
A Shared Vocabulary for
Authorization Attributes in GENI
Featuring Example Policies

Ted Faber, USC/ISI

John Wroclawski, USC/ISI

Version 1.0

31 October 2011

Authorization Vocabulary Oct 31 2011

Table of Contents

1 Introduction...3

1.1 Attribute-Based Access Control (ABAC)..3

1.2 Motivation for ABAC and Shared Vocabulary..4

1.2.1 Making Policies Understood..4

1.2.2 Auditing Agreements...5

1.3 Background Materials..6

2 Candidate Vocabulary...6

2.1 Researcher Attributes...7

2.2 Service Attributes...8

2.3 Endorsement...8

2.4 Operational Attributes..8

2.5 Slice Attributes...10

3 Review of ABAC Rules and Reasoning...11

3.1 RT0 Logic...11

3.2 RT0 and RT1..13

4 Sample Policies...13

4.1 Simple Policy..14

4.1.1 Endorsement Credentials...14

4.1.2 Facility Credentials..14

4.1.3 Slice Authority Policy..14

4.1.4 Aggregate Manager Policy...15

4.1.5 Example Proofs..16

4.2 Policy With Delegation..16

4.2.1 Changes at SA..17

4.2.2 Changes at AM...17

5 Summary...18

2

Authorization Vocabulary Oct 31 2011

1 Introduction

This document presents a vocabulary for expressing authorization policies used by different
GENI entities and explains two sample authorization policies in terms of that vocabulary. The
policies are useful both for understanding the vocabulary and as basic real-world authorization
policies. The policies and vocabulary described here are intended to capture discussion and
emerging consensus across many parts of the GENI authorization community. Both are under
active development and the authors expect to regularly revise them.

Before defining the vocabulary, we explain the problems that it is intended to solve and the
requirements derived from those problems. We also briefly review the ABAC authorization
framework that underlies it.

1.1 Attribute-Based Access Control (ABAC)

The GENI community is exploring the adoption of a formal logic of authentication called
ABAC[1][2] and its associated cross-platform implementation called libabac[3] to share and
enforce authorization policies. This system allows resource providers to explicitly state their
access policies as a collection of direct and derived attributes, provides a logic engine that uses
these policies to make specific decisions, and produces a record of the reasoning used to arrive at
those decisions in a form readable by humans and machines.

The basic model is that an ABAC principal – e.g., a resource provider, researcher, or third party
– can directly assert attributes about itself or other principals. Each asserting principal defines its
own attribute namespace. In addition to direct assertion, principals can derive attributes in their
namespaces from attributes in others using a simple, expressive, formal logic. This derivation
system enables delegation and other powerful semantics.

In GENI, a resource provider decides what a researcher can do based on the researcher's
attributes. The decision is based on the rules and attributes the provider knows about directly,
augmented by those presented by the researcher with the request. If the provider decides the
researcher has the proper attribute in the provider's attribute space, the provider authorizes the
action requested by the researcher.

Each such decision is documented as a proof. When an access is successful, a proof explicitly
describes the chain of reasoning that lead to the successful conclusion. When the access fails,
the proof explains where the reasoning chain broke down. The information is presented in such
a way that it, if possible, provides guidance for a new attempt with additional information that
will lead to success.

Today these ideas are implemented in libabac[3], a system library accessible from many
programming environments. The library encodes the rules and attributes in authenticated X.509
identity and attribute certificates. It performs access checks using the same encoding of the
policy that is exposed to clients, and exports proofs that can be interpreted on multiple platforms.
Simple graphical user tools are available for viewing proofs and editing policies.

3

Authorization Vocabulary Oct 31 2011

1.2 Motivation for ABAC and Shared Vocabulary

ABAC enables communication of authorization policies and credentials among many
independently-administered, dynamically-interoperating providers. This capability is central to
the development of a federated system such as GENI, in which independent resource providers
present a standard control interface while retaining the ability to implement a wide range of
global and locally defined access and usage policies and agreements.

