Changes between Version 7 and Version 8 of GENIBibliography


Ignore:
Timestamp:
11/06/13 16:45:42 (10 years ago)
Author:
Mark Berman
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • GENIBibliography

    v7 v8  
    7171
    7272
     73<div class="BibEntry">
     74
     75<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     76
     77
     78<tr>
     79     <td valign="top">Author</td>
     80     <td valign="top">Aikat, Jay and Hasan, Shaddi and Jeffay, Kevin and Smith, F. Donelson</td>
     81</tr>
     82
     83<tr>
     84     <td valign="top">Title</td>
     85     <td valign="top">Discrete-Approximation of Measured Round Trip Time Distributions: A Model for Network Emulation</td>
     86</tr>
     87
     88<tr>
     89     <td valign="top">Booktitle</td>
     90     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     91</tr>
     92
     93<tr>
     94     <td valign="top">Location</td>
     95     <td valign="top">Los Angeles</td>
     96</tr>
     97
     98<tr>
     99     <td valign="top">Year</td>
     100     <td valign="top">2012</td>
     101</tr>
     102
     103<tr>
     104     <td valign="top">Abstract</td>
     105     <td valign="top">Empirical evaluations to study network performance, whether in a laboratory setting or on GENI testbeds, rely heavily on measurement-based modeling of round trip times (RTTs) to emulate realistic end-to-end delays of local and metropolitan area networks. For generating realistic traffic, we studied several models to emulate RTTs. In this paper, we performed experiments on real testbeds using synthetic TCP traffic generated from measurement data from a large university campus. As a result of our study, we present the Discrete- Approximation model for RTT (DA-RTT) emulation. Using three different metrics for performance evaluation, which include queue length at routers, connection response times, and connection durations, we demonstrate that the simple DA-RTT model closely represents the per-connection RTTs in the original traffic. While these experiments were performed in our laboratory, and not using GENI infrastructure, we present this as a possible model for adoption on GENI testbeds to emulate Round Trip Time Distributions for GENI experiments.</td>
     106</tr>
     107
     108
     109
     110
     111
     112
     113</table></div><br><br>
     114
     115
    73116
    74117
     
    313356
    314357
     358<div class="BibEntry">
     359
     360<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     361
     362
     363<tr>
     364     <td valign="top">Author</td>
     365     <td valign="top">Angu, Pragatheeswaran and Ramamurthy, Byrav</td>
     366</tr>
     367
     368<tr>
     369     <td valign="top">Title</td>
     370     <td valign="top">Experiences with dynamic circuit creation in a regional network testbed</td>
     371</tr>
     372
     373<tr>
     374     <td valign="top">Booktitle</td>
     375     <td valign="top">2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</td>
     376</tr>
     377
     378<tr>
     379     <td valign="top">Location</td>
     380     <td valign="top">Shanghai, China</td>
     381</tr>
     382
     383<tr>
     384     <td valign="top">Publisher</td>
     385     <td valign="top">IEEE</td>
     386</tr>
     387
     388<tr>
     389     <td valign="top">Year</td>
     390     <td valign="top">2011</td>
     391</tr>
     392
     393<tr>
     394     <td valign="top">Abstract</td>
     395     <td valign="top">In this paper we share our experiences of enabling dynamic circuit creation in the GpENI network. GpENI is a network research testbed in the mid-west USA involving several educational institutions. University of Nebraska-Lincoln is involved in provisioning dynamic circuits across the GpENI network among its participating universities. We discuss several options investigated for deploying dynamic circuits over the GpENI network as well as our demonstration experiments at the GENI engineering conferences. UNL has also collaborated with ProtoGENI project of University of Utah and Mid-Atlantic Crossroads (MAX) facility of Washington DC to create inter-domain dynamic circuits.</td>
     396</tr>
     397
     398
     399
     400<tr>
     401     <td valign="top">DOI</td>
     402     <td valign="top">10.1109/infcomw.2011.5928801</td>
     403</tr>
     404
     405
     406
     407<tr>
     408     <td valign="top">URL</td>
     409     <td valign="top"><a href="http://dx.doi.org/10.1109/infcomw.2011.5928801">http://dx.doi.org/10.1109/infcomw.2011.5928801</a></td>
     410</tr>
     411
     412
     413</table></div><br><br>
     414
     415
    315416
    316417
     
    487588
    488589
     590<div class="BibEntry">
     591
     592<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     593
     594
     595<tr>
     596     <td valign="top">Author</td>
     597     <td valign="top">Bavier, Andy and Coady, Yvonne and Mack, Tony and Matthews, Chris and Mambretti, Joe and McGeer, Rick and Mueller, Paul and Snoeren, Alex and Yuen, Marco</td>
     598</tr>
     599
     600<tr>
     601     <td valign="top">Title</td>
     602     <td valign="top">GENICloud and transcloud</td>
     603</tr>
     604
     605<tr>
     606     <td valign="top">Booktitle</td>
     607     <td valign="top">Proceedings of the 2012 workshop on Cloud services, federation, and the 8th open cirrus summit</td>
     608</tr>
     609
     610<tr>
     611     <td valign="top">Location</td>
     612     <td valign="top">San Jose, California, USA</td>
     613</tr>
     614
     615<tr>
     616     <td valign="top">Publisher</td>
     617     <td valign="top">ACM</td>
     618</tr>
     619
     620<tr>
     621     <td valign="top">Address</td>
     622     <td valign="top">New York, NY, USA</td>
     623</tr>
     624
     625<tr>
     626     <td valign="top">Year</td>
     627     <td valign="top">2012</td>
     628</tr>
     629
     630<tr>
     631     <td valign="top">Abstract</td>
     632     <td valign="top">In this paper, we argue that federation of cloud systems requires a standard API for users to create, manage, and destroy virtual objects, and a standard naming scheme for virtual objects. We introduce an existing API for this purpose, the Slice-Based Federation Architecture, and demonstrate that it can be implemented on a number of existing cloud management systems. We introduce a simple naming scheme for virtual objects, and discuss its implementation.</td>
     633</tr>
     634
     635
     636
     637<tr>
     638     <td valign="top">DOI</td>
     639     <td valign="top">10.1145/2378975.2378980</td>
     640</tr>
     641
     642
     643
     644<tr>
     645     <td valign="top">URL</td>
     646     <td valign="top"><a href="http://dx.doi.org/10.1145/2378975.2378980">http://dx.doi.org/10.1145/2378975.2378980</a></td>
     647</tr>
     648
     649
     650</table></div><br><br>
     651
     652
    489653
    490654
     
    529693
    530694
    531 
     695<tr>
     696     <td valign="top">DOI</td>
     697     <td valign="top">10.1109/GREE.2013.13</td>
     698</tr>
     699
     700
     701
     702<tr>
     703     <td valign="top">URL</td>
     704     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.13">http://dx.doi.org/10.1109/GREE.2013.13</a></td>
     705</tr>
    532706
    533707
     
    8951069
    8961070
     1071<a class="EntryGoto" id="Calyam, P. and Rajagopalan, S. and Selvadhurai, A. and Mohan, S. and Venkataraman, A. and Berryman, A. and Ramnath, R."></a>
     1072<b class="myheading" style="position: relative; left: 5%;">Calyam, P. and Rajagopalan, S. and Selvadhurai, A. and Mohan, S. and Venkataraman, A. and Berryman, A. and Ramnath, R.</b>
     1073
     1074<div class="BibEntry">
     1075
     1076<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     1077
     1078
     1079<tr>
     1080     <td valign="top">Author</td>
     1081     <td valign="top">Calyam, P. and Rajagopalan, S. and Selvadhurai, A. and Mohan, S. and Venkataraman, A. and Berryman, A. and Ramnath, R.</td>
     1082</tr>
     1083
     1084<tr>
     1085     <td valign="top">Title</td>
     1086     <td valign="top">Leveraging OpenFlow for resource placement of virtual desktop cloud applications</td>
     1087</tr>
     1088
     1089<tr>
     1090     <td valign="top">Booktitle</td>
     1091     <td valign="top">Integrated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on</td>
     1092</tr>
     1093
     1094<tr>
     1095     <td valign="top">Year</td>
     1096     <td valign="top">2013</td>
     1097</tr>
     1098
     1099
     1100
     1101
     1102
     1103
     1104</table></div><br><br>
     1105
     1106
     1107
     1108
    8971109<a class="EntryGoto" id="Calyam, P. and Sridharan, M. and Xu, Yingxiao and Zhu, Kunpeng and Berryman, A. and Patali, R. and Venkataraman, A."></a>
    8981110<b class="myheading" style="position: relative; left: 5%;">Calyam, P. and Sridharan, M. and Xu, Yingxiao and Zhu, Kunpeng and Berryman, A. and Patali, R. and Venkataraman, A.</b>
     
    9891201
    9901202
     1203<div class="BibEntry">
     1204
     1205<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     1206
     1207
     1208<tr>
     1209     <td valign="top">Author</td>
     1210     <td valign="top">Calyam, Prasad and Venkataraman, Aishwarya and Berryman, Alex and Faerman, Marcio</td>
     1211</tr>
     1212
     1213<tr>
     1214     <td valign="top">Title</td>
     1215     <td valign="top">Experiences from Virtual Desktop CloudExperiments in GENI</td>
     1216</tr>
     1217
     1218<tr>
     1219     <td valign="top">Booktitle</td>
     1220     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     1221</tr>
     1222
     1223<tr>
     1224     <td valign="top">Location</td>
     1225     <td valign="top">Los Angeles</td>
     1226</tr>
     1227
     1228<tr>
     1229     <td valign="top">Year</td>
     1230     <td valign="top">2012</td>
     1231</tr>
     1232
     1233<tr>
     1234     <td valign="top">Abstract</td>
     1235     <td valign="top">Popular applications such as email, photo/video galleries, and file storage are increasingly being supported by cloud platforms in residential, academia and industry communities. The next frontier for these user communities will be to transition 'traditional desktops' that have dedicated hardware and software configurations into 'virtual desktop clouds' that are accessible via thin-clients. In this paper, we describe experiences from our research and development of virtual desktop cloud experiments in GENI. Our experimentation goal is to investigate and develop optimal resource allocation frameworks and performance bench- marking tools that can enable provisioning (i.e., resource sizing) and placement (i.e., resource mapping) of thin-client based virtual desktops at Internet-scale. We first motivate why virtual desktop cloud experiments cannot be done only at a table-top level, and why infrastructures such as GENI are essential. Next, we detail the methodology of our completed ” provisioning” experiments, and our work-in-progress ” placement” experiments in GENI that leverage multiple kinds of GENI resources such as aggregates, measurement services and experimenter workflow tools, as well as commercial software. Lastly, we present our vision on how our experiment slice setup and application development experiences, as well as outcomes can be leveraged in classroom labs, and 'living labs' that use GENI resources to foster training and wide- adoption of Future Internet applications.</td>
     1236</tr>
     1237
     1238
     1239
     1240
     1241
     1242
     1243</table></div><br><br>
     1244
     1245
    9911246
    9921247
     
    10371292
    10381293
     1294<div class="BibEntry">
     1295
     1296<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     1297
     1298
     1299<tr>
     1300     <td valign="top">Author</td>
     1301     <td valign="top">Cameron, Katherine and Brooks, R. R. and Deng, Juan and Yu, Lu and Wang, K. C. and Martin, James</td>
     1302</tr>
     1303
     1304<tr>
     1305     <td valign="top">Title</td>
     1306     <td valign="top">WiMAX: Bandwidth Contention Resolution Vulnerability to Denial of Service Attacks</td>
     1307</tr>
     1308
     1309<tr>
     1310     <td valign="top">Booktitle</td>
     1311     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     1312</tr>
     1313
     1314<tr>
     1315     <td valign="top">Location</td>
     1316     <td valign="top">Los Angeles</td>
     1317</tr>
     1318
     1319<tr>
     1320     <td valign="top">Year</td>
     1321     <td valign="top">2012</td>
     1322</tr>
     1323
     1324<tr>
     1325     <td valign="top">Abstract</td>
     1326     <td valign="top">Wireless communications is part of everyday life and 4G technology, including WiMAX, offers higher data rates and wider coverage than predecessor 3G technologies. Many security vulnerabilities have been discovered in 3G protocols and these vulnerabilities may still exist in next generation 4G protocols. This paper examines how system parameters for the WiMAX Bandwidth Contention Resolution process can affect network vulnerability to DoS attacks. It will present software simulations that explore system parameter settings and will cover the current phase of hardware simulations.</td>
     1327</tr>
     1328
     1329
     1330
     1331
     1332
     1333
     1334</table></div><br><br>
     1335
     1336
    10391337
    10401338
     
    10791377
    10801378
    1081 
     1379<tr>
     1380     <td valign="top">DOI</td>
     1381     <td valign="top">10.1109/GREE.2013.12</td>
     1382</tr>
     1383
     1384
     1385
     1386<tr>
     1387     <td valign="top">URL</td>
     1388     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.12">http://dx.doi.org/10.1109/GREE.2013.12</a></td>
     1389</tr>
    10821390
    10831391
     
    11961504
    11971505
     1506<div class="BibEntry">
     1507
     1508<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     1509
     1510
     1511<tr>
     1512     <td valign="top">Author</td>
     1513     <td valign="top">Chen, Kang and Xu, Ke and Winburn, Steven and Shen, Haiying and Wang, Kuang-Ching and Li, Ze</td>
     1514</tr>
     1515
     1516<tr>
     1517     <td valign="top">Title</td>
     1518     <td valign="top">Experimentation of a MANET Routing Algorithm on the GENI ORBIT Testbed</td>
     1519</tr>
     1520
     1521<tr>
     1522     <td valign="top">Booktitle</td>
     1523     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     1524</tr>
     1525
     1526<tr>
     1527     <td valign="top">Location</td>
     1528     <td valign="top">Los Angeles</td>
     1529</tr>
     1530
     1531<tr>
     1532     <td valign="top">Year</td>
     1533     <td valign="top">2012</td>
     1534</tr>
     1535
     1536<tr>
     1537     <td valign="top">Abstract</td>
     1538     <td valign="top">This paper proposes a systematic procedure for experimentation of Mobile ad hoc networks (MANETs) on the ORBIT testbed. MANETs have attracted significant re- search interests in recent years. Most of routing or file sharing algorithms in MANETs were only evaluated by theoretical analysis or simulations because of the requirement of large scale networks. However, due to the distinctive properties of MANETs, such as mobility and decentralized structure, it has been non-trivial to deploy a real testbed for the verification. The Global Environment for Network Innovations (GENI) project sponsored by the National Science Foundation (NSF) provides an exploratory environment for academic real-world experiments, such as the ORBIT testbed. A stable and repeatable procedure for experimentation on real testbeds is necessary and important to assure the validity of results. In this paper, a MANET routing algorithm, namely LORD, was tested on the ORBIT testbed, using the proposed procedure. Specifically, we first configure the wireless interface on each node to enable the communication between each pair of nodes. Then a set of methods are adopted to construct the MANETs scenario for test. The network status is monitored throughout the entire duration of experiments. Finally, the experiment results of LORD on the GENI ORBIT testbed are demonstrated.</td>
     1539</tr>
     1540
     1541
     1542
     1543
     1544
     1545
     1546</table></div><br><br>
     1547
     1548
    11981549
    11991550
     
    13091660
    13101661
     1662<a class="EntryGoto" id="Das, S. and Yiakoumis, Y. and Parulkar, G. and McKeown, N. and Singh, P. and Getachew, D. and Desai, P. D."></a>
     1663<b class="myheading" style="position: relative; left: 5%;">Das, S. and Yiakoumis, Y. and Parulkar, G. and McKeown, N. and Singh, P. and Getachew, D. and Desai, P. D.</b>
     1664
     1665<div class="BibEntry">
     1666
     1667<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     1668
     1669
     1670<tr>
     1671     <td valign="top">Author</td>
     1672     <td valign="top">Das, S. and Yiakoumis, Y. and Parulkar, G. and McKeown, N. and Singh, P. and Getachew, D. and Desai, P. D.</td>
     1673</tr>
     1674
     1675<tr>
     1676     <td valign="top">Title</td>
     1677     <td valign="top">Application-aware aggregation and traffic engineering in a converged packet-circuit network</td>
     1678</tr>
     1679
     1680<tr>
     1681     <td valign="top">Booktitle</td>
     1682     <td valign="top">Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference</td>
     1683</tr>
     1684
     1685<tr>
     1686     <td valign="top">Publisher</td>
     1687     <td valign="top">IEEE</td>
     1688</tr>
     1689
     1690<tr>
     1691     <td valign="top">Year</td>
     1692     <td valign="top">2011</td>
     1693</tr>
     1694
     1695
     1696
     1697
     1698
     1699<tr>
     1700     <td valign="top">URL</td>
     1701     <td valign="top"><a href="http://ieeexplore.ieee.org/xpls/abs&#x005F;all.jsp?arnumber=5875210">http://ieeexplore.ieee.org/xpls/abs&#x005F;all.jsp?arnumber=5875210</a></td>
     1702</tr>
     1703
     1704
     1705</table></div><br><br>
     1706
     1707
     1708
     1709
    13111710<a class="EntryGoto" id="Deng, Juan and Brooks, Richard R. and Martin, James"></a>
    13121711<b class="myheading" style="position: relative; left: 5%;">Deng, Juan and Brooks, Richard R. and Martin, James</b>
     
    18562255
    18572256
    1858 
     2257<tr>
     2258     <td valign="top">DOI</td>
     2259     <td valign="top">10.1109/GREE.2013.23</td>
     2260</tr>
     2261
     2262
     2263
     2264<tr>
     2265     <td valign="top">URL</td>
     2266     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.23">http://dx.doi.org/10.1109/GREE.2013.23</a></td>
     2267</tr>
    18592268
    18602269
     
    19102319
    19112320
     2321<div class="BibEntry">
     2322
     2323<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     2324
     2325
     2326<tr>
     2327     <td valign="top">Author</td>
     2328     <td valign="top">Gangam, Sriharsha and Blanton, Ethan and Fahmy, Sonia</td>
     2329</tr>
     2330
     2331<tr>
     2332     <td valign="top">Title</td>
     2333     <td valign="top">Exercises for Graduate Students using GENI</td>
     2334</tr>
     2335
     2336<tr>
     2337     <td valign="top">Booktitle</td>
     2338     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     2339</tr>
     2340
     2341<tr>
     2342     <td valign="top">Location</td>
     2343     <td valign="top">Los Angeles</td>
     2344</tr>
     2345
     2346<tr>
     2347     <td valign="top">Year</td>
     2348     <td valign="top">2012</td>
     2349</tr>
     2350
     2351<tr>
     2352     <td valign="top">Abstract</td>
     2353     <td valign="top">GENI brings together a wide variety of heterogeneous networking infrastructure and technologies under a common platform. We propose programming exercises for graduate students to introduce GENI and enable students to conduct high fidelity networking experiments. In this paper, we focus on an exercise to study congestion control and reliability using the ProtoGENI aggregate. A planned second exercise aims to leverage GENI OpenFlow aggregates to study firewalls and QoS mechanisms. We believe that these lab exercises will expose students to key networking concepts and recent research directions, e.g., in the data center context.</td>
     2354</tr>
     2355
     2356
     2357
     2358
     2359
     2360
     2361</table></div><br><br>
     2362
     2363
    19122364
    19132365
     
    20212473
    20222474
     2475<div class="BibEntry">
     2476
     2477<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     2478
     2479
     2480<tr>
     2481     <td valign="top">Author</td>
     2482     <td valign="top">Gao, Jingcheng and Xiao, Yang</td>
     2483</tr>
     2484
     2485<tr>
     2486     <td valign="top">Title</td>
     2487     <td valign="top">ProtoGENI DoS/DDoS Security Tests and Experiments</td>
     2488</tr>
     2489
     2490<tr>
     2491     <td valign="top">Booktitle</td>
     2492     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     2493</tr>
     2494
     2495<tr>
     2496     <td valign="top">Location</td>
     2497     <td valign="top">Los Angeles</td>
     2498</tr>
     2499
     2500<tr>
     2501     <td valign="top">Year</td>
     2502     <td valign="top">2012</td>
     2503</tr>
     2504
     2505<tr>
     2506     <td valign="top">Abstract</td>
     2507     <td valign="top">his paper will explain some tests and experiments to investigate selected security issues through ProtoGENI mainly during Spiral 3 time period and the beginning of Spiral 4. In this paper, we conduct multiple sets of DoS/ DDoS attacks in the current ProtoGENI testbed. These attacks show that it is very possible that ProtoGENI nodes may render vulnerabilities to such attacks.</td>
     2508</tr>
     2509
     2510
     2511
     2512
     2513
     2514
     2515</table></div><br><br>
     2516
     2517
    20232518
    20242519
     
    21372632
    21382633
     2634<div class="BibEntry">
     2635
     2636<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     2637
     2638
     2639<tr>
     2640     <td valign="top">Author</td>
     2641     <td valign="top">Grandl, Robert and Han, Dongsu and Lee, Suk B. and Lim, Hyeontaek and Machado, Michel and Mukerjee, Matthew and Naylor, David</td>
     2642</tr>
     2643
     2644<tr>
     2645     <td valign="top">Title</td>
     2646     <td valign="top">Supporting network evolution and incremental deployment with XIA</td>
     2647</tr>
     2648
     2649<tr>
     2650     <td valign="top">Booktitle</td>
     2651     <td valign="top">Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication</td>
     2652</tr>
     2653
     2654<tr>
     2655     <td valign="top">Location</td>
     2656     <td valign="top">Helsinki, Finland</td>
     2657</tr>
     2658
     2659<tr>
     2660     <td valign="top">Publisher</td>
     2661     <td valign="top">ACM</td>
     2662</tr>
     2663
     2664<tr>
     2665     <td valign="top">Address</td>
     2666     <td valign="top">New York, NY, USA</td>
     2667</tr>
     2668
     2669<tr>
     2670     <td valign="top">Year</td>
     2671     <td valign="top">2012</td>
     2672</tr>
     2673
     2674<tr>
     2675     <td valign="top">Abstract</td>
     2676     <td valign="top">eXpressive Internet Architecture (XIA) [1] is an architecture that natively supports multiple communication types and allows networks to evolve their abstractions and functionality to accommodate new styles of communication over time. XIA embeds an elegant mechanism for handling unforeseen communication types for legacy routers. In this demonstration, we show that XIA overcomes three key barriers in network evolution (outlined below) by (1) allowing end-hosts and applications to start using new communication types (e.g., service and content) before the network supports them, (2) ensuring that upgrading a subset of routers to support new functionalities immediately benefits applications, and (3) using the same mechanisms we employ for 1 and 2 to incrementally deploy XIA in IP networks.</td>
     2677</tr>
     2678
     2679
     2680
     2681<tr>
     2682     <td valign="top">DOI</td>
     2683     <td valign="top">10.1145/2342356.2342410</td>
     2684</tr>
     2685
     2686
     2687
     2688<tr>
     2689     <td valign="top">URL</td>
     2690     <td valign="top"><a href="http://dx.doi.org/10.1145/2342356.2342410">http://dx.doi.org/10.1145/2342356.2342410</a></td>
     2691</tr>
     2692
     2693
     2694</table></div><br><br>
     2695
     2696
    21392697
    21402698
     
    22372795
    22382796
    2239 
     2797<tr>
     2798     <td valign="top">DOI</td>
     2799     <td valign="top">10.1109/GREE.2013.30</td>
     2800</tr>
     2801
     2802
     2803
     2804<tr>
     2805     <td valign="top">URL</td>
     2806     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.30">http://dx.doi.org/10.1109/GREE.2013.30</a></td>
     2807</tr>
    22402808
    22412809
     
    23282896
    23292897
    2330 
     2898<tr>
     2899     <td valign="top">DOI</td>
     2900     <td valign="top">10.1109/GREE.2013.28</td>
     2901</tr>
     2902
     2903
     2904
     2905<tr>
     2906     <td valign="top">URL</td>
     2907     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.28">http://dx.doi.org/10.1109/GREE.2013.28</a></td>
     2908</tr>
    23312909
    23322910
     
    24393017
    24403018
    2441 
     3019<tr>
     3020     <td valign="top">DOI</td>
     3021     <td valign="top">10.1109/GREE.2013.10</td>
     3022</tr>
     3023
     3024
     3025
     3026<tr>
     3027     <td valign="top">URL</td>
     3028     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.10">http://dx.doi.org/10.1109/GREE.2013.10</a></td>
     3029</tr>
    24423030
    24433031
     
    24873075
    24883076
    2489 
     3077<tr>
     3078     <td valign="top">DOI</td>
     3079     <td valign="top">10.1109/GREE.2013.24</td>
     3080</tr>
     3081
     3082
     3083
     3084<tr>
     3085     <td valign="top">URL</td>
     3086     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.24">http://dx.doi.org/10.1109/GREE.2013.24</a></td>
     3087</tr>
    24903088
    24913089
     
    28203418
    28213419
     3420<a class="EntryGoto" id="Krishnappa, D. K. and Irwin, D. and Lyons, E. and Zink, M."></a>
     3421<b class="myheading" style="position: relative; left: 5%;">Krishnappa, D. K. and Irwin, D. and Lyons, E. and Zink, M.</b>
     3422
     3423<div class="BibEntry">
     3424
     3425<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     3426
     3427
     3428<tr>
     3429     <td valign="top">Author</td>
     3430     <td valign="top">Krishnappa, D. K. and Irwin, D. and Lyons, E. and Zink, M.</td>
     3431</tr>
     3432
     3433<tr>
     3434     <td valign="top">Title</td>
     3435     <td valign="top">CloudCast: Cloud Computing for Short-Term Weather Forecasts</td>
     3436</tr>
     3437
     3438<tr>
     3439     <td valign="top">Journal</td>
     3440     <td valign="top">Computing in Science &#x0026; Engineering</td>
     3441</tr>
     3442
     3443<tr>
     3444     <td valign="top">Publisher</td>
     3445     <td valign="top">IEEE</td>
     3446</tr>
     3447
     3448<tr>
     3449     <td valign="top">Year</td>
     3450     <td valign="top">2013</td>
     3451</tr>
     3452
     3453<tr>
     3454     <td valign="top">Abstract</td>
     3455     <td valign="top">CloudCast provides personalized short-term weather forecasts to clients based on their current location using cloud services, generating accurate forecasts tens of minutes in the future for small areas. Results show that it takes less than two minutes from the start of data sampling to deliver a 15-minute forecast to a client.</td>
     3456</tr>
     3457
     3458
     3459
     3460<tr>
     3461     <td valign="top">DOI</td>
     3462     <td valign="top">10.1109/mcse.2013.43</td>
     3463</tr>
     3464
     3465
     3466
     3467<tr>
     3468     <td valign="top">URL</td>
     3469     <td valign="top"><a href="http://dx.doi.org/10.1109/mcse.2013.43">http://dx.doi.org/10.1109/mcse.2013.43</a></td>
     3470</tr>
     3471
     3472
     3473</table></div><br><br>
     3474
     3475
     3476
     3477
    28223478<a class="EntryGoto" id="Krishnappa, Dilip K. and Lyons, Eric and Irwin, David and Zink, Michael"></a>
    28233479<b class="myheading" style="position: relative; left: 5%;">Krishnappa, Dilip K. and Lyons, Eric and Irwin, David and Zink, Michael</b>
     
    28663522
    28673523
     3524<div class="BibEntry">
     3525
     3526<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     3527
     3528
     3529<tr>
     3530     <td valign="top">Author</td>
     3531     <td valign="top">Krishnappa, Dilip K. and Lyons, Eric and Irwin, David and Zink, Michael</td>
     3532</tr>
     3533
     3534<tr>
     3535     <td valign="top">Title</td>
     3536     <td valign="top">Performance of GENI Cloud Testbeds for Real Time Scientific Application</td>
     3537</tr>
     3538
     3539<tr>
     3540     <td valign="top">Booktitle</td>
     3541     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     3542</tr>
     3543
     3544<tr>
     3545     <td valign="top">Location</td>
     3546     <td valign="top">Los Angeles</td>
     3547</tr>
     3548
     3549<tr>
     3550     <td valign="top">Year</td>
     3551     <td valign="top">2012</td>
     3552</tr>
     3553
     3554<tr>
     3555     <td valign="top">Abstract</td>
     3556     <td valign="top">Dedicating high end servers for short-term execution of scientific applications such as weather forecasting wastes resources. Cloud platforms IaaS model seems well suited for applications which are executed on an irregular basis and for short duration. In this paper, we evaluate the performance of research testbed cloud platforms such as GENICloud and ORCA cloud clusters for our real-time scientific application of short-term weather forecasting called Nowcasting. In this paper, we evaluate the network capabilities of these research cloud testbeds for our real-time application of weather forecasting. In addition, we evaluate the computation time of executing Nowcasting on each cloud platform for weather data collected from real weather events. We also evaluate the total time taken to generate and transmit short-term forecast images to end users with live data from our own radar on campus. We also compare the performance of each of these clusters for Nowcasting with commercial cloud services such as Amazon's EC2. The results obtained from our measurement show that cloud testbeds are suitable for real-time application experiments to be carried out on a cloud platform.</td>
     3557</tr>
     3558
     3559
     3560
     3561
     3562
     3563
     3564</table></div><br><br>
     3565
     3566
    28683567
    28693568
     
    32523951
    32533952
     3953<div class="BibEntry">
     3954
     3955<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     3956
     3957
     3958<tr>
     3959     <td valign="top">Author</td>
     3960     <td valign="top">Liu, Jun and O'Neil, Thomas and Desell, Travis and Carlson, Ross</td>
     3961</tr>
     3962
     3963<tr>
     3964     <td valign="top">Title</td>
     3965     <td valign="top">Work-in-Progress: Empirical Verification of A Subset Sum Hypothesis in GENI Cloud</td>
     3966</tr>
     3967
     3968<tr>
     3969     <td valign="top">Booktitle</td>
     3970     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     3971</tr>
     3972
     3973<tr>
     3974     <td valign="top">Location</td>
     3975     <td valign="top">Los Angeles</td>
     3976</tr>
     3977
     3978<tr>
     3979     <td valign="top">Year</td>
     3980     <td valign="top">2012</td>
     3981</tr>
     3982
     3983
     3984
     3985
     3986
     3987
     3988</table></div><br><br>
     3989
     3990
    32543991
    32553992
     
    33004037
    33014038
     4039<div class="BibEntry">
     4040
     4041<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     4042
     4043
     4044<tr>
     4045     <td valign="top">Author</td>
     4046     <td valign="top">Luna, Nicholas and Shetty, Sachin and Rogers, Tamara and Xiong, Kaiqi</td>
     4047</tr>
     4048
     4049<tr>
     4050     <td valign="top">Title</td>
     4051     <td valign="top">Assessment of Router Vulnerabilities on PlanetLab Infrastructure for Secure Cloud Computing</td>
     4052</tr>
     4053
     4054<tr>
     4055     <td valign="top">Booktitle</td>
     4056     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     4057</tr>
     4058
     4059<tr>
     4060     <td valign="top">Location</td>
     4061     <td valign="top">Los Angeles</td>
     4062</tr>
     4063
     4064<tr>
     4065     <td valign="top">Year</td>
     4066     <td valign="top">2012</td>
     4067</tr>
     4068
     4069<tr>
     4070     <td valign="top">Abstract</td>
     4071     <td valign="top">In recent times, the cloud computing based delivery model has been proven to reduce enterprise IT costs and complexities. In contrast to traditional enterprise IT solutions, the cloud computing model moves the application software and data to remote servers in large datacenters, which raises many security challenges. One of the critical challenges is the inability to characterize the impact of the vulnerabilities of routers on the cloud security and performance guarantees. In this paper, we analyze the degree of security provided by routers to data sharing applications deployed in cloud environments that span administrative and network domains. Our analysis is based on examining the security level of network applications on routers which lie between nodes on Planetlab infrastructure. We assume that some of the PlanetLab nodes will share the same wide area network path as the cloud servers. Our preliminary results confirm that the majority of the routers are plagued by insecure network protocols, leading to vulnerable routers. These results confirm our hypothesis that the security of the network infrastructure needs to be upgraded to assure the protection of information exchanged on the wide area network path.</td>
     4072</tr>
     4073
     4074
     4075
     4076
     4077
     4078
     4079</table></div><br><br>
     4080
     4081
    33024082
    33034083
     
    35694349
    35704350
    3571 
     4351<tr>
     4352     <td valign="top">DOI</td>
     4353     <td valign="top">10.1109/GREE.2013.27</td>
     4354</tr>
     4355
     4356
     4357
     4358<tr>
     4359     <td valign="top">URL</td>
     4360     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.27">http://dx.doi.org/10.1109/GREE.2013.27</a></td>
     4361</tr>
    35724362
    35734363
     
    36234413
    36244414
     4415<div class="BibEntry">
     4416
     4417<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     4418
     4419
     4420<tr>
     4421     <td valign="top">Author</td>
     4422     <td valign="top">Mandvekar, Lokesh and Sathyaraja, Anandatirtha and Qiao, Chunming</td>
     4423</tr>
     4424
     4425<tr>
     4426     <td valign="top">Title</td>
     4427     <td valign="top">Socially Aware Single System Images</td>
     4428</tr>
     4429
     4430<tr>
     4431     <td valign="top">Booktitle</td>
     4432     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     4433</tr>
     4434
     4435<tr>
     4436     <td valign="top">Location</td>
     4437     <td valign="top">Los Angeles</td>
     4438</tr>
     4439
     4440<tr>
     4441     <td valign="top">Year</td>
     4442     <td valign="top">2012</td>
     4443</tr>
     4444
     4445<tr>
     4446     <td valign="top">Abstract</td>
     4447     <td valign="top">Cloud computing enables users to get access to huge amounts of computing resources as desired. There are many popular commercial cloud service providers which provide resources to users at a price. These providers can not be trusted as far as privacy of data is concerned. On the other hand, people do trust their close friends, relatives and other social contacts, albeit, to varying degrees. This paper reports the work-in-progress on S3I(Socially Aware Single System Images) which allows users to form computing clusters using resources owned by their social contacts. It tries to utilize the trust found between people in real life and translate it to provide trustworthy resource sharing between them.</td>
     4448</tr>
     4449
     4450
     4451
     4452
     4453
     4454
     4455</table></div><br><br>
     4456
     4457
    36254458
    36264459
     
    36654498
    36664499
    3667 
     4500<tr>
     4501     <td valign="top">DOI</td>
     4502     <td valign="top">10.1109/GREE.2013.29</td>
     4503</tr>
     4504
     4505
     4506
     4507<tr>
     4508     <td valign="top">URL</td>
     4509     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.29">http://dx.doi.org/10.1109/GREE.2013.29</a></td>
     4510</tr>
    36684511
    36694512
     
    37194562
    37204563
     4564<div class="BibEntry">
     4565
     4566<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     4567
     4568
     4569<tr>
     4570     <td valign="top">Author</td>
     4571     <td valign="top">Maziku, Hellen and Shetty, Sachin and Rogers, Tamara</td>
     4572</tr>
     4573
     4574<tr>
     4575     <td valign="top">Title</td>
     4576     <td valign="top">Measurement-based IP Geolocation of Routers on Planetlab Infrastructure</td>
     4577</tr>
     4578
     4579<tr>
     4580     <td valign="top">Booktitle</td>
     4581     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     4582</tr>
     4583
     4584<tr>
     4585     <td valign="top">Location</td>
     4586     <td valign="top">Los Angeles</td>
     4587</tr>
     4588
     4589<tr>
     4590     <td valign="top">Year</td>
     4591     <td valign="top">2012</td>
     4592</tr>
     4593
     4594<tr>
     4595     <td valign="top">Abstract</td>
     4596     <td valign="top">Location aware applications can benefit from a more accurate yet robust IP geolocation framework. Various approaches to IP geolocation have been well documented. The most recent approach casts IP geolocation as a machine learn- ing classification problem. This approach makes it possible to incorporate both delay and non delay based information. The accuracy of IP geolocation can be improved by incorporating additional types of geolocation information rather relying on network delay alone. To enhance the classification accuracy of the existing classification framework, we expand it to include 6 features (3 of which are novel). We use PlanetLab as a testbed to generate our measurement set. We select 67 PlanetLab nodes within the United States with known geographic location as our landmarks. We test the accuracy of our framework on 23,843 routers given ping measurements from the 67 landmarks. With only three features (average delay, average hops and population density) tested, our new classifier gives a reduced average error distance of 157.81 miles and a median error distance of 0 miles, compared to the present classifier that gives an average error distance of 253.34 miles. This is very promising as we move on to the next phase of incorporating data for the remaining 5 features. To the best of our knowledge, this is the first proposed framework that aims to improve the accuracy of the present classifier based IP geolocation.</td>
     4597</tr>
     4598
     4599
     4600
     4601
     4602
     4603
     4604</table></div><br><br>
     4605
     4606
    37214607
    37224608
     
    38684754
    38694755
     4756<div class="BibEntry">
     4757
     4758<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     4759
     4760
     4761<tr>
     4762     <td valign="top">Author</td>
     4763     <td valign="top">Muhammad, Monzur and Cappos, Justin</td>
     4764</tr>
     4765
     4766<tr>
     4767     <td valign="top">Title</td>
     4768     <td valign="top">Towards a Representive Testbed: Harnessing Volunteers for Networks Research</td>
     4769</tr>
     4770
     4771<tr>
     4772     <td valign="top">Booktitle</td>
     4773     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     4774</tr>
     4775
     4776<tr>
     4777     <td valign="top">Location</td>
     4778     <td valign="top">Los Angeles</td>
     4779</tr>
     4780
     4781<tr>
     4782     <td valign="top">Year</td>
     4783     <td valign="top">2012</td>
     4784</tr>
     4785
     4786<tr>
     4787     <td valign="top">Abstract</td>
     4788     <td valign="top">A steady rise in home systems has been seen over the past few years. As more systems are designed and deployed, an appropriate testbed is required to test these systems. Sev- eral systems exist, such as PlanetLab, that currently provide a networking testbed allowing researchers and developers to test and measure various applications. However in the long run such testbeds will be unable to keep up and meet all the demands of many of the large scale modern day peer-to-peer systems. We outline the various challenges and essentials of a networking testbed and we provide an alternate network- ing testbed that is driven by resources that are voluntarily contributed. We talk about the various advantages and dis- advantages of the Seattle system, an open source peer-to- peer computing testbed that has the potential to meet these demands. The testbed is composed of sandboxed resources that are donated by volunteers. Seattle has been deployed for about three years and supports many researchers who are interested in a networking testbed. The testbed consists of over 4100 nodes and is constantly growing. Seattle looks to grow and meet the demands of networking testbeds as they are made.</td>
     4789</tr>
     4790
     4791
     4792
     4793
     4794
     4795
     4796</table></div><br><br>
     4797
     4798
    38704799
    38714800
     
    39104839
    39114840
    3912 
     4841<tr>
     4842     <td valign="top">DOI</td>
     4843     <td valign="top">10.1109/GREE.2013.21</td>
     4844</tr>
     4845
     4846
     4847
     4848<tr>
     4849     <td valign="top">URL</td>
     4850     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.21">http://dx.doi.org/10.1109/GREE.2013.21</a></td>
     4851</tr>
    39134852
    39144853
     
    39584897
    39594898
    3960 
     4899<tr>
     4900     <td valign="top">DOI</td>
     4901     <td valign="top">10.1109/GREE.2013.11</td>
     4902</tr>
     4903
     4904
     4905
     4906<tr>
     4907     <td valign="top">URL</td>
     4908     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.11">http://dx.doi.org/10.1109/GREE.2013.11</a></td>
     4909</tr>
    39614910
    39624911
     
    40755024
    40765025
     5026<div class="BibEntry">
     5027
     5028<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5029
     5030
     5031<tr>
     5032     <td valign="top">Author</td>
     5033     <td valign="top">Ozcelik, Ilker and Brooks, Richard R.</td>
     5034</tr>
     5035
     5036<tr>
     5037     <td valign="top">Title</td>
     5038     <td valign="top">Performance Analysis of DDoS Detection Methods on Real Network</td>
     5039</tr>
     5040
     5041<tr>
     5042     <td valign="top">Booktitle</td>
     5043     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     5044</tr>
     5045
     5046<tr>
     5047     <td valign="top">Location</td>
     5048     <td valign="top">Los Angeles</td>
     5049</tr>
     5050
     5051<tr>
     5052     <td valign="top">Year</td>
     5053     <td valign="top">2012</td>
     5054</tr>
     5055
     5056<tr>
     5057     <td valign="top">Abstract</td>
     5058     <td valign="top">Distributed Denial of Service (DDoS) attacks are major security threats to the Internet. The distributed structure of these attacks makes it difficult to distinguish between legitimate and attack traffic, making detection difficult. In addition to this challenge, researchers also have to study and find countermeasures against these attacks without using an operational network for testing, since attacks on operational networks inconvenience users. In this paper, we propose a method to perform DDoS analysis on real hardware using real traffic without jeopardizing the original network. We implement our experiments on the Geni testbed using Openflow. We present results from DDoS detection methods using operational traffic.</td>
     5059</tr>
     5060
     5061
     5062
     5063
     5064
     5065
     5066</table></div><br><br>
     5067
     5068
    40775069
    40785070
     
    41175109
    41185110
    4119 
     5111<tr>
     5112     <td valign="top">DOI</td>
     5113     <td valign="top">10.1109/GREE.2013.18</td>
     5114</tr>
     5115
     5116
     5117
     5118<tr>
     5119     <td valign="top">URL</td>
     5120     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.18">http://dx.doi.org/10.1109/GREE.2013.18</a></td>
     5121</tr>
    41205122
    41215123
     
    42345236
    42355237
     5238<div class="BibEntry">
     5239
     5240<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5241
     5242
     5243<tr>
     5244     <td valign="top">Author</td>
     5245     <td valign="top">Qin, Z. and Xiong, X. and Chuah, M.</td>
     5246</tr>
     5247
     5248<tr>
     5249     <td valign="top">Title</td>
     5250     <td valign="top">Lehigh Explorer: Android Application Utilizing Content Centric Features</td>
     5251</tr>
     5252
     5253<tr>
     5254     <td valign="top">Booktitle</td>
     5255     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     5256</tr>
     5257
     5258<tr>
     5259     <td valign="top">Location</td>
     5260     <td valign="top">Los Angeles</td>
     5261</tr>
     5262
     5263<tr>
     5264     <td valign="top">Year</td>
     5265     <td valign="top">2012</td>
     5266</tr>
     5267
     5268<tr>
     5269     <td valign="top">Abstract</td>
     5270     <td valign="top">Companies, government organizations or institutions from anywhere in the world publish different types of information e.g. news, health alerts, disaster warnings at any time. Rather than consuming all published data, users only desire access to information of interest to themselves irrespective of where the data is located and who publish them. Existing publish/subscribe systems built based on IP-based network can be inefficient and are not flexible enough to meet emerging requirements e.g. deal with mobile users, dynamic contents, searching over encrypted data. Recently content-centric networks have been proposed to provide flexibility to users to access such information. We have designed secure content centric mobile networks that allow users to publish and retrieve contents securely. As with any new architecture, one important issue is to have useful applications that can utilize features provided in the new architecture. In this paper, we describe an Android application we recently developed that allows visitors to explore Lehigh campus based on their expressed interests. Our application utilizes keyword based interest messages to retrieve matching data items of interests to a user. We are giving a demo of Lehigh Explorer at GEC13.</td>
     5271</tr>
     5272
     5273
     5274
     5275
     5276
     5277
     5278</table></div><br><br>
     5279
     5280
    42365281
    42375282
     
    42895334
    42905335
     5336<a class="EntryGoto" id="Raychaudhuri, Dipankar and Nagaraja, Kiran and Venkataramani, Arun"></a>
     5337<b class="myheading" style="position: relative; left: 5%;">Raychaudhuri, Dipankar and Nagaraja, Kiran and Venkataramani, Arun</b>
     5338
     5339<div class="BibEntry">
     5340
     5341<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5342
     5343
     5344<tr>
     5345     <td valign="top">Author</td>
     5346     <td valign="top">Raychaudhuri, Dipankar and Nagaraja, Kiran and Venkataramani, Arun</td>
     5347</tr>
     5348
     5349<tr>
     5350     <td valign="top">Title</td>
     5351     <td valign="top">MobilityFirst: a robust and trustworthy mobility-centric architecture for the future internet</td>
     5352</tr>
     5353
     5354<tr>
     5355     <td valign="top">Journal</td>
     5356     <td valign="top">SIGMOBILE Mob. Comput. Commun. Rev.</td>
     5357</tr>
     5358
     5359<tr>
     5360     <td valign="top">Publisher</td>
     5361     <td valign="top">ACM</td>
     5362</tr>
     5363
     5364<tr>
     5365     <td valign="top">Address</td>
     5366     <td valign="top">New York, NY, USA</td>
     5367</tr>
     5368
     5369<tr>
     5370     <td valign="top">Year</td>
     5371     <td valign="top">2012</td>
     5372</tr>
     5373
     5374<tr>
     5375     <td valign="top">Abstract</td>
     5376     <td valign="top">This paper presents an overview of the MobilityFirst network architecture, currently under development as part of the US National Science Foundation's Future Internet Architecture (FIA) program. The proposed architecture is intended to directly address the challenges of wireless access and mobility at scale, while also providing new services needed for emerging mobile Internet application scenarios. After briefly outlining the original design goals of the project, we provide a discussion of the main architectural concepts behind the network design, identifying key features such as separation of names from addresses, public-key based globally unique identifiers (GUIDs) for named objects, global name resolution service (GNRS) for dynamic binding of names to addresses, storage-aware routing and late binding, content- and context-aware services, optional in-network compute layer, and so on. This is followed by a brief description of the MobilityFirst protocol stack as a whole, along with an explanation of how the protocol works at end-user devices and inside network routers. Example of specific advanced services supported by the protocol stack, including multi-homing, mobility with disconnection, and content retrieval/caching are given for illustration. Further design details of two key protocol components, the GNRS name resolution service and the GSTAR routing protocol, are also described along with sample results from evaluation. In conclusion, a brief description of an ongoing multi-site experimental proof-of-concept deployment of the MobilityFirst protocol stack on the GENI testbed is provided.</td>
     5377</tr>
     5378
     5379
     5380
     5381<tr>
     5382     <td valign="top">DOI</td>
     5383     <td valign="top">10.1145/2412096.2412098</td>
     5384</tr>
     5385
     5386
     5387
     5388<tr>
     5389     <td valign="top">URL</td>
     5390     <td valign="top"><a href="http://dx.doi.org/10.1145/2412096.2412098">http://dx.doi.org/10.1145/2412096.2412098</a></td>
     5391</tr>
     5392
     5393
     5394</table></div><br><br>
     5395
     5396
     5397
     5398
    42915399<a class="EntryGoto" id="Ricci, Robert and Wong, Gary and Stoller, Leigh and Duerig, Jonathon"></a>
    42925400<b class="myheading" style="position: relative; left: 5%;">Ricci, Robert and Wong, Gary and Stoller, Leigh and Duerig, Jonathon</b>
     
    43405448
    43415449
     5450<div class="BibEntry">
     5451
     5452<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5453
     5454
     5455<tr>
     5456     <td valign="top">Author</td>
     5457     <td valign="top">Ricci, Robert and Wong, Gary and Stoller, Leigh and Duerig, Jonathon</td>
     5458</tr>
     5459
     5460<tr>
     5461     <td valign="top">Title</td>
     5462     <td valign="top">An Architecture For International Federation of Network Testbeds</td>
     5463</tr>
     5464
     5465<tr>
     5466     <td valign="top">Journal</td>
     5467     <td valign="top">IEICE Transactions on Communications</td>
     5468</tr>
     5469
     5470<tr>
     5471     <td valign="top">Year</td>
     5472     <td valign="top">2013</td>
     5473</tr>
     5474
     5475<tr>
     5476     <td valign="top">Abstract</td>
     5477     <td valign="top">Testbeds play a key role in the advancement of network science and the exploration of new network architectures. Because the scale and scope of any individual testbed is necessarily limited, federation is a useful technique for constructing testbeds that serve a wide range of experimenter needs. In a federated testbed, individual facilities maintain local autonomy while cooperating to provide a unified set of abstractions and interfaces to users. Forming an international federation is particularly challenging, because issues of trust, user access policy, and local laws and regulations are of greater concern that they are for federations within a single country. In this paper, we describe an architecture, based on the US National Science Foundation's GENI project, that is capable of supporting the needs of an international federation.</td>
     5478</tr>
     5479
     5480
     5481
     5482<tr>
     5483     <td valign="top">DOI</td>
     5484     <td valign="top">10.1587/transcom.E96.B.2</td>
     5485</tr>
     5486
     5487
     5488
     5489<tr>
     5490     <td valign="top">URL</td>
     5491     <td valign="top"><a href="http://dx.doi.org/10.1587/transcom.E96.B.2">http://dx.doi.org/10.1587/transcom.E96.B.2</a></td>
     5492</tr>
     5493
     5494
     5495</table></div><br><br>
     5496
     5497
    43425498
    43435499
     
    44565612
    44575613
     5614<div class="BibEntry">
     5615
     5616<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5617
     5618
     5619<tr>
     5620     <td valign="top">Author</td>
     5621     <td valign="top">Rosen, Aaron and Wang, Kuang-Ching</td>
     5622</tr>
     5623
     5624<tr>
     5625     <td valign="top">Title</td>
     5626     <td valign="top">Steroid OpenFlow Service: Seamless Network Service Delivery in Software Defined Networks</td>
     5627</tr>
     5628
     5629<tr>
     5630     <td valign="top">Booktitle</td>
     5631     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     5632</tr>
     5633
     5634<tr>
     5635     <td valign="top">Location</td>
     5636     <td valign="top">Los Angeles</td>
     5637</tr>
     5638
     5639<tr>
     5640     <td valign="top">Year</td>
     5641     <td valign="top">2012</td>
     5642</tr>
     5643
     5644<tr>
     5645     <td valign="top">Abstract</td>
     5646     <td valign="top">In a software defined network (SDN), packet forwarding is controlled by software controllers. In an OpenFlow SDN, a controller can control the forwarding, rewriting, and dropping of packets based on their header attributes. The ability to handle packets in customizable ways in software has significant implications for both network users and operators. Via software, users can convey application specific expectations while operators can deliver application specific services to enhance user experiences. In this paper, we present the Steroid OpenFlow Services (SOS) paradigm for network services delivery. The paradigm enables operators to deliver network services without any setup requirements on user machines. SOS utilizes OpenFlow to redirect application specific traffic to application specific service agents; SOS also rewrites packet headers for a service to remain seamless to users. This paper presents an example SOS service for optimizing large volume TCP download across a large delay-bandwidth-product wide area network. SOS service agents on both ends of the connection seamlessly terminate a user TCP connection, launch a set of parallel TCP connections, and leverage multiple paths when available to maximize throughput. With the NSF GENI future Internet testbed, a prototype implementation achieved up to 320 times throughput enhancement seamless to the end users.</td>
     5647</tr>
     5648
     5649
     5650
     5651
     5652
     5653
     5654</table></div><br><br>
     5655
     5656
    44585657
    44595658
     
    47365935
    47375936
     5937<div class="BibEntry">
     5938
     5939<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     5940
     5941
     5942<tr>
     5943     <td valign="top">Author</td>
     5944     <td valign="top">Shin, Sunae and Dhondge, Kaustubh and Choi, Baek-Young</td>
     5945</tr>
     5946
     5947<tr>
     5948     <td valign="top">Title</td>
     5949     <td valign="top">Understanding the Performance of TCP and UDP-based Data Transfer Protocols using EMULAB</td>
     5950</tr>
     5951
     5952<tr>
     5953     <td valign="top">Booktitle</td>
     5954     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     5955</tr>
     5956
     5957<tr>
     5958     <td valign="top">Location</td>
     5959     <td valign="top">Los Angeles</td>
     5960</tr>
     5961
     5962<tr>
     5963     <td valign="top">Year</td>
     5964     <td valign="top">2012</td>
     5965</tr>
     5966
     5967<tr>
     5968     <td valign="top">Abstract</td>
     5969     <td valign="top">In this paper, we present a hands-on course project that explores the performance of data transfer protocols using a GENI resource. TCP is one of the key topics in networking courses, and understanding its behavior as well as limitations, from real experiments, offers an invaluable and deep learning experience. A protocol's performance is directly impacted by network parameters such as network bandwidth, delay and loss. However, it is difficult to control and even vary those parameters, if it is not evaluated with simulations. GENI facilities conveniently provide a virtual laboratory that enables us to control the network settings with real network systems. Through this educational project, students had an opportunity to control important network parameters, and measure and compare TCP's performance with a UDP-based data transfer protocol, UDT, using EMULAB. Students were enthusiastic to witness the protocols' performances, and the limitations of TCP under a high bandwidth delay product network in the presence of packet loss, and to recognize the importance of protocol design and system issues for the future Internet.</td>
     5970</tr>
     5971
     5972
     5973
     5974
     5975
     5976
     5977</table></div><br><br>
     5978
     5979
    47385980
    47395981
     
    47796021
    47806022
     6023<div class="BibEntry">
     6024
     6025<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     6026
     6027
     6028<tr>
     6029     <td valign="top">Author</td>
     6030     <td valign="top">Sivakumar, Ashiwan and Shankaranarayanan, P. N. and Rao, Sanjay</td>
     6031</tr>
     6032
     6033<tr>
     6034     <td valign="top">Title</td>
     6035     <td valign="top">Closer to the Cloud - A Case for Emulating Cloud Dynamics by Controlling the Environment</td>
     6036</tr>
     6037
     6038<tr>
     6039     <td valign="top">Booktitle</td>
     6040     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     6041</tr>
     6042
     6043<tr>
     6044     <td valign="top">Location</td>
     6045     <td valign="top">Los Angeles</td>
     6046</tr>
     6047
     6048<tr>
     6049     <td valign="top">Year</td>
     6050     <td valign="top">2012</td>
     6051</tr>
     6052
     6053
     6054
     6055
     6056
     6057
     6058</table></div><br><br>
     6059
     6060
    47816061
    47826062
     
    49486228
    49496229
     6230<div class="BibEntry">
     6231
     6232<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     6233
     6234
     6235<tr>
     6236     <td valign="top">Author</td>
     6237     <td valign="top">Sridharan, Mukundan and Zeng, Wenjie and Leal, William and Ju, Xi and Ramanath, Rajiv and Zhang, Hongwei and Arora, Anish</td>
     6238</tr>
     6239
     6240<tr>
     6241     <td valign="top">Title</td>
     6242     <td valign="top">From Kansei to KanseiGenie: Architecture of Federated, Programmable Wireless Sensor Fabrics</td>
     6243</tr>
     6244
     6245<tr>
     6246     <td valign="top">Journal</td>
     6247     <td valign="top">Proceedings of the ICST Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom)</td>
     6248</tr>
     6249
     6250<tr>
     6251     <td valign="top">Year</td>
     6252     <td valign="top">2010</td>
     6253</tr>
     6254
     6255<tr>
     6256     <td valign="top">Abstract</td>
     6257     <td valign="top">This paper deals with challenges in federating wireless sensing fabrics. Federations of this sort are currently being developed in next generation global end-to-end experimentation infrastructures, such as GENI, to support rapid prototyping and hi-fidelity validation of protocols and applications. On one hand, federation should support access to diverse (and potentially provider-specific) wireless sensor resources and, on the other, it should enable users to uniformly task these resources. Instead of more simple basing federation upon a standard description of resources, we propose an architecture where the ontology of resource description can vary across providers, and a mapping of user needs to resources is performed to achieve uniform tasking. We illustrate one realization of this architecture, in terms of our refactoring the Kansei testbed to become the KanseiGenie federated fabric manager, which has full support for programmability, sliceability, and federated experimentation over heterogeneous sensing fabrics.</td>
     6258</tr>
     6259
     6260
     6261
     6262
     6263
     6264
     6265</table></div><br><br>
     6266
     6267
    49506268
    49516269
     
    49966314
    49976315
     6316<div class="BibEntry">
     6317
     6318<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     6319
     6320
     6321<tr>
     6322     <td valign="top">Author</td>
     6323     <td valign="top">Stabler, Greg and Goasguen, Sebastien and Rosen, Aaron and Wang, Kuang-Ching</td>
     6324</tr>
     6325
     6326<tr>
     6327     <td valign="top">Title</td>
     6328     <td valign="top">OneCloud: Controlling the Network in an OpenFlow Cloud</td>
     6329</tr>
     6330
     6331<tr>
     6332     <td valign="top">Booktitle</td>
     6333     <td valign="top">First GENI Research and Educational Experiment Workshop (GREE 2012)</td>
     6334</tr>
     6335
     6336<tr>
     6337     <td valign="top">Location</td>
     6338     <td valign="top">Los Angeles</td>
     6339</tr>
     6340
     6341<tr>
     6342     <td valign="top">Year</td>
     6343     <td valign="top">2012</td>
     6344</tr>
     6345
     6346<tr>
     6347     <td valign="top">Abstract</td>
     6348     <td valign="top">Cloud computing is an emerging paradigm for on-demand access to computing resources over the network. Beyond early Software as a Service (SaaS) offerings, there is an increasing interest in the Infrastructure as a Service (IaaS) model where users request specific storage, networking, and computing resources to meet their application needs. To provision the network in a cloud, IaaS providers, such as the Amazon Web Services, allow users to choose their IP addresses, which can be associated with a dynamic set of virtual hosts (Elastic IP) with VPN, dynamic DNS, and dynamic firewall services. In this paper, we analyze a range of cloud network provisioning needs and the means to realize them in an OpenFlow network. We present an OpenFlow enabled framework for cloud network provisioning, based on the Open- Nebula cloud provisioning engine. Specifically, we demonstrate an Elastic IP service compatible with the Amazon Elastic Compute Cloud (EC2) API. This demonstration is available on the Clemson OneCloud IaaS offering. Ongoing efforts focus on the enablement of additional cloud network services for campus networks and wide area experimental networks like the National Science Foundation's GENI network.</td>
     6349</tr>
     6350
     6351
     6352
     6353
     6354
     6355
     6356</table></div><br><br>
     6357
     6358
    49986359
    49996360
     
    53246685
    53256686
     6687<div class="BibEntry">
     6688
     6689<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     6690
     6691
     6692<tr>
     6693     <td valign="top">Author</td>
     6694     <td valign="top">Teerapittayanon, Surat and Fouli, Kerim and M&#x65;&#x0301;dard, Muriel and Montpetit, Marie-Jos&#x65;&#x0301; and Shi, Xiaomeng and Seskar, Ivan and Gosain, Abhimanyu</td>
     6695</tr>
     6696
     6697<tr>
     6698     <td valign="top">Title</td>
     6699     <td valign="top">Network Coding as a WiMAX Link Reliability Mechanism</td>
     6700</tr>
     6701
     6702<tr>
     6703     <td valign="top">Booktitle</td>
     6704     <td valign="top">Multiple Access Communications</td>
     6705</tr>
     6706
     6707<tr>
     6708     <td valign="top">Publisher</td>
     6709     <td valign="top">Springer Berlin Heidelberg</td>
     6710</tr>
     6711
     6712<tr>
     6713     <td valign="top">Year</td>
     6714     <td valign="top">2012</td>
     6715</tr>
     6716
     6717<tr>
     6718     <td valign="top">Abstract</td>
     6719     <td valign="top">We design and implement a network-coding-enabled relia- bility architecture for next generation wireless networks. Our network coding (NC) architecture uses a flexible thread-based design, with each encoder-decoder instance applying systematic intra-session random lin- ear network coding as a packet erasure code at the IP layer. Using GENI WiMAX platforms, a series of point-to-point transmission experiments were conducted to compare the performance of the NC architecture to that of the Automatic Repeated reQuest (ARQ) and Hybrid ARQ (HARQ) mechanisms. In our scenarios, the proposed architecture is able to decrease packet loss from around 11-32&#x0025; to nearly 0&#x0025;; compared to HARQ and joint HARQ/ARQ mechanisms, the NC architecture offers up to 5.9 times gain in throughput and 5.5 times reduction in end-to- end file transfer delay. By establishing NC as a potential substitute for HARQ/ARQ, our experiments offer important insights into cross-layer designs of next generation wireless networks.</td>
     6720</tr>
     6721
     6722
     6723
     6724<tr>
     6725     <td valign="top">DOI</td>
     6726     <td valign="top">10.1007/978-3-642-34976-8&#x005F;1</td>
     6727</tr>
     6728
     6729
     6730
     6731<tr>
     6732     <td valign="top">URL</td>
     6733     <td valign="top"><a href="http://dx.doi.org/10.1007/978-3-642-34976-8&#x005F;1">http://dx.doi.org/10.1007/978-3-642-34976-8&#x005F;1</a></td>
     6734</tr>
     6735
     6736
     6737</table></div><br><br>
     6738
     6739
    53266740
    53276741
     
    54776891
    54786892
    5479 
     6893<tr>
     6894     <td valign="top">DOI</td>
     6895     <td valign="top">10.1109/GREE.2013.15</td>
     6896</tr>
     6897
     6898
     6899
     6900<tr>
     6901     <td valign="top">URL</td>
     6902     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.15">http://dx.doi.org/10.1109/GREE.2013.15</a></td>
     6903</tr>
    54806904
    54816905
     
    55366960
    55376961
     6962<div class="BibEntry">
     6963
     6964<table class="EntryTable" style="position: relative; left: 5%; width: 90%; border:thin solid black; border-spacing:10px;">
     6965
     6966
     6967<tr>
     6968     <td valign="top">Author</td>
     6969     <td valign="top">Tuncer, Hasan and Nozaki, Yoshihiro and Shenoy, Nirmala</td>
     6970</tr>
     6971
     6972<tr>
     6973     <td valign="top">Title</td>
     6974     <td valign="top">Virtual Mobility Domains - A Mobility Architecture for the Future Internet</td>
     6975</tr>
     6976
     6977<tr>
     6978     <td valign="top">Booktitle</td>
     6979     <td valign="top">IEEE International Conference on Commnunications (IEE ICC 2012) Symposium on Next-Generation Networking</td>
     6980</tr>
     6981
     6982<tr>
     6983     <td valign="top">Year</td>
     6984     <td valign="top">2012</td>
     6985</tr>
     6986
     6987<tr>
     6988     <td valign="top">Abstract</td>
     6989     <td valign="top">This paper presents a novel mobility architecture called Virtual Mobility Domains that is designed to work with the Floating Cloud Tiered Internetworking model. Virtual Mobility Domains supports both inter Autonomous System (macro) and intra Autonomous System (micro) mobility by leveraging a tiered addressing, a network cloud concept, and a unique packet forwarding scheme introduced by the Floating Cloud Tiered Internetworking model. The proposed mobility architecture is distinct from others by not using IP addressing and classic routing protocols, and deploying user-centric overlapping mobility domains. The comparative simulation study of Virtual Mobility Domains against Mobile IPv6, Hierarchical Mobile IPv6, and Proxy Mobile IPv6 using OPNET shows that Virtual Mobility Domains brings lower latency, lesser signaling overhead, and fewer packets loss during handoffs, specially during inter Autonomous System roaming. The results highlight the potential for a seamless mobility management.</td>
     6990</tr>
     6991
     6992
     6993
     6994<tr>
     6995     <td valign="top">DOI</td>
     6996     <td valign="top">10.1109/ICC.2012.6363872</td>
     6997</tr>
     6998
     6999
     7000
     7001<tr>
     7002     <td valign="top">URL</td>
     7003     <td valign="top"><a href="ftp://lesc.det.unifi.it/pub/LenLar/proceedings/2012/ICC2012/symposia/papers/virtual&#x005F;mobility&#x005F;domains&#x005F;-&#x005F;a&#x005F;mobility&#x005F;architecture&#x005F;for&#x005F;the&#x005F;\\_.pdf">ftp://lesc.det.unifi.it/pub/LenLar/proceedings/2012/ICC2012/symposia/papers/virtual&#x005F;mobility&#x005F;domains&#x005F;-&#x005F;a&#x005F;mobility&#x005F;architecture&#x005F;for&#x005F;the&#x005F;\\_.pdf</a></td>
     7004</tr>
     7005
     7006
     7007</table></div><br><br>
     7008
     7009
    55387010
    55397011
     
    61637635
    61647636
    6165 
     7637<tr>
     7638     <td valign="top">DOI</td>
     7639     <td valign="top">10.1109/GREE.2013.26</td>
     7640</tr>
     7641
     7642
     7643
     7644<tr>
     7645     <td valign="top">URL</td>
     7646     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.26">http://dx.doi.org/10.1109/GREE.2013.26</a></td>
     7647</tr>
    61667648
    61677649
     
    62697751
    62707752
    6271 
     7753<tr>
     7754     <td valign="top">DOI</td>
     7755     <td valign="top">10.1109/GREE.2013.25</td>
     7756</tr>
     7757
     7758
     7759
     7760<tr>
     7761     <td valign="top">URL</td>
     7762     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.25">http://dx.doi.org/10.1109/GREE.2013.25</a></td>
     7763</tr>
    62727764
    62737765
     
    63177809
    63187810
    6319 
     7811<tr>
     7812     <td valign="top">DOI</td>
     7813     <td valign="top">10.1109/GREE.2013.31</td>
     7814</tr>
     7815
     7816
     7817
     7818<tr>
     7819     <td valign="top">URL</td>
     7820     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.31">http://dx.doi.org/10.1109/GREE.2013.31</a></td>
     7821</tr>
    63207822
    63217823
     
    63657867
    63667868
    6367 
     7869<tr>
     7870     <td valign="top">DOI</td>
     7871     <td valign="top">10.1109/GREE.2013.17</td>
     7872</tr>
     7873
     7874
     7875
     7876<tr>
     7877     <td valign="top">URL</td>
     7878     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.17">http://dx.doi.org/10.1109/GREE.2013.17</a></td>
     7879</tr>
    63687880
    63697881
     
    64137925
    64147926
    6415 
     7927<tr>
     7928     <td valign="top">DOI</td>
     7929     <td valign="top">10.1109/GREE.2013.19</td>
     7930</tr>
     7931
     7932
     7933
     7934<tr>
     7935     <td valign="top">URL</td>
     7936     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.19">http://dx.doi.org/10.1109/GREE.2013.19</a></td>
     7937</tr>
    64167938
    64177939
     
    64617983
    64627984
    6463 
     7985<tr>
     7986     <td valign="top">DOI</td>
     7987     <td valign="top">10.1109/GREE.2013.14</td>
     7988</tr>
     7989
     7990
     7991
     7992<tr>
     7993     <td valign="top">URL</td>
     7994     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.14">http://dx.doi.org/10.1109/GREE.2013.14</a></td>
     7995</tr>
    64647996
    64657997
     
    65588090
    65598091
    6560 
     8092<tr>
     8093     <td valign="top">DOI</td>
     8094     <td valign="top">10.1109/GREE.2013.16</td>
     8095</tr>
     8096
     8097
     8098
     8099<tr>
     8100     <td valign="top">URL</td>
     8101     <td valign="top"><a href="http://dx.doi.org/10.1109/GREE.2013.16">http://dx.doi.org/10.1109/GREE.2013.16</a></td>
     8102</tr>
    65618103
    65628104