wiki:GEC11PosterDescriptions

Version 4 (modified by jtaylor@bbn.com, 13 years ago) (diff)

--

GEC 11 Poster Descriptions

Secure Content Centric Mobile Network (SECON)

Mooi Choo Chuah, Lehigh University
Xiong Xiong, Lehigh University

Abstract

New wireless technologies allow mobile users to have easy access to real time data, and stay connected with friends, colleagues, & business partners. However emerging applications are usually data-centric but existing IP oriented paradigms are not flexible enough to support this. To support emerging mobile applications, we are developing a next generation mobile network that supports mobile content centric networking features, namely (a) intentional named message delivery, (b) content-centric security, (c) push-pull based data disseminations.

In our new SECON network, users can send User Interest (UI) packets to Content Resolution Server (CRS) to request for content data (CD) packets associated with a particular URI. The UIs will be forwarded by the receiving CRS to other CRSes that know who will be publishing content packets related to that URI. The UIs can also have intentional-named destinations e.g. all CRSes within a certain geographical area. In addition content publishers can send content publish announcements to CRSes before they forward content data packets to these CRSes. We have a preliminary prototype that supports UI, CPA & CD features. More features will be added in the near future.

More Information:

http://www.cse.lehigh.edu/~chuah/public_secon.html
http://www.cse.lehigh.edu/~chuah/secon.html


GENI Experiments on P2P and MANET Networks

Haiyin (Helen) Shen, Clemson University
Kuang-Ching Wang, Clemson University
Kang Chen, Clemson University
Ke Xu, Clemson University
Steven Winburn, Clemson University

Abstract

Today’s society is witnessing a tremendous increase in digital information. Myriads of applications call for the pooling and sharing of massive amounts of widely-scattered data at ever increasing scales that require a commensurate infrastructure of powerful networked distributed systems across wide and diverse areas. We will implement two existing data sharing algorithms, Cycloid and LORD, on the P2P and MANET networks, and thus identify and investigate potential issues in data sharing applications in these different heterogeneous networks.  We are using GENI as the testbed for simulating the P2P and MANET network environments.  Also, we will conduct a multi-system GENI experiment to demonstrate how each domain should have its own routing solutions while all the domains are federated through OpenFlow gateways.


PrimoGENI - Developing GENI Aggregates for Real-TIme Large-Scale Network Simulation

Nathanael Van Vorst, School of Computing and Information Sciences, Florida International University
Miguel Erazo, School of Computing and Information Sciences, Florida International University
Hao Jiang, School of Computing and Information Sciences, Florida International University
Ting Li, School of Computing and Information Sciences, Florida International University
Jason Liu, School of Computing and Information Sciences, Florida International University

Abstract

The goal of PrimoGENI is to incorporate real-time network simulation into the GENI "ecosystem". We have extended PRIME, our existing real-time large-scale network simulator, to become part of the GENI federation. PrimoGENI will support large-scale GENI experiments with millions of simulated network entities (hosts, routers, and links) and thousands of emulated elements running unmodified network protocols and applications.

GENI Project:

PrimoGENI

More Information:

https://www.primessf.net/pub/Public/PrimoGENIProject/gec11.pdf
http://www.primessf.net/PrimoGENI