Because ABAC was designed for an environment where many players wish to collaborate within
a mix of standard and customized agreements, it is very general and expressive. While this
power incurs some cost in terms of processing and configuration complexity, it provides three
key strengths:

• Researchers can study resource providers' policy to choose a provider that matches the
researcher's needs. The policy is expressive enough to describe how a researcher can
enable others to act on its behalf – a key difference between providers.

• Resource providers can define and advertise policies that can be understood without
coordinating with a central authority, which makes contributing to GENI simpler.

• Endorsers or auditors can use proofs to be sure that resource providers are meeting real
world commitments.

Each of these benefits arises because the various players understand the meaning of the attributes
that make up the policies. ABAC enables the most general participation when all players agree
on the meaning of a few attributes, but also encourages small communities to simultaneously
develop their own specialized systems. This document describes a widely-understood attribute
vocabulary for GENI.

1.2.1 Making Policies Understood

When a GENI researcher looks at a resource provider's authorization policy, the researcher wants
to know what that provider will allow the researcher to do. The GENIAPI interface
description[4] lists the standard set of operations a researcher can request from a resource
provider. The authorization policy lists rules for deriving attributes in the provider's namespace.
In order to determine what the researcher can do, our vocabulary makes an explicit connection
between the attributes in the provider's namespace and the operations in the GENIAPI. If all
resource providers make the same connection between operations and attributes – e.g., the
CreateSliver attribute governs the access to the CreateSliver service – researchers can interpret
any policy.

The provider has the same problem in reverse. A researcher has a collection of attributes, but
they are only meaningful if the provider and the researcher agree on what they mean. In the real
world, a researcher with the FootBallPlayer attribute assigned by Eton probably plays a different
game than a researcher with the same attribute from Harvard; an explicit shared vocabulary
avoids such problems. The more broad agreement there is on certain attributes, the more widely
a policy can be applied. This vocabulary is intended to provide such a broad basis for agreement
and application.

4

Authorization Vocabulary Oct 31 2011

There is a trade-off between broadness of acceptance and precision of expression. Many players
using the system for different objectives cannot form consensus at the same granularity as a few
specialists in the same field can. ABAC embraces this. We expect specialized pockets of shared
understanding (and attribute meaning) to appear, and these will not interfere with ABAC's
operation in general. The global vocabulary includes attributes that can act as markers for
groups that share a specialized vocabulary, which enables policy makers to detect and enforce
the extended semantics.

With knowledge of the shared attribute vocabulary, a potential resource provider can
independently construct a policy that prospective researchers can understand, and that will permit
researchers to access the resources in practice.

The provider's policy can be thought of as interconnections between well-known researcher
attributes and well-known operation attributes (Figure 1). Researchers and providers can
interpret policies in terms of how they interconnect these well known attributes.

1.2.2 Auditing Agreements

We expect that third parties will be interested in making assertions about researchers or providers
based on the agreements and behavior of those parties. For example, the GENI Program Office
(GPO) may endorse providers who have agreed to allow GENI operators to shut down any sliver.
This endorsement would be expressed as the GPO issuing an ABAC attribute.

While the nuances of a full legal agreement certainly exceed ABAC's expressiveness, the proofs
generated by ABAC can be used to audit core aspects of those agreements. If a GENI-endorsed
provider refuses to allow a GENI operator to shut down a sliver, it would be in violation of the
hypothetical agreement above. Any researcher could present a proof of such behavior to an
endorser.

The shared vocabulary needs to capture the attributes of interest to a provider in making generic
access decisions – particularly GENI-specific attributes. It needs to capture the various GENI
API operations used in resource allocation and manipulation, and it needs to express
endorsement by third parties. We discuss a candidate vocabulary below.

5

Figure 1: Policy as connection between
attributes

Authorization Vocabulary Oct 31 2011

1.3 Background Materials

The discussion below assumes a familiarity with the overall GENI API/slice-based facility
architecture that underlies GENI resource allocation. There are several other documents in
GENI that describe this, and we suggest at Section 3 of our earlier white paper on the SFA as a
starting point.

A brief review of ABAC is included below, including pointers to the relevant literature in GENI
and elsewhere.

2 Candidate Vocabulary

The shared vocabulary must be large enough to characterize researchers and facilities, but small
enough that the players can all agree on the semantics. Because GENI intends to scale to many
players, the candidate vocabulary is small.

