

Intelligent SDN based Traffic (de)Aggregation and **Measurement Paradigm (iSTAMP): Theory**

Network Measurement

Direct and indirect network measurement techniques provide essential information for network design, network monitoring and management and network security

- Network Measurement: Limitations and Challenges
- Feasibility and Complexity of the measurement process
- Exploding Traffic Volume
- Limited Measurement and/or Processing Resources
- High computational complexity in large-scale networks
- Limited performance accuracy
- Sensitivity to noise and failures

Solution

Efficient and Intelligent Software Defined Network

Measurement & Inference under Resource Constraints

- where
- Measurement Resources are *optimally* & *adaptively* allocated
- Powerful inference techniques are *efficiently* used for estimating the attribute of interests

iSTAMP: Formulation

Design the aggregation matrix A which provides both optimal aggregated and per-flow direct measurements

Definitions:

- X: An $n \times 1$ vector of unknown flows denoted
- $A = \begin{bmatrix} A_g \\ A_K \end{bmatrix}$: An m× *n* binary matrix aggregation matrix
- Y: An m× 1 vector of observations

$$\mathbf{Y} = \mathbf{A}\mathbf{X} \Rightarrow \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_g \\ \mathbf{Y}_K \end{bmatrix} = \begin{bmatrix} \mathbf{A}_g \\ \mathbf{A}_K \end{bmatrix} \mathbf{X}$$

Main Optimization Framework:

$$\hat{X} = \underset{X}{\text{minimize}} \|Y_g - A_g X_g\|_2^2 + \lambda \|X_g\|_2$$

s.t. $X_k = A_k X_k, \quad X_g \ge 0$

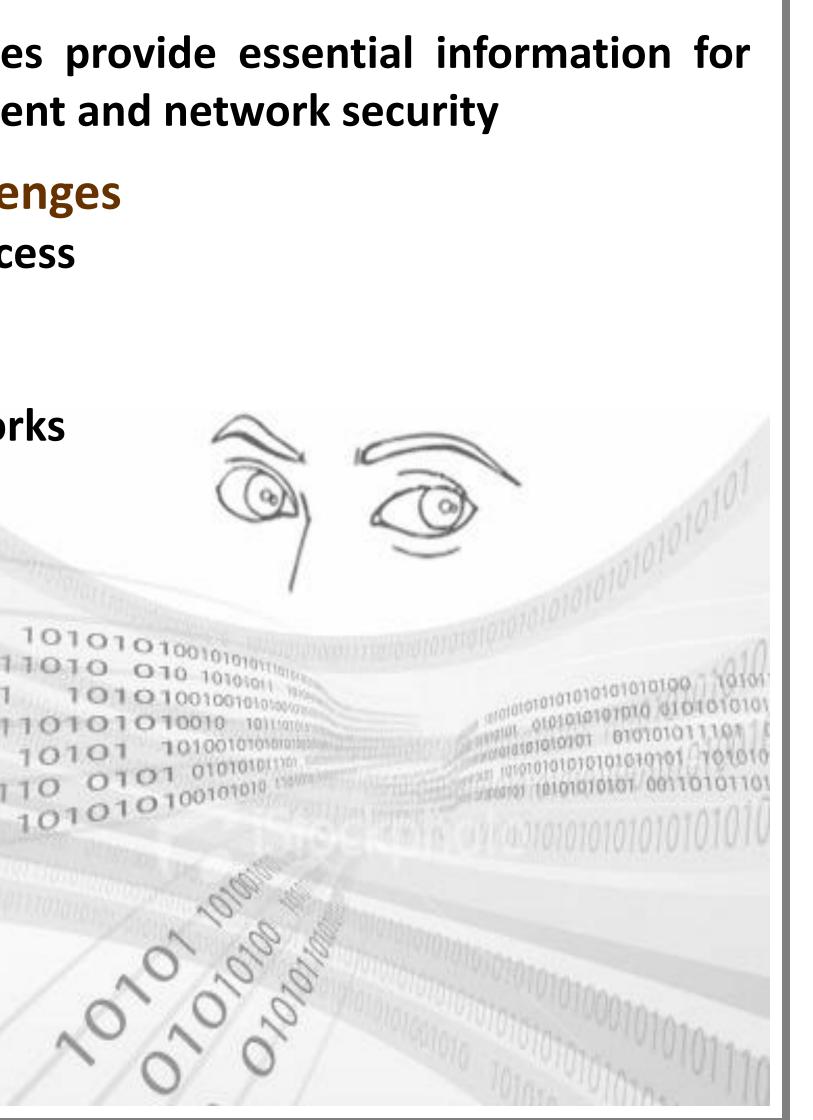
Example:

$$\mathbf{Y} = \begin{bmatrix} Y_g \\ Y_K \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_4 + x_6 \\ \hline x_3 \\ x_5 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \\ \mathbf{x}_6 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{x}_6$$

[x₁]

TCAM Rules

Mehdi Malboubi, Shu Ming Peng, Chen-Nee Chuah, Matt Bishop, Ben Yoo **University of California at Davis** Zhao Zhang, Chunhui Zeng, Xiong Wang **University of Electronic Science and Technology of China**



iSTAMP: Framework

iSTAMP leverages OpenFlow to dynamically partition the TCAM entries of a switch/router into two parts for optimal aggregation and direct flow sampling. iSTAMP has three main components:

- network inference process
- **most informative traffic flows**
- flows over time/space

ТСАМ	
Prefix Key	Statistics
c_1	\mathcal{Y}_1
$Y_g = A_g X$	
	y_i
<i>C</i> _{<i>m</i>}	\mathcal{Y}_m
C_{m+1}	\mathcal{Y}_{m+1}
$Y_K = A_K X$	
<i>C</i> _{<i>T</i>}	\mathcal{Y}_T
	T=m+K
<i>x</i> ₁ : 000	T=m+K
x ₁ : 000 x ₂ : 001	T=m+K
-	T=m+K
<i>x</i> ₂ : 001	T=m+K
x ₂ : 001 x ₃ : 110	T=m+K

ISTAMP: Optimal Aggregation & Per-Flow Measurement Matrix Design Measurement matrix design depends on the size of matrix and estimation technique

Optimal Compressive Sensing Flow Aggregation

$$\hat{X} = \min_{X} \left\| X \right\|_1$$

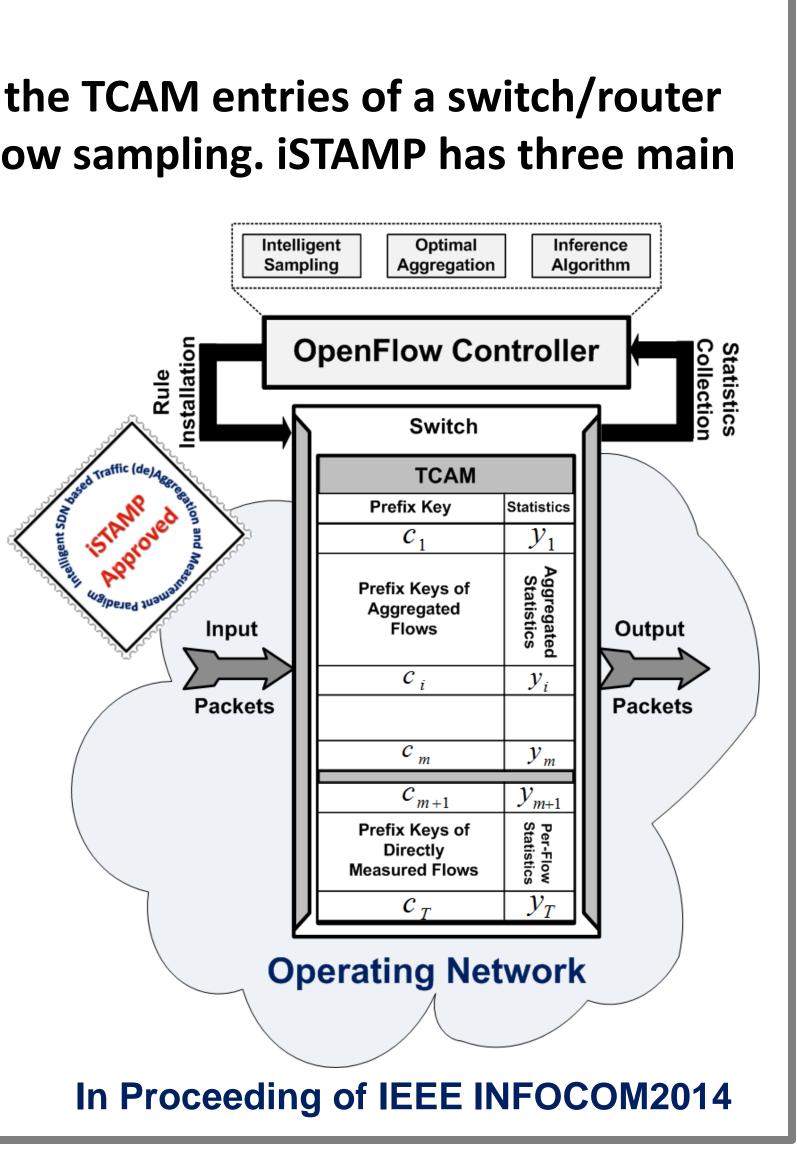
Optimal Sampling and Exponential Aggregation Technique

Algorithm	Modified Uppe	
Input: Time horizon T_c and		
Output: At each epoch t ,		
flows (I^t) i	n descending or	
while True do		
- Set $t =$	= 1, measure all	
of TCAM	A over $\left\lceil \frac{n}{T} \right\rceil$ epo	
while $t < T_c$ do		
- Com	pute flow indici	
j = 1	,, n where \bar{x}_j	
$t_j(t_c)$ is the number o		
time t_c and t_c is the		
so far.		
- Sort	the set I^t and I^t	
$I^t = I$	$I_k^t \bigcup I_q^t$.	
- Allo	cate k measurem	
in I_k^t	and measure the	
- <i>t</i> =	$t+1, t_c = t_c +$	
end while		
end while		

An Optimal aggregation technique to produce a well-compressed aggregated flow measurements that can lead to the **best estimation accuracy** via

An intelligent sampling algorithm to sample the

An efficient compressive sensing inference technique to accurately estimate highly fluctuated



t.
$$Y_g = A_g X \Rightarrow \underset{A_g}{\text{minimize}} \left\| A_g^T A_g - \phi \right\|_F^2$$

er Confidence Bound (MUCB)

nd parameter α .

the set of sorted indicies of incoming order where $I^t = I^t_k \bigcup I^t_q$.

Il *n* flows $\{x_j\}_{j=1}^n$ using all *T* entries ochs, and set $t_c = n$.

cies $I_j^t = \alpha \bar{x}_j + \sqrt{\frac{2ln(t_c)}{t_j(t_c)}}$ for all flows is the average flow size for j^{th} flow, of times flow j has been measured upto overall number of measurements done

report indicies in descending order as

nent entries to the k flows with indicies em. $\vdash K$.

