Version 26 (modified by 12 years ago) (diff) | ,
---|
F. Analyze
In Section F we went through the exercise of retrieving data from iRODS to a local computer. In this Section, we will introduce two different methods that can be used to analyze the measurement data. Analysis of measurement data obtained with OMF/OML is not limited to these two methods, we simply use them for demonstration purposes.
G.1 R Scripts
One potential way to visualize the data is making use of R, which provides a visualization language. For this tutorial, we have create a set of R scripts, which we briefly discuss in the following.
The first R script creates a plot of the RTTs for each ping that's carried out in the experiment in the initial experiment we ran in the tutorial.
library(RSQLite) con <- dbConnect(dbDriver("SQLite"), dbname = "gimi20-2012-10-18t14.03.42-04.00.sq3") dbListTables(con) dbReadTable(con,"pingmonitor_myping") mydata1 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.4.10'") rtt1 <- abs(mydata1$rtt) mydata2 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.5.12'") rtt2 <- abs(mydata2$rtt) mydata3 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.4.11'") rtt3 <- abs(mydata3$rtt) mydata4 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.2.12'") rtt4 <- abs(mydata4$rtt) mydata5 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.1.13'") rtt5 <- abs(mydata5$rtt) mydata6 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.5.11'") rtt6 <- abs(mydata6$rtt) mydata7 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.2.10'") rtt7 <- abs(mydata7$rtt) mydata8 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.3.13'") rtt8 <- abs(mydata8$rtt) mydata9 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.6.14'") rtt9 <- abs(mydata9$rtt) mydata10 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.1.10'") rtt10 <- abs(mydata10$rtt) mydata11 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.3.12'") rtt11 <- abs(mydata11$rtt) mydata12 <- dbGetQuery(con, "select dest_addr, rtt from pingmonitor_myping where dest_addr='192.168.6.12'") rtt12 <- abs(mydata12$rtt) png(filename="gimi20-nmetrics-eth", height=650, width=900, bg="white") g_range <- range(0,rtt1,rtt2,rtt3,rtt4,rtt5,rtt6,rtt7,rtt8,rtt9,rtt10,rtt11,rtt12) plot(rtt1,type="o",col="red",ylim= g_range, lty=2, xlab="Experiment Interval",ylab="RTT") lines(rtt2,type="o",col="blue",xlab="Experiment Interval",ylab="Received Data") lines(rtt3,type="o",col="green",xlab="Experiment Interval",ylab="Received Data") lines(rtt4,type="o",col="purple",xlab="Experiment Interval",ylab="Received Data") lines(rtt5,type="o",col="violetred",xlab="Experiment Interval",ylab="Received Data") lines(rtt6,type="o",col="springgreen",xlab="Experiment Interval",ylab="Received Data") lines(rtt7,type="o",col="skyblue",xlab="Experiment Interval",ylab="Received Data") lines(rtt8,type="o",col="sienna",xlab="Experiment Interval",ylab="Received Data") lines(rtt9,type="o",col="pink",xlab="Experiment Interval",ylab="Received Data") lines(rtt10,type="o",col="yellow",xlab="Experiment Interval",ylab="Received Data") lines(rtt11,type="o",col="thistle",xlab="Experiment Interval",ylab="Received Data") lines(rtt12,type="o",col="orange",xlab="Experiment Interval",ylab="Received Data") title(main="nmetrics experiment on ExoGENI (Received Data)", col.main="red", font.main=4) legend("topright", g_range[4], legend=c("192.168.4.10","192.168.5.12","192.168.4.11","192.168.2.12","192.168.5.11","192.168.2.10","192.168.3.13","192.168.6.14","192.168.1.10","192.168.3.12","192.168.6.12"), cex=0.8, col=c("blue","red","green","purple","violetred","springgreen","skyblue","sienna","pink","yellow","thistle","orange"), pch=15:16:17:18:19:20:21:22:23:24:25:26, lty=1:2:3:4:5:6:7:8:9:10:11:12); dev.off()
The resulting plot is shown below.
