Changes between Version 22 and Version 23 of GENIExperimenter/Tutorials/WiMAXOpenFlow/Design-Setup

10/28/13 09:20:31 (8 years ago)
Ryan Izard



  • GENIExperimenter/Tutorials/WiMAXOpenFlow/Design-Setup

    v22 v23  
    490490   5.  The last thing to configure in the Client are the flows themselves. OpenFlow flows are designed to match certain types of packets, and then based on a successful match, do something to those packets -- e.g. output on port 1, rewrite to a new destination IP, etc. For this tutorial, we need to do two things -- (1) we need to output the packet to the correct port, and (2) we need to rewrite the source MAC for any outbound packets and the destination MAC for any inbound packets. Why? Well, we configured our OVS switches and linked them together as depicted in the figure at the top of this page. Each link of each switch has a port number associated with it. Any physical or tap interface has the port number 1, and any OVS patch port (a port linking two OVS bridges) has an arbitrarily assigned port number. In order to switch packets in our OVS network, we need to know the correct patch ports over which to send packets. For example, if the client wants to send a packet from the tap OVS bridge to the WiFi interface, when the packet is in the tap OVS bridge, the switch needs to know which port to send the packet out on. Well, since we are manually telling the client which interface to use, our static flows must specify the port number that leads to the physical interface of choice. In the case of our example, we would want to insert a flow to direct all packets out the patch port number leading to the WiFi OVS bridge. To determine these port numbers, we need to query Floodlight for information about connected switches.
     491      [[Image(ovs-ports.jpeg)]]
    491492      a.  There is a script in the directory '''/root/SwitchingScripts''' called ''''''. This script will send an HTTP request to Floodlight's REST API, requesting information about the connected switches. It pipes this information (in JSON format) to a python JSON printer (i.e. it "pretty-prints" the JSON string for us). Based on this output, we can determine and confirm the port numbers assigned to each OVS bridge, and thus, we can correctly compose our flows such that they match and forward packets out the correct port numbers. Since we are using the same Orbit image for each client machine in this tutorial, all the port numbers should be configured correctly as-is, but it's still worth checking just to be certain.
    492493      b.  The following is an example output from the client's '''/root/SwitchingScripts/''' script. Based on this information, note the port numbers for each port of each OVS bridge. The WiFi and WiMAX OVS bridges should have three ports -- the physical interface port, the OVS patch port to the tap OVS bridge, and the port of the OVS bridge itself. And, the tap OVS bridge should have four ports -- the "physical" tap interface port, the OVS patch ports to the WiFi and WiMAX OVS bridges, and the OVS bridge itself.