= GEC 11 Poster Descriptions = == Secure Content Centric Mobile Network (SECON) == Mooi Choo Chuah, Lehigh University [[br]] Xiong Xiong, Lehigh University '''Abstract''' New wireless technologies allow mobile users to have easy access to real time data, and stay connected with friends, colleagues, & business partners. However emerging applications are usually data-centric but existing IP oriented paradigms are not flexible enough to support this. To support emerging mobile applications, we are developing a next generation mobile network that supports mobile content centric networking features, namely (a) intentional named message delivery, (b) content-centric security, (c) push-pull based data disseminations. In our new SECON network, users can send User Interest (UI) packets to Content Resolution Server (CRS) to request for content data (CD) packets associated with a particular URI. The UIs will be forwarded by the receiving CRS to other CRSes that know who will be publishing content packets related to that URI. The UIs can also have intentional-named destinations e.g. all CRSes within a certain geographical area. In addition content publishers can send content publish announcements to CRSes before they forward content data packets to these CRSes. We have a preliminary prototype that supports UI, CPA & CD features. More features will be added in the near future. More Information: [[br]] http://www.cse.lehigh.edu/~chuah/public_secon.html [[br]] http://www.cse.lehigh.edu/~chuah/secon.html ---- == GENI Experiments on P2P and MANET Networks == Haiyin (Helen) Shen, Clemson University [[br]] Kuang-Ching Wang, Clemson University [[br]] Kang Chen, Clemson University [[br]] Ke Xu, Clemson University [[br]] Steven Winburn, Clemson University [[br]] '''Abstract''' Today’s society is witnessing a tremendous increase in digital information. Myriads of applications call for the pooling and sharing of massive amounts of widely-scattered data at ever increasing scales that require a commensurate infrastructure of powerful networked distributed systems across wide and diverse areas. We will implement two existing data sharing algorithms, Cycloid and LORD, on the P2P and MANET networks, and thus identify and investigate potential issues in data sharing applications in these different heterogeneous networks.  We are using GENI as the testbed for simulating the P2P and MANET network environments.  Also, we will conduct a multi-system GENI experiment to demonstrate how each domain should have its own routing solutions while all the domains are federated through !OpenFlow gateways. ---- == PrimoGENI - Developing GENI Aggregates for Real-TIme Large-Scale Network Simulation == Nathanael Van Vorst, School of Computing and Information Sciences, Florida International University [[br]] Miguel Erazo, School of Computing and Information Sciences, Florida International University [[br]] Hao Jiang, School of Computing and Information Sciences, Florida International University [[br]] Ting Li, School of Computing and Information Sciences, Florida International University [[br]] Jason Liu, School of Computing and Information Sciences, Florida International University [[br]] '''Abstract''' The goal of PrimoGENI is to incorporate real-time network simulation into the GENI "ecosystem". We have extended PRIME, our existing real-time large-scale network simulator, to become part of the GENI federation. PrimoGENI will support large-scale GENI experiments with millions of simulated network entities (hosts, routers, and links) and thousands of emulated elements running unmodified network protocols and applications. GENI Project: [[br]] [wiki:PrimoGENI] [[br]] More Information: [[br]] https://www.primessf.net/pub/Public/PrimoGENIProject/gec11.pdf [[br]] http://www.primessf.net/PrimoGENI ---- == TUNIE: A Flexible and Programmable Virtualized Network Innovation Environment in China == Yong Li, Electronic Engineering, Tsinghua University [[br]] '''Abstract''' Network community needs a flexible platform for network experiment of new architectures, algorithms and protocols in the research of network innovation. However, building such a platform faces lots of challenges due to its complicate requirements. In this poster, we present TUNIE, a network testbed for rapid concurrent experiment of network innovation on virtualized programmable infrastructure in China. !ExpoNet provides end-to-end slice including wired and wireless components, which integrates both software- and hardware-based router virtualization technologies to provide a flexible approach to configure and customize both the control plane and data plane while satisfying various experiment requirements. In the wireless part, we have a sensor testbed including 100 wireless sensor nodes, and a !WiFi testbed. In the wired part, we have setup one !OpenFlow network, and