The following R script plots otr results from the 4th experiment we executed in Section C.
library(RSQLite) con <- dbConnect(dbDriver("SQLite"), dbname = "gimi20-otg-nmetrics.sq3") dbListTables(con) dbReadTable(con,"otr2_udp_in") mydata1 <- dbGetQuery(con, "select oml_sender_id, pkt_length from otr2_udp_in where src_host='192.168.4.10'") pkt_length <- mydata1$pkt_length #plot(rx_bytes1, type="o", color="red", xlab="Experiment Interval", ylab="Received data") png(filename="gimi20_otg1.png", height=650, width=900, bg="white") g_range <- range(0,pkt_length) plot(pkt_length,type="o",col="red",ylim= g_range, lty=2, xlab="Experiment Interval",ylab="Packet Size") title(main="Received packet size with sender address 192.168.4.10", col.main="red", font.main=4) legend("bottomright", g_range[1], legend=c("interface1"), cex=0.8, col=c("blue"), pch=21, lty=1); dev.off()
The resulting plot is shown below.
The following script plots part of nmetrics results from the 4th experiment we executed.
library(RSQLite) con <- dbConnect(dbDriver("SQLite"), dbname = "gimi20-otg-nmetrics.sq3") dbListTables(con) dbReadTable(con,"nmetrics_net_if") mydata1 <- dbGetQuery(con, "select oml_sender_id, rx_bytes from nmetrics_net_if where oml_sender_id=1") rx_bytes1 <- abs(mydata1$rx_bytes) #plot(rx_bytes1, type="o", color="red", xlab="Experiment Interval", ylab="Received data") mydata2 <- dbGetQuery(con, "select oml_sender_id, rx_bytes from nmetrics_net_if where oml_sender_id=2") rx_bytes2 <- abs(mydata2$rx_bytes) mydata3 <- dbGetQuery(con, "select oml_sender_id, rx_bytes from nmetrics_net_if where oml_sender_id=3") rx_bytes3 <- abs(mydata3$rx_bytes) mydata4 <- dbGetQuery(con, "select oml_sender_id, rx_bytes from nmetrics_net_if where oml_sender_id=4") rx_bytes4 <- abs(mydata4$rx_bytes) png(filename="gimi20-nmetrics-eth", height=650, width=900, bg="white") g_range <- range(0,rx_bytes1,rx_bytes2,rx_bytes3,rx_bytes4) plot(rx_bytes1,type="o",col="red",ylim= g_range, lty=2, xlab="Experiment Interval",ylab="Received Data") lines(rx_bytes2,type="o",col="blue",xlab="Experiment Interval",ylab="Received Data") lines(rx_bytes3,type="o",col="green",xlab="Experiment Interval",ylab="Received Data") lines(rx_bytes4,type="o",col="purple",xlab="Experiment Interval",ylab="Received Data") title(main="nmetrics experiment on ExoGENI (Received Data)", col.main="red", font.main=4) legend("bottomright", g_range[4], legend=c("interface1","interface2","interface3","interface4"), cex=0.8, col=c("blue","red","green","purple"), pch=21:22:23:24, lty=1:2:3:4);
The resulting plot is shown below.
All three scripts are simply executed with:
R -f <script_name>
The benefit of using R scripts is that they can produce graphs that can be used in documents!
The results can then be stored into iRODS using the itools presented in Section E.2.
G.2 omf_web
The second alternative we use in the tutorial is omf_web, which already has been presented in Section D.
http://groups.geni.net/geni/wiki/GIMIv1.1Tutorial/Toirods Back to previous step
http://groups.geni.net/geni/wiki/GIMIv1.1Tutorial/Fromirods Forward to next step
http://groups.geni.net/geni/wiki/GIMIv1.1Tutorial/ Back to tutorial main page
Attachments (4)
-
GIMI_workflow_F.jpg (39.3 KB) - added by 12 years ago.
Workflow F
- gimi20-nmetrics-eth.png (31.6 KB) - added by 12 years ago.
- gimi20_otg1.png (29.8 KB) - added by 12 years ago.
- gimi20-ping.png (42.9 KB) - added by 12 years ago.
Download all attachments as: .zip