
Ray Raychaudhuri (WINLAB)
Ivan Seskar (WINLAB)
Patrick Gossman (Wayne State) The Case for LTE
Gregg Tome (Airspan)

Discussion group formed:

Moderator: Suman Banerjee (Wisconsin)
Ray Raychaudhuri (WINLAB)
Ivan Seskar (WINLAB)
Patrick Gossman (Wayne State)
Bryan Lyles (NSF)
Jacobus (Kobus) Van der Merwe (Utah) (new)
Tod Sizer (Bell Labs/Alcatel-Lucent) (new)
Walt Magnusen (Texas A&M) (new)
Harry Mussman (GPO)

What are our goals?

How do we match available: base station equipment, on-air frequencies and mobile stations?

LTE frequency bands (from Ivan)

Gregg Tome: Airspan has equipment that operates at 2.6GHz (but this is outside of EBS band)

Tod Sizer: Have used commercial small cells operating at low power, borrowed commercial spectrum, and commercial devices, in a lab setting.

Ivan and Tod: There is available open-source back-end software (Fraunhoffer?)

Walt: Has equipment to test for LTE in public safety, from General Dynamics/IPWireless

What are next steps?

  • Tod to talk with Ray and Ivan
  • Suman to organize calls/meetings

Access to Commercial Broadband Services via MVNO Arrangements