The players are all ABAC principals. This includes the principals who take part in requests and
responses, i.e., the researchers, infrastructure operators, the slice authorities, and the aggregate
managers. It also includes parties such as the GENI program office who may wish to endorse
certain other principals based on out-of-band agreements or observed behavior. A control
framework or resource contributor is also a principal. While the attributes in the vocabulary may
be attached to any of these principals, we encourage conventions based on the broad type of the
principal.

The attributes that make up the vocabulary are all ABAC attributes. Therefore, each one is in a
namespace defined by the principal defining it. In ABAC the convention is to indicate the
namespace of an attribute by putting the principal name before the attribute, separated by a
period. If TIED is a principal, TIED.operator is the operator attribute in the TIED namespace. If
the GPO and the TIED testbed are two distinct principals, TIED.operator and GPO.operator are
distinct attributes.

Attributes in the global vocabulary have the same basic meaning though their namespace can
imply a scope. Continuing our “operator” example, if the operator attribute is attached to
principals who operate GENI infrastructure, a principal with the TIED.operator implies an
operator whose authority and responsibility are connected to the TIED testbed. A principal with
the GPO.operator attribute has a broader responsibility and may be granted additional trust
because of it.

Some attributes in the vocabulary are parameterized. For example, assigning a researcher a
DeleteSliver attribute should imply the right to delete a specific sliver, not any sliver. We make
use of single parameterized roles, a subset of the ABAC RT1 logic. DeleteSliver(sliverName) is
scoped to a specific sliver, sliverName. To be explicit: TIED.DeleteSliver(sliver1) and
TIED.DeleteSliver(sliver2) are distinct attributes. When the parameter must exist, but is
unbound a name preceded by a question mark is used, so TIED.CreateSliver(?slicename) has a
single unbound parameter. Section 3.2 describes describes the use of parameters in rules and the
short and long term implementation strategies for them.

6

Authorization Vocabulary Oct 31 2011

The following lays out a global attribute space and basic meanings. We group them by what
kind of principal is assigning the attribute to another. Those assignments may be indirect, as
Section3 describes.

We are aiming for a minimal set. Individual principals – particularly control framework
principals – may define other attributes that make their policies more efficient to implement or
intuitive within the framework. Groups may share specialized vocabulary as well. However, if
the policies include the global attributes, a principal can ask questions about the policy in terms
of the attributes in the global vocabulary and derive meaningful answers.

In terms of Figure 1, the attributes in Sections 2.1,2.2 and 2.3 are attributes with widely
understood descriptive semantics at the top of the figure. The attributes in Section 2.4 are
mapped to specific operations at aggregate managers and slice authorities.

2.1 Researcher Attributes

These are broad descriptive attributes assigned to a researcher by a third party or a control
framework that describes their place in the GENI world. In particular, we make use of the GENI
project leader and project member ideas put forth at GEC11[5]. A project leader is a researcher
who is responsible for the actions taken on behalf of the members of the project. The project
members are the other researchers the leader is responsible for. Projects are uniquely identified.

A researcher can have the following attributes:

Attribute Meaning

ProjectLeader(?project) The researcher is responsible for
project.

ProjectMember(?project) The researcher is part of project.

Supervises(?principal) The researcher supervises principal.

Student The researcher is a student.

Operator The principal is responsible for and
controls infrastructure

The project attributes and student attribute are intended to be assigned by facilities, which as the
GPO or a university. The Supervises role allows principals to directly describe their
relationships to one another. The Operator role's meaning is somewhat tied to its scope, but is
assigned to a person by a facility to indicate that this principal is trusted by the facility issuing
the attribute to manage resources , as discussed in the example in Section 2.

7

Authorization Vocabulary Oct 31 2011

2.2 Service Attributes

These roles are intended to define a servers role in the GENIAPI/SFA. Knowing that a particular
principal is expected to act as a slice authority or aggregate manager simplifies exporting these
roles across federated domains. There are other elements in the GENIAPI that are in some flux
and not represented here. There is no registry or clearinghouse attributes. These may be added as
the vocabulary evolves.

Principals acting in the GENIAPI may have the following attributes:

Attribute Meaning

SliceAuthority The principal is a slice authority

AggregateManager The principal is an aggregate manager

2.3 Endorsement

A facility may issue the following role to another principal:

Attribute Meaning

Endorses The principal has approval of the issuer.

This is a fairly generic role assigned by one facility or other reviewing party to indicate that the
given principal has the approval of the issuing principal. This is deliberately vague and
dependent on the issuing principal. A GPO.Endorses attribute may indicate that the given
principal follows a set of usage rules laid out by the GPO.

The Endorses attribute can also be used to mark a set of facilities or other principals that share a
specialized vocabulary. The group can establish a principal to act as endorser, e.g.
SpecialVocab, and then use the SpecialVocab.Endorses attribute to mark facilities that have
agreed to the semantics.

One can imagine more specific attributes that indicate service levels or degrees of approval
between facilities that have negotiated them. The Endorses attribute is less specific to avoid the
problems of defining a global rule with byzantine meaning.

2.4 Operational Attributes

These are the target attributes for GENIAPI requests. There is an attribute for each slice
authority or aggregate manager action. When a researcher requests an action the server will
allow it if the researcher has the attribute with the same name in that server's name space.
Concretely, if a researcher invokes the ListResources operation at aggregate manager AM, that
aggregate manager will allow it if the researcher has the AM.ListResources attribute.

8

Authorization Vocabulary Oct 31 2011

The aggregate manager operations are much more stable than the slice authority operations. For
this table we use the current slice authority operations at ProtoGENI slice authorities.
ProtoGENI is something of a de facto standard here, but this remains an area of flux. The
examples here show how a mapping of attributes to operations for the current operations.

The attributes are:

Attribute Meaning

GetCredential The right to call GetCredential at a slice
authority

GetCredential(?object) The right to call GetCredential for the
given object, e.g., a slice

GetKeys The right to call GetKeys at a slice
authority

RegisterSlice The right to register a slice at a slice
authority

Resolve The right to call Resolve at a slice
authority

Remove(?object) The right to call Remove on object at a
slice authority

Bind(?object) The right to call Bind on an object at a
slice authority

Renew(?object) The right to call Renew on an object at a
slice authority

DiscoverResources The right to call DiscoverResources at a
slice authority.

ListResources The right to call ListResources at an
aggregate manager

ListResources(?slice) The right to call ListResources at an
aggregate manager for slice.

CreateSliver(?slice) The right to call CreateSliver at an

9

Authorization Vocabulary Oct 31 2011

aggregate manager, binding resources to
slice.

SliverStatus(?slice) The right to call SliverStatus at an
aggregate manager on slice

RenewSliver(?slice) The right to call RenewSliver at an
aggregate manager on slice

DeleteSliver(?slice) The right to call DeleteSliver at an
aggregate manager on slice

Shutdown(?slice) The right to call Shutdown at an
aggregate manager on slice

Any principal can assert one of these attributes, but the attribute only confers rights directly
when asserted by the server being asked to carry out an operation. In the sample policies, it is
common for a slice authority, SA, to assert that researcher R has attribute
SA.CreateSliver(slice1) as a result R successfully registering slice1. The slice authority is
asserting that it, the slice authority, is giving out the right to bind slivers to that slice. The right
is only realized when an aggregate manager, AM, believes AM.CreateSliver(slice1). The
example policies will show how that connection is made explicitly.

There is one additional attribute that indicates which principal made the Register call that created
the slice:

Attribute Meaning

Creator(?slice) The principal with this attribute created
slice.

Many policy creators want the ability to endow slice creators with special rights to a slice, or to
delegate abilities, so it seems prudent to have an agreed upon way to mark these researchers.

2.5 Slice Attributes

During discussions about the vocabulary, the idea was put forward that future iterations of the
GENIAPI might operate on slices, for example connecting two slices for the purpose of sharing
services between them. A special case of this would be a slice willing to transit traffic for other
slices (assuming agreement about protocols and data models). We include these two attributes of
slices to make that easier.

The implication is that slices are principals. This is feasible in principle, but the designers must
grapple with the implications. For example, can slices act independently? If so, hat real world
entity is allowed to initiate action on behalf of a slice?

10

Authorization Vocabulary Oct 31 2011

The attributes are:

Attribute Meaning

OMIS The slice is an operations/management
slice

Transit The slice provides transit services

Before describing example policies based on this vocabulary, we review the ABAC semantics.

3 Review of ABAC Rules and Reasoning

The RT0 logic is simple and powerful, but the notation is somewhat terse. This section reviews
the semantics and contrasts the RT0 expression of parameterized expressions with that of RT1.

3.1 RT0 Logic

ABAC's RT0 logic[1] allows one to attach an attribute to a principal, define a direct delegation
rule and define a rule linking the possession of an attribute to the ability to delegate attributes.
This section reviews the notation and semantics.

In ABAC's logic an attribute is a string attached to a principal by another principal. If an
aggregate manager identified as AM wishes to attach the ListResources attribute to a user
identified as U we say that AM has attached AM.ListResources to U. Only AM can assign
attributes from the AM. space. Furthermore AM1.ListResources and AM2.ListResources are
distinct.

There are three ways to attach an attribute to a principal:

1. Direct assignment. Example: U has attribute AM.ListResources. Notation:
AM.ListResources U

2. Delegation. Example: All principals with attribute AM2.ListResources have
AM1.ListResources. Notation:

AM1.ListResources AM2.ListResources

3. Linked Delegation. Any principal P with the AM2.Linked attribute can assign the
AM1.ListResources attribute by assigning the P.ListResources attribute. Notation:
 AM1.ListResources (AM2.Linked).ListResources

These assignments of attributes are directly equivalent to set theory inclusion statements. If
each attribute is the name of a set, the three operations above can be interpreted as:

1. Direct assignment. Example: U is a member of AM.ListResources. Notation:
AM.ListResources U

11

Authorization Vocabulary Oct 31 2011

2. Delegation. Example: All principals in set AM2.ListResources are in set
AM1.ListResources. Notation:

AM1.ListResources AM2.ListResources

3. Linked Delegation. Any principal P in the set AM2.Linked can place a principal in the
AM1.ListResources set by putting that principal into the set P.LinkedResources.
Notation:
 AM1.ListResources (AM2.Linked).ListResources

Direct assignment is pretty straightforward. A principal binds another attribute to another
principal. If we take AM.ListResources to indicate the ability to call the ListResources operation
on AM, the example in 1. says that AM has explicitly granted that ability to user U.

In the second example, AM1 has expressed a rule delegating the ability to assign principals the
AM1.ListResources attribute to AM2. AM2 exercises that delegation by assigning its
AM2.ListResources attribute. Any principal that knows AM1.ListResources
AM2.ListResources and AM2.ListResources U knows that U has AM1.ListResrources.

In some cases, AM1 and AM2 will want to coordinate closely about such a delegation, but in
others AM2 may be oblivious to the delegation. If AM2 is a well known certifier or AM1 and
AM2 have a general relationship where they agree on the semantics of ListResources, there is no
reason to discuss the delegation. In any case, ABAC does not require any coordination to make
the delegation.

The last example adds a second indirection. This delegates AM1.ListResources to a number of
other principals that have an attribute assigned by AM2, not to AM2 itself. In this case a
principal must know that AM1.ListResources (AM2.Linked).ListResources and AM2.Linked
 P and P.ListResources U to know that U has AM1.ListResources.

This generally allows a principal to appoint agents, other principals that will assign an attribute
on its behalf. The example above showed one principal (AM1) directly delegating that authority
to the agents of another (AM2). A ruleset more like AM2.ListResources
(AM2.Linked).ListResources, AM1.ListResources AM2.ListResources lets AM2 express its
creation of agents and AM1 delegate to the other principal. The first rule is controlled by AM2,
because it controls the AM2.ListResources attribute, and the second rule is controlled by AM1
for the analogous reason.

The requirements for a delegation – the right hand side of the arrows above – can include
conjunctions. For example, AM.CreateSlice ← CH.CreateSlice & SA.CreateSlice says that AM
will assign the AM.CreateSlice attribute to a principal that has demonstrated that it has both
CH.CreateSlice and SA.CreateSlice.

Rules for binding parameters are in Section 3.2.

Each of these operations, the assignment of an attribute or the creation of a delegation rule, is
expressed in a credential. A credential is a signed statement of the rule or assignment in RT0
logic, signed by the principal that controls the attribute being assigned or delegated. That is, a

12

Authorization Vocabulary Oct 31 2011

credential is signed by the principal whose identity is attached to the attribute on the left side of
the arrow.

Such credentials form the basis of proofs in the ABAC system, and are understandable by any
entity that can confirm the signatures. Libabac represents these in X.509 attribute certificates,
and the examples use that format.

3.2 RT0 and RT1

The current ABAC implementation implements RT0 logic, which is described in Section 3.1
above. We expect to implement RT1 in the near future, which supports the same basic
delegation rules, but with parameterized attributes. For example the AM.DeleteSliver attribute
may be scoped to a single sliver by asserting an AM.DeleteSliver(sliver3) attribute.

Such parameterized attributes may be reasoned about just as unparameterized attributes are, or
with some constraints on their parameters. For example, an attribute like AM.Level(4) can
appear in a rule as AM.Level(?L), indicating any level is acceptable (but that an AM.Level must
be assigned with a parameter) or as AM.Level(?L:[2..5]) indicating that the parameter must be in
the range 2 to 5 inclusive; constraints must limit parameters to finite static sets.

When a rule has parameters on both sides, the names of the variables must bind to the same
value. AM.CreateSliver(?N) ← SA.CreateSliver(?N) and SA.CreateSliver(slice1) ← U imply
that U has attribute AM.CreateSliver(slice1) but no other parameterization of
AM.CreateSliver(?N).

The rules for encoding current GENI access control do not rely on level comparisons, but they
do benefit from scoping to a given slice or sliver name. In an RT1 world, we would express this
like AM.DeleteSliver(uuid); lacking RT0 we express this scoping in the name of the attribute.
For example, that attribute is AM.DeleteSliver_uuid .

Because the rules for GENI access never require arithmetic or other operations, just matching,
and only principals who issue scoped attributes need to interpret them, we can guarantee that no
confusion results.

4 Sample Policies

We define two policies for a GENI facility using the vocabulary above. The first is fairly simple
primarilyto show how to express policy in ABAC, the second incorporates more complex
delegation.

In both cases we define a policy for the TIED facility, which consists of a slice authority, SA,
and an aggregate manager AM. Each of these are represented as ABAC principals (TIED, SA,
and AM). There is also a well-known principal representing the GENI Project Office, GPO. We
will also mention principals PL, a project leader, and PM a project member.

We present the policy first in English and then the ABAC rules that represent the policy. The
rules are each encoded into a credential and can be distributed in various ways throughout TIED.

13

Authorization Vocabulary Oct 31 2011

4.1 Simple Policy

The simple policy allows any GENI project leader to create a sliver at the TIED slice authority,
and allows any researcher who has been issued a standard CreateSliver(slice) credential from a
GENI-endorsed facility's slice authority to create and manipulate slivers at the aggregate
manager. TIED itself is a GENI-endorsed facility.

4.1.1 Endorsement Credentials

The GPO principal expresses its endorsement of TIED by issuing a credential to TIED:

• GPO.Endorses ← TIED

Similarly the GPO principal recognizes PL and PM as leader and member of project p by
issuing1:

• GPO.ProjectLeader(p) ← PL

• GPO.ProjectMember(p) ← PM

4.1.2 Facility Credentials

TIED advertises the roles of its principals by issuing credentials that make their responsibilities
explicit. That is the TIED facility declares SA to be a slice authority and AM to be an aggregate
manager by issuing

• TIED.SliceAuthority ← SA

• TIED.AggregateManager ← AM

4.1.3 Slice Authority Policy

Because the policy allows a GENI project leader to take any action at the slice authority, most of
the roles have the same format:

• SA.GetCredential ← GPO.ProjectLeader(?)

• SA.GetKeys ← GPO.ProjectLeader(?)

• SA.RegisterSlice ← GPO.ProjectLeader(?)