two virtualization testbed based on multi-core servers and FPGA data plane. In our current platform implementation, we have four sites, two sites in Tsinghua University, one another university of BUPT, and one in China Union, one of the largest Service Providers in China. We have setup a Federation plan to extend our platform with other Universities and companies like HUST, Huawei, etc. More Information: [[br]] http://166.111.66.197:81/Main/LabTeams ---- == The Hive Mind: Applying a Distributed Security Sensor Network to GENI == Sean Peisert, University of California, Davis (PI)[[br]] Matt Bishop, University of California, Davis [[br]] Steven Templeton, University of California, Davis [[br]] Carrie Gates, CA Labs (CoPI) [[br]] GENI Project: [[br]] [wiki:HiveMind] [[br]] More Information: [[br]] http://hivemind.cs.udavis.edu/ ---- == iGENI - Taiwan Integrated Research Network == Chu-Sing Yang, National Cheng Kung University (NCKU) [[br]] Mon-Yen Luo, National Kao Hsiung University of Applied Science (KUAS)[[br]] Te-Lung Liu, National Center for High Performance Computing (NCHC)[[br]] Robert Ricci, University of Utah [[br]] Joe Mambretti, Northwestern University [[br]] Jim Chen, Northwestern University [[br]] Fei Yeh, Northwestern University [[br]] Alan Verlo, University of Illinois, Chicago [[br]] Maxine Brown, University of Illinois, Chicago [[br]] Tom !DeFanti, University of California, San Diego [[br]] '''Abstract''' One of the international partner projects for iGENI in Taiwan, the National Science Council/Taiwan funded the National Telecommunication Project: Study and Deployment of Network Virtualization Architecture(NCKU,KUAS and other universities) has initiated the development and deployment of a new network virtualization architecture on a national research/education backbone: TWAREN (NCHC). In addition to this collaboration project, iGENI also worked with ProtoGENI team to implement a direct connection between ProtoGENI and network research infrastructure in Taiwan, which is enabling an enhanced partnership between GENI community and the Taiwan network research communities. GENI Project:[[br]] [wiki:ProtoGENI] [[br]] [wiki:IGENI] More Information: [[br]] http://www.icair.org/ ---- == Trema; An Open Source OpenFlow Controller Platform == Hideyuki Shimonishi, System Platforms Research Laboratories, NEC Corporation [[br]] Yasunobu Chiba, System Platforms Research Laboratories, NEC Corporation [[br]] Yasuhito Takamiya, System Platforms Research Laboratories, NEC Corporation [[br]] Kazushi Sugyo, System Platforms Research Laboratories, NEC Corporation [[br]] '''Abstract''' * Trema is a free !OpenFlow controller platform (GPL v2) * Assists anyone who wants to develop his/her own !OpenFlow controller * Not targeted for any specific !OpenFlow controller implementation * Trema allows to implement !OpenFlow controllers in C and Ruby * Trema provides: * Various basic libraries on which you can build your own !OpenFlow controller * Integrated network emulator and developing environment * Contact * Mailing list: trema-dev@googlegroups.com / twitter: @trema_news [[br]] More Information: [[br]] http://trema.github.com/trema/doc/Trema_GEC11_poster.pdf [[br]] http://trema.github.com/trema/ [[br]] https://github.com/trema/trema/wiki [[br]] ---- == !TransCloud == ***NO AFFILIATIONS GIVEN*** [[br]] Alvin !AuYoung [[br]] Andy Bavier [[br]] Jessica Blaine [[br]] Jim Chen, Northwestern University [[br]] Yvonne Coady [[br]] Paul Muller [[br]] Joe Mambretti, Northwestern University [[br]] Chris Matthews, University of Victoria, Canada [[br]] Rick !McGeer [[br]] Chris Pearson [[br]] Alex Snoeren [[br]] Fei Yeh, Northwestern University [[br]] Marco Yuen [[br]] '''Abstract''' Transcontinental federation of cloud systems. [[br]] GENI Project: [[br]] [wiki:GENICloud] [[br]] ---- == Measurement Data Archive == Giridhar Manepalli, CNRI [[br]] Prasad Calyam, Ohio Supercomputing Center [[br]] '''Abstract''' Corporation for National Research Initiatives (CNRI) will be demonstrating the functionality of the proposed Measurement Data Archive, which is implemented using the Digital Object Architecture. The Measurement Data Archive prototype system consists of two components: 1) User Workspace and 2) Object Archive. The User Workspace component is an entry point for users (e.g., experimenters, instrumentation researchers, etc.) to store and transfer measurement data, which could be in a variety of forms (e.g., formatted datasets, raw files, etc.). Data and metadata files managed in the user workspace can be archived for long-term storage in an Object Archive. Once data is archived, a persistent and unique identifier is created. GENI Project: [[br]] [wiki:DigitalObjectRegistry] More Information: [[br]] http://mda.doregistry.org/ ---- == Integration of LEARN with GENI Infrastructures using ORCA: VLAN Assignments and Cluster Deployment Plans - Collaborative Efforts on Measurements: IF-MAP for GENI and Collaboration with IMF == Deniz Gurkan, University of Houston [[br]] Karthik Ram Narumanchi, University of Houston [[br]] Anand Arun Daga, University of Houston [[br]] Ilia Baldine, RENCI [[br]] Rick Kagan, Infoblox [[br]] Ben Warren, Infoblox [[br]] '''Abstract''' LEARN regional optical network in Texas has been demonstrated with VLAN assignments to reach four major institutions during GEC10 (University of Houston, University of Texas at Austin, Texas A&M University, and Rice University). Planned deployment of clusters to two end points is presented (at University of Houston and Rice University). In addition, the feasibility and applicability of IF-MAP (Trusted Network Computing's Interface Metadata Access Point architecture) to the I&M services in GENI has been presented. A collaborative initiative to deploy IMF's optical physical layer monitoring software in perfSONAR to the LEARN nodes is in progress. GENI Project: [[br]] ORCA and [wiki:IMF] More Information: [[br]] http://groups.geni.net/geni/wiki/LEARN ---- == DoS Attack Detection & DoS Attacks Exploiting WiMAX System Parameters == Ilker Ozcelik, Holcombe Department of Electrical & Computer Engineering [[br]] Lu Yu, Clemson University '''Abstract''' The poster comprises two parts. In part one, we are collecting the Internet traffic signature on !OpenFlow to use as backgroutnd traffic. By using the real background traffic, we are investigating the effectiveness of theoretical DDoS attack detection techniques on GENI. We are also trying to evaluate our proposed equation of necessary traffic for DDoS attack. Part two focuses on analyzing DoS attacks that exploit WiMAX system parameter settings. We concentrate on parameters concerning bandwidth contention resolution in IEEE 802.16 standards. We use analysis of variance (ANOVA) to find how parameter settings affect the ability of DoS attackers to monopolize network bandwidth. We are carrying out a DoS attack against WiMAX on GENI ORBIT and collecting the data used for ANOVA. ---- == Evaluating Schemes for Adapting to Cloud Dynamics using GENI == Ashiwan Sivakumar, Purdue University [[br]] Shankaranarayanan PN, Purdue University [[br]] Mohammad Hajjat, Purdue University [[br]] Dr. Sanjay Rao, Purdue University [[br]] '''Abstract''' Enterprises are increasingly deploying their applications in the cloud given the cost-saving advantages, and the potential to geo-distribute applications to ensure resilience and better service experience. Latency and availability are critical with such performance sensitive applications. A key problem then is to meet the stringent response time requirements of enterprise applications in the cloud. We build a system that we term Dealer which for each component, dynamically splits transactions among its replicas in different data-centers. It adapts to sudden changes in delay across components and routes requests to replicas of the components in a different data-center. In doing so, Dealer seeks to minimize user response times, and takes component performance, as well as intra-data- center and inter-data-center communication latencies into account. We have integrated the system with a performance sensitive trading application called Daytrader in GENI. [[br]] Our approach to evaluate the system makes use of the controlled and repeatable environment provided by GENI. The experiments that we have conducted on GENI aim at emulating sudden spikes in delay between components. We have studied the dynamic response time of Dealer by subjecting it to a Step Up input reference waveform. We have also compared the user response times in a Multi cloud environment on ProtoGENI with and without dealer. We present the results of the evaluation experiments conducted on GENI. More Information: [[br]] http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1415&context=ecetr ---- == Leveraging and Abstracting Measurements with PerfSONAR (LAMP) == Guilherme Fernandes, University of Delaware [[br]] Ezra Kissel, University of Delaware [[br]] Matthew Jaffee, University of Delaware [[br]] Martin Swany, University of Delaware [[br]] Jason Zurawski, Internet2 [[br]] Matt Zekauskas, Internet2 [[br]] Eric Boyd, Internet2 [[br]] GENI Project: [[br]] [wiki:LAMP] ---- == GENI Meta Operation Center == Camilo Viecco, Indiana University, Global Research NOC [[br]] '''Abstract''' GMOC is now providing more operations support, including tickekting, documentation, measurements and a protected database. We have also done another emergency shutdown drill and are working to improve the process. GENI Project: [[br]] GMOC More Information: [[br]] http://gmoc-db.grnoc.iu.edu/protected [[br]] http://gmoc.grnoc.iu.edu/ [[br]] https://tick.globalnoc.iu.edu/fp_tools/public_ticket_viewer/ [[br]] ----