Version 3 (modified by 13 years ago) (diff) | ,
---|
WiMAX Campus Deployment
WiMAX Campus Deployment Meeting
Wednesday, July 27, 2011, 3:30pm - 5:30pm
Room:
Session Leader: Harry Mussman (GPO, Raytheon BBN Technologies)
Summary
Description
The projects involved in deploying WiMAX base stations will review their current status and progress towards their Spiral 3 roadmap goals of completing a basic mobility experiment and using OMF/OML to support GENI experimenters.
Attendees
BBN Technologies Harry Mussman, Manu Gosain, Hamed Soroush
NEC Laboratories America
WINLAB Ray Raychaudhuri, Ivan Seskar
Columbia Univ Sung-Hoon Seo, Jan Janak
Polytechnic Institute of NYU Thanasis Korakis
UCLA Giovanni Pau
Colorado Dirk Grunwald, Caleb Phillips
UMass Amherst Brian Lynn
Wisconsin Derek Meyer
Agenda
Introductions
3:30pm
Deployment Summary
3:35pm
On March 17:
Campus | Who | Indoors | Outdoors | Intel 6250 modem? | New WiMAX RF AggMgr? | Add OMF/OML? | Access to GENI backbone? | Comments |
Columbia University | Jan Janak | Yes | Waiting for contract | Yes | Yes | x | ? | Indoor testing started; received info request from Clearwire |
Polytechnic Institute of NYU | Thanasis Korakis | - | Yes | Yes | Yes | Yes | ? | Outdoor measurements and experiments underway |
University of California, Los Angeles | Giovanni Pau | - | Yes | Intel 5130 modem | Installed, not yet using | x | Campus via CENIC to I2 for Internet; $40k charge | Outdoor measurements underway |
University of Colorado, Boulder | Dirk Grunwald | - | Ready to turnup | ? | x | x | Pricing campus tunnel to I2 | Working with campus IT on testing their network. |
University of Massachusetts | Brian Lynn | Yes | Waiting for contract | Yes, with USB, under Xen | x | NA | Requesting 2nd VLAN | Facility plan revised; prelim shading analysis completed |
University of Wisconsin, Madison | Derek Meyer | - | Yes | Windows dongle | Yes | x | I2 is in next lab | Outdoor measurements underway |
BBN Technologies | Manu Gosain | - | Yes | Yes | Yes | started | I2, NLR | Outdoor measurements and experiments underway |
Rutgers University | Ivan Seskar | - | Yes | Yes | Yes | Yes | I2 | Plan Bush Campus install when? |
WiMAX Range and Throughput Experiment and Measurements
3:40pm
Columbia University (1770) PI: Henning Schulzrinne, Sung-Hoon Seo and Jan Janak:
3:40pm
Four slides: Base Station configuration; range and throughput experiment configuration; Mobile Station code/script; measurement results and conclusions
Polytechnic Institute of NYU (1751) PI: Thanasis Korakis
Four slides: Base Station configuration; range and throughput experiment configuration; Mobile Station code/script; measurement results and conclusions
UCLA (1797) PI: Mario Gerla, Giovanni Pau
slides
Seeing 14Mb/s DL, 2 - 3 Mb/s UL; connect to vehicle up to 300 m; client always receives, but cannot always connect; helped by setting client IP address; windows client works better than Linux client.
Poster from demo session: [ poster]
Colorado: (1768) PI: Dirk Grunwald Univ. of Colorado, Boulder
Studying U Colorado private network, built by Airspan.
Starting data modeling using Anritsu MS2721B with WiMAX demodulator; acquiring propagation based model from Airspan deployment.
Reference: Airspan plan for U Colorado slides.
Reference: MS thesis on "Field Study of WiMAX Performance"
text.
UMass Amherst (1731) PI: Mark Corner, Brian Lynn
NA Issue: Would like coverage to downtown Amherst, 1 mi away; can this be done?
Issue: Can antenna be moved outside of bus for better range? Check with how UW Madison puts antennas on buses.
Wisconsin (1724) PI: Suman Banerjee and Derek Meyer:
Using dongle with Windows 7 PC; seen RSSI from -40 dbm down to -60 dbm; have seen connectivity up to 300 yds.
Existing Cisco system: Connectivity to buses, equipped with large client antenna, up to 500M, for coverage over 1.25 sq mi.
Poster from demo session: [ poster]
BBN Technologies, Cambridge MA Hamed Soroush, Manu Gosain and Harry Mussman:
slides
Range and throughput experiment uses script in mobile station and server behind base station to evaluate connection with ping and iperf. Seeing good throughput (up to 14Mb/s DL and 1 - 2 Mb/s UL) to 0.25 mi, but not yet further. Soon, will vary BTS and iperf parameters to see if can find a set for greater distances at lower rates. Do not expect range beyond 0.6mi.