• SA.Resolve ← GPO.ProjectLeader(?)

• SA.DiscoverResources ← GPO.ProjectLeader(?)

1This direct assignment is the simplest assignment. More scalable would be to issue GPO.ProjectLeader(p) ← PM
and GPO.ProjectMember(p) ← (GPO.ProjectLeader(p)).ProjectMember(p). That allows PL to add members to
project p by issuing a credential like PL.ProjectMamber(p) ← PM, without involving the GPO principal.

14

Authorization Vocabulary Oct 31 2011

The most interesting of these for this example is SA.RegisterSlice. When PL registers a slice,
called slice1 here, SA issues it credentials encoding the following attributes:

• SA.Creator(slice1) ← PL

• SA.GetCredential(slice1) ← PL

• SA.Remove(slice1) ← PL

• SA.Bind(slice1) ← PL

• SA.Renew(slice1) ← PL

• SA.CreateSliver(slice1) ← PL

The first recognizes PL as the creator of slice1. This policy does not make use of that fact,
though others may. The last asserts that SA believes that PL can create slivers attached to slice1.
The others allow PL to invoke slice authority operations on SA that modify or report on slice1.

In addition to the list above, SA will also return the following credentials that were described in
Section 4.1.1 and 4.1.2 to describe its own capabilities in the global vocabulary:

• TIED.SliceAuthority ← SA

• GPO.Endorses ← TIED

4.1.4 Aggregate Manager Policy

The first elements of AM's policy allow project leaders to list resources generally and for a GPO
or TIED operator to shutdown any sliver

• AM.ListResources ← GPO.ProjectLeader(?)

• AM.Shutdown(?) ← GPO.Operator

• AM.Shutdown(?) ← TIED.Operator

The aggregate manager will recognize CreateSliver credentials from any slice authority from a
GPO-endorsed facility. Two rules accomplish this, one to recognize the set of slice authorities
that AM trusts, and one to connect their authority to the ability to create slivers.

• AM.GPOSliceAuthority ← (GPO.Endorses).SliceAuthority

• AM.CreateSliver(?slice) ← (AM.GPOSliceAuthority).CreateSliver(?slice)

Once an AM creates a slice, it issues credentials allowing further operations (we use PL for the
principal who created the sliver).

15

Authorization Vocabulary Oct 31 2011

• AM.ListResources(slice1) ← PL

• AM.SliverStatus(slice1) ← PL

• AM.RenewSliver(slice1) ← PL

• AM.DeleteSliver(slice1) ← PL

• AM.Shutdown(slice1) ← PL

4.1.5 Example Proofs

The two most complex authorizations under this policy are the right to create a slice at SA and
the right to create a sliver at AM. We show those authorizations.

For PL to create a slice at SA, SA needs to prove PL has attribute SA.RegisterSlice, or that PL is
a member of SA.RegisterSlice, depending on which formulation is clearer. PL presents a
credential encoding GPO.ProjectLeader(p) ← PL. SA uses the rule SA.RegisterSlice ←
GPO.ProjectLeader(?project) to show that because PL has GPO.ProjectLeader(p) it has
GPO.ProjectLeader() for some ?project, and has SA.RegisterSlice.

The reasoning at AM when PL requests CreateSliver(slice1) is more complex. PL presents
credentials encoding SA.CreateSliver(slice1) ← PL, TIED.SliceAuthority ← SA and
GPO.Endorses ← TIED with its request. It selects those based on AM's published policy. If
AM's policy is unpublished or partially published, PL would include all the credentials it
received when it successfully registered the slice.

AM is trying to prove that PL has AM.CreateSliver(slice1) because it called CreateSliver with a
slice parameter of slice1. AM reasons that SA is in the set AM.GPOSliceAuthority, because
TIED is in GPO.Endorses (GPO.Endorses ← TIED above) and SA is in TIED.SliceAuthority
and the rule AM.GPOSliceAuthority ← (GPO.Endorses).SliceAuthority applies.

Similar reasoning applies to get to AM.CreateSliver(slice1) from SA.CreateSliver(slice1) and the
fact proven above that SA is in AM.GPOSliceAuthority.

Other proofs are more straightforward.

4.2 Policy With Delegation

We extend the policy from Section 4.1 with two delegation points. First we allow either a
project leader or project member to invoke commands on SA, including RegisterSlice. Second
we allow a slice's creator to delegate the authority to make any of the aggregate manager calls
on the new sliver at AM. These policy changes are all internal to the TIED facility, so the
credentials issued by the GPO in Section 4.1.1 remain unchanged, as to the facility credentials
described in 4.1.2.

16

Authorization Vocabulary Oct 31 2011

The delegation of sliver rights occurs by the slice creator assigning the operational attribute to
the delegatee directly. If the creator of slice1 is C and it wants to allow D to create slivers
attached to slice1, C will issue:

• C.CreateSliver(slice1) ← D

4.2.1 Changes at SA

All the SA credentials described in 4.1.3 remain in force. A project leader can continue to to all
the things they could under the policy in Section 4.1. To allow project members to operate at
SA, we add the following:

• SA.GetCredential ← GPO.ProjectMember(?project)

• SA.GetKeys ← GPO.ProjectMember(?project)

• SA.RegisterSlice ← GPO.ProjectMember(?project)

• SA.Resolve ← GPO.ProjectMember(?project)

• SA.DiscoverResources ← GPO.ProjectMember(?project)

4.2.2 Changes at AM

The first changes at AM are to allow the creator of any slice authority from a GPO-endorsed
facility to be able to create a sliver attached to that slice. The following rule does this, reusing
the AM.GPOSliceAuthority ← (GPO.Endorses).SliceAuthority rule that identifies trusted slice
authorities.

• AM.CreateSliver(?slice) ← (AM.GPOSliceAuthority).Creator(?slice)

To handle delegation, AM adds two rules. The first identifies the creator of a slice from a slice
authority in a GPO-endorsed facility, and the second accepts the delegation for CreateSliver.

• AM.Creator(?slice) ← (AM.GPOSliceAuthority).Creator(?slice)

• AM.CreateSliver(?slice) ← (AM.Creator(?slice)).CreateSliver(?slice)

The first rule in this section could now be rewritten as:

• AM.CreateSliver(?slice) ← AM.Creator(?slice)

To allow the creator and the creator's delegatees to call the remaining operations, AM must add:

• AM.ListResources(?slice) ← AM.Creator(?slice)

• AM.ListResources(?slice) ← (AM.Creator(?slice)).ListResources(?slice)

• AM.RenewSliver(?slice) ← AM.Creator(?slice)

17

Authorization Vocabulary Oct 31 2011

• AM.RenewSliver(?slice) ← (AM.Creator(?slice)).RenewSliver(?slice)

• AM.DeleteSliver(?slice) ← AM.Creator(?slice)

• AM.DeleteSLiver(?slice) ← (AM.Creator(?slice)).DeleteSliver(?slice)

• AM.Shutdown(?slice) ← AM.Creator(?slice)

• AM.Shutdown(?slice) ← (AM.Creator(?slice)).Shutdown(?slice)

5 Summary

This document has presented the current ABAC vocabulary for cross-federation authorization in
GENI, as well as two sample policies that use that vocabulary. We believe that the combination
of discussion and examples shows the power of the pairing of the small set of shared attributes
and ABAC's reasoning.

A demonstration of the policies above using the libabac implementation will be shown at
GEC12.

References

[1]Ninghui Li, John C. Mitchell, and William H. Winsborough, “Design of a Role-Based Trust
Management System,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy, (May,
2002).

[2]“ABAC Authorization Control Model and Discussion”,
http://groups.geni.net/geni/wiki/TIEDABACModel, 2011

[3]LibABAC Home Page, http://abac.deterlab.net, 2011.

[4]The GENI API, http://groups.geni.net/geni/wiki/GeniApi, 2011

[5]Aaron Falk, “Federation in GENI”, GEC11, 2011
http://groups.geni.net/geni/attachment/wiki/GEC11Federation/GENI%20Federation%20-
%2022July2011.pdf

18

http://groups.geni.net/geni/wiki/TIEDABACModel
http://groups.geni.net/geