Version 34 (modified by, 4 years ago) (diff)


GENI Evening Demos


University of Illinois Urbana-Champaign


Tuesday 5.30pm - 7.30pm

Session Leaders

Manu Gosain
GENI Project Office
Peter Stickney
GENI Project Office


The evening demo session gives GENI experimenters and developers a chance to share their work in a live network environment. Demonstrations run for the entire length of the session, with teams on hand to answer questions and collaborate. This page lists requested demonstrations categorized in broad interest groups. You can download project posters and supplemental information from attachments listed at the bottom of this page.

Directions and Logistics

Please visit this page for attendee and presenter logistics information. For information about demo locations at the Univ. of Illinois see this page?.


Note: Demo requests are being submitted and in the approval process. Content for this page is subject to change


GENI Cinema

This demo shows how SDN can be used to implement a live video streaming service for streaming and switching between classroom lectures.

Video streaming over the Internet, be it static or live streaming, is rapidly increasing in popularity. Many video streaming services exist to serve a variety of needs, such as video conferencing, entertainment, education, and the broadcast of live events. These services rely heavily on the server application to adapt to increasing and decreasing demand for a particular video resource. Furthermore, they require the reallocation of resources and the restart of the stream when a client stops, starts, and/or switches to a different stream. SDN and specifically OpenFlow can be creatively used to reallocate some of these tasks to the network and link layers.

Our goal is to provide a scalable service for GENI using OpenFlow that supports the broadcast of live video streams from an arbitrary number of video-producers to an arbitrary number of video-consumers, where video- consumers can change “channels” without disrupting their existing stream and without affecting the load on a particular video stream source.

  • Ryan Izard, Ryan Izard, Clemson University
  • Kuang-Ching Wang, Kuang-Ching Wang, Clemson University
  • Qing Wang,, Clemson University
  • Parmesh Ramanathan,, University of Wisconsin-Madison

GENI Desktop

This demo shows a unified interface for accessing GENI resources and managing GENI experiments.

The GENI Desktop provides a unified interface and environment for experimenters to create, control, manage, interact with and measure the performance of GENI slices. We will demonstrate the newly implemented command line interface of the GENI Desktop to control, manage and measure the performance of GENI slices. In addition, we will demo new features implemented as a part of the Adopt-A-GENI (AAG) project.


Virtual Computer Networks Lab

This demo shows assignments that are designed for the use of GENI testbeds in the classroom.

Attendees interested in using GENI for education should attend this demo. In this demo we will present assignments that we have created within the scope of our GENI Virtual Computer Networks Lab. These assignments are executed on GENI testbeds and can be used by teachers in their Computer Networks or Distributed Systems classes. In addition to the assignments we will demonstrate LabWiki and how it can be used by students to execute the assignments. We will also demonstrate LabWiki’s features that support teachers in setting up and evaluating assignments.

Network and Service Providers

Prototype of a ChoiceNet Economy Plane for the Future Internet Architecture

This demo shows a working prototype of complete end-to-end interaction of the ChoiceNet entities within an economy plane.

In this prototype we will demonstrate the ChoiceNet message interactions between the three main entities which comprise a ChoiceNet framework: Marketplace, multiple Providers, and Customers. This prototype offers consumers the opportunity to 'choose' from a variety of service offerings. Competition between providers encourage innovative and superior services, which ultimately benefits the customers.


SDN-based Flow Scheduling in Heterogeneous Wireless Networks

This demo shows a working prototype of a flow scheduling system in heterogeneous wireless networks.

In this paper, we will show how to exploit SDN to monitor flow statistics in a heterogeneous wireless network environment and how to enforce flow scheduling decisions through SDN. Heterogeneous wireless has been more and more common recently. However, these networks are utilized separately currently. This works try to optimize the overall utilization of these networks through SDN.


ExoGENI / Science Shakedown

This demo show recent work on GENI Science Shakedown


Distributed Iceberg detection using OpenFlow

Shakedown Experimentation on Scalable, Agile, Robust, and Secure Multi-Domain Software Defined Networks. Demo shows Software-Defined-Networking (SDN) based traffic measurements and inference paradigm for detecting global icebergs and distributed anomalies.

Accurate and timely traffic matrix (TM) measurements provide essential inputs for today’s various network operations. In this demo, we evaluate our traffic measurement paradigm in an OpenFlow-based networks with multiple SDN switches. Our framework will collaboratively use the distributed measurement resources and employ iSTAMP on multiple OpenFlow switches to detect distributed iceberg.


ToMaTo on CloudLab

This demo shows the ToMaTo network testbed running on CloudLab infrastructure.

The ToMaTo ( is a network testbed which enables researchers to run their experiment on a specifically designed virtual networking topologies. The ToMaTo consists of a backend which controls multiple ToMaTo hosts and a front-end which allows users to edit and manage their experiment from their browser.

ToMaTo hosts provide virtualization technology and a complete toolset for more advanced experiments. The hosts run ToMaTo software package on existing operating system but installing the software needs bare metal machines and cannot be run in a virtualized environment.

Therefore, CloudLab which provides bare metal machines is suitable for running and scaling ToMaTo hosts infrastructure. The demo will show how ToMaTo hosts are provisioned on demand and runs on CloudLab infrastructure.


ARRCN Self-Organized Cloud Platform

This demo shows a working prototype of the cloud orchestration platform with VNF use-case demonstration.

Attendees interested in cloud computing, DC, NFV, SND, network visualization and OpenStack should see this demo.

The Self-organizing cloud platform (SOC) to deploy virtual networks in DC is presented. The platform supports both IaaS mode and PaaS mode. SOC platform uses some components of OpenStack (Nova, Cinder, Keystone, Rabbit Message Queue) in combination with the original specialized components: OpenFlow controller, orchestrator, unified scheduler for consistent resource allocation, graphical user interface (GUI) for network definition, an extensive “sensor” system for physical resources monitoring and management, and modified OpenStack component Neutron.

SOC cloud platform considered in this demo allows us to deploy both manageable and non-manageable virtual networks in the data center. The possibility of virtual resources migration, consistent scheduling and management of computing resources allows one to ensure a high load of physical resources and guaranteed SLA compliance for the network as a whole. A request for virtual network creation can be defined either by means of the network description language or by means of a GUI.



This demo shows a working prototype highspeed SDN controller.

Attendees interested in SDN networks, SDN applications, Distributed systems should see this demo. In Demo presented novel approach where network administrators no longer need to manually configure all network devices, they can simple "draw" a path between network elements and the system will automatically program the network elements. The demonstration shows possibility to manage the complex network from nice graphical interface without manual accessing to network elements.


SDN-based Transparent Handover Scheme in Heterogeneous Wireless Networks

This demo shows a working prototype of a transparent handover scheme in heterogeneous wireless networks.

Attendees interested in emerging SDN and its application in heterogeneous wireless networks.

In this project, we will show to exploit SDN to realize transparent handover between different wireless networks in a heterogeneous wireless network environment. Heterogeneous wireless has been more and more common recently. However, these networks are utilized separately currently. In order to utilize them as a whole, transparent handover is a necessary component.



This demo shows latest version of VNode testbed and new version of FLARE node.

Attendees interested in application providers and network providers should see this demo. In this demo, we show latest version of VNode testbed. We introduce some new functions of VNode infrastructure and application experiments on VNode testbed. For FLARE demo, we show new version of FLARE using DPDK.


Symbiotic Evolution of CAV Applications and Networks

This poster shows how a working platform and the technologies of vehicular sensing and control (VSC) designed for enabling high-fidelity, at scale evaluation of protocols in vehicular networking. Visit us if you are interested in VSC networking and its real-world application

A WiMAX-Based Public Safety 3D Surveillance Network

The poster presents updates of our public surveillance project for a university campus in Philadelphia, PA.

People interested in implementing video heavy systems using cellular and GENI resources, as well as attendees interested in public safety surveillance systems in general. Real time mobile surveillance systems are challenging to deploy in practice given the limited wireless bandwidth available for streaming videos. The project will use 2D and 3D cameras to function under different environments and high speed wireless networks to accomplish real time streaming. The poster describes the on-going design of a mobile surveillance system designed to be implemented on police vehicles. The project is a partnership with the Temple University Police Department.


SDN-Enabled Highly Resilient and Efficient Microgrids

This poster shows our current work that uses Software Defined Networking (SDN) to support highly resilient communication in Microgrids.

Attendees interested in Microgrid, smart grid, and Software Defined Networking should attend demo. Microgrid is an emerging and promising paradigm to improve the resilience of the electric distribution infrastructure. The communication infrastructure plays a particularly critical role for microgrids with renewable energy sources due to their much smaller inertia as compared to traditional energy generation sources. The poster shows our current work on using ultra-fast programmable networks as the communication infrastructure for microgrids. Specifically, we show various functionalities including route reconfiguration, packet prioritization and guaranteed latency, realized using a local testbed and Open vSwitches in GENI infrastructure.

SDX and Federation

Software Defined Network Exchanges (SDXs) and a Prototype Bioinformatics SDX at StarLight

This demo shows working prototypes of SDXs at StarLight and partner sites which enable the exchange of research traffic among different types of Software Define Networks and traditional networks.

Attendees interested in (1) Investigating the current challenges related to managing SDN networks in production exchanges
(2) Options that have been proposed to address these challenges and the prototype demos that implement some of these options
(3) A Virtual Exchange Prototype (VEP): SDXs for Bioinformatics Big Data
(4) A Virtual Exchange Prototype (VEP): SDXs for Clouds

The challenges in connecting and exchanging different types of network traffic for research and education communities consists of a number of topics that are not well known out side a very small group of network exchange communities. The recent SDN/OpenFlow technology proliferation makes these challenge important to investigate by all interested parties. StarLight and partner sites present current prototype work underway to address such challenges, the prototype SDXs include the NSI, ofNSI, GENI AM integration, virtual SDXs for Bioinformatics SDX and Virtual SDXs for the Chameleon NSFCloud testbed.


Software Defined Exchange in the Regional Network

This demo shows how Software Defined Networking can be applied to the regional network exchange to improve network traffic routing based on rich policy requirements. Visit us to learn how to use GENI to experiment with future network peering and service architectures.

Attendees interested in learning about Software Defined Exchanges should see this demo. The SDX allows direct expression of flexible network policies in an Internet Exchange Point. At the SDX, ISPs can apply actions on packets based on multiple header fields. This flexibility enables applications such as inbound traffic engineering, redirection of traffic to middle boxes, wide-area server load balancing, and blocking of unwanted traffic. Participants:


App Chaining for an Advanced Manufacturing Marketplace

This demo shows a working prototype of a App Chaining and Pricing web framework of a manufacturing App Marketplace hosted within a cloud-environment in GENI.

Attendees interested in ‘factory of the future’ and cloud engineering for Apps should see this demo. We will show a web framework of a basic App Marketplace cloud-environment for advanced manufacturing that is setup using GENI and Ohio Supercomputer Center resources in collaboration with TotalSim; specifically, we will show features of an App Runtime that is coupled with a Resource Brokering Service and an Accounting Service that together help in building of Apps using service chaining mechanisms. Our demo is an advance towards developing an App Runtime environment in GENI to foster organic growth of an App marketplace, and to address issues of cost accounting and pricing of Apps faced by the App developers in using cloud infrastructure for: optimal user experience, lower design time and lower cost/simulation.



GENI Enabling an Ecological Science Community

This demonstration shows the use of the GENI WiMAX infrastructure at an ecological research facility.

Open to all. Live demonstration showing the monitoring tools, data collection mechanisms, and infrastructure.


Attachments (19)