Measurements and Experimenter Support Summary
On March 17:
Campus | Who | Site planning | Range and throughput measurements | Local experiments | Experimenter support | Comments |
Columbia University | Jan Janak | Tall building, urban setting; have had to move site | - | - | - | - |
Polytechnic Institute of NYU | Thanasis Korakis | Tall building, urban setting | Completed, up to 12Mbps DL, much less UL; many variations | ParkNet completed for GEC9; two more being planned | - | - |
University of California, Los Angeles | Giovanni Pau | Tall building, urban setting | Completed, up to 14Mbps DL and 2 - 3 Mb/s UL; connections to 300M (0.xmi) | Handover WiMAX to WiFi completed | - | - |
University of Colorado, Boulder | Dirk Grunwald | ? story building, campus setting | - | - | - | Studying U Colorado private network, built by Airspan; starting data modeling using Anritsu MS2721B with WiMAX demodulator; acquiring propagation based model from Airspan deployment |
University of Massachusetts | Brian Lynn | Both omni and sector antennas planned for top of 17-story building; prelim shading analysis completed; expect shading near building, but CS building not in shadow, approx 0.5 mi away | - | - | - | Would like coverage to busses in downtown Amherst, 1 mi away; can this be done? |
University of Wisconsin, Madison | Derek Meyer | 150 ft high, campus setting | Seen connectivity up to 300 yd | - | - | Existing Cisco system: Connectivity to buses, equipped with large client antenna, up to 500M, for coverage over 1.25 sq mi. |
BBN Technologies | Manu Gosain | 90 ft high, urban/suburban setting | Good throughput (up to 14Mb/s DL and 1 - 2 Mb/s UL) to 0.25 mi, but not yet further | Range and throughput, with scripts | For MIT and possibly Clemson | - |
Rutgers University | Ivan Seskar | 1 story building, suburban setting | RSSI measurements completed | ParkNet | Possibly Clemson | When will install be completed on Busch campus? |
Local Experiments and Experimenter Support
Have established an experiment exchange and experimenter mailing list, at http://groups.geni.net/geni/wiki/WiMAXExper
MIT experiments, using BBN BTS: evaluate ARQ and HARQ changes to better support video streaming
Clemson experiments, using BBN and/or Rutgers BTS: evaluate DOS attack susceptibility
Two experiments being planned at NYU Poly: slides
Spiral 3 Roadmap
This roadmap shows the original and *current goals that apply to the GENI WiMAX projects:
Install and bring up WiMAX base station kit, including the ASN Gateway. (GEC10, or earlier)
Evaluate range and thoughput of WiMAX base station kit and Linux PC with Intel WiMAX modem card and/or mobile station used for for experiments. (GEC10, or earlier) (GEC11)
Install and bring up an instance of OMF/OML. (GEC10, or earlier) (*GEC11)
Operate and maintain the WiMax BS and the related GENI controller, using ORBIT Management Framework (OMF), with support for remote access by GENI users. (GEC11)
Present a mobility demo using WiMAX base station node, including the ASN Gateway, a Linux PC with Intel WiMAX modem card, or the dual-mode vehicular nodes, supporting both WiFi and WiMAX, required for your experiments, and a local instance of OMF/OML. (GEC10) (*GEC11)
Install and bring up experiment-controlled L2 (or OpenFlow) switch, to provide enhanced connectivity from the WiMAX testbed to the GENI backbone. (GEC11) (*GEC12)
Install and bring up Virtual Base Station (vBS)server, to support multiple simultaneous experiments (slicing) on the GENI WiMAX base station node. (GEC11) (*?)
Present mobility and/or application demos/experiments, showing support for multiple simultaneous experiments (slicing) of the GENI WiMAX base station node, and remote access by GENI users, utilizing experiment-controlled L2 (or OpenFlow) switch, and Virtual Base Station (vBS) server. (GEC11) (*?)
WiMAX Developer Support
WiMAX Developer Mailing List
To post to this list, send your email to: wimax-developer@winlab.rutgers.edu
PLEASE use this list for all questions, dialog, etc.
WiMAX Integration Wiki
PLEASE upload slides to this page, and make other contributions to the WiMAX Integration Wiki
Contact hmussman@bbn.com if you need a login
Attachments (21)
- Visio-062811b_pp5-6_WiMAXSystemOverview_Page_1.jpg (473.1 KB) - added by 13 years ago.
- Visio-062811b_pp5-6_WiMAXSystemOverview_Page_2.jpg (616.7 KB) - added by 13 years ago.
- 071511c_Sol2_MesoScale_WiMAX_ProjectSummaries.jpg (297.4 KB) - added by 13 years ago.
- 071511d_Sol2_MesoScale_WiMAX_ProjectSummaries.jpg (454.6 KB) - added by 13 years ago.
- 071511b_Sol2_MesoScale_WiMAX_ProjectSummaries.jpg (484.8 KB) - added by 13 years ago.
-
UMass-GEC11-WiMAX.pdf (2.5 MB) - added by 13 years ago.
UMass WiMAX Slides
- Visio-072711b_pp5-9_WiMAXSystemOverview_Page_2.jpg (368.8 KB) - added by 13 years ago.
- Visio-072711b_pp5-9_WiMAXSystemOverview_Page_3.jpg (403.9 KB) - added by 13 years ago.
- Visio-072711b_pp5-9_WiMAXSystemOverview_Page_4.jpg (419.0 KB) - added by 13 years ago.
- columbia_GEC11_slides.ppt (4.5 MB) - added by 13 years ago.
- colorado-slides.pdf (2.5 MB) - added by 13 years ago.
- columbia_GEC11_slides.2.ppt (4.5 MB) - added by 13 years ago.
- GENI-07-2011-Danail.pptx (272.3 KB) - added by 13 years ago.
- Korakis_GENI_WiMAX_GEC11.ppt (1.7 MB) - added by 13 years ago.
- ucla BBN Status GENI_WiMAX_20110724.ppt (4.5 MB) - added by 13 years ago.
- UMass-GEC11-WiMAX.2.pdf (2.5 MB) - added by 13 years ago.
- Waisman WiMax Base Station - Google Maps.pdf (196.0 KB) - added by 13 years ago.
- wisc 2011_07_27_Geni_Conference_v2.ppt (6.7 MB) - added by 13 years ago.
- winlab 2011-07-27 GEC11.pptx (1.4 MB) - added by 13 years ago.
- bbn Talk-GEC11.pdf (5.9 MB) - added by 13 years ago.
- 0727omfomlsetup.ppt (407.5 KB) - added by 13 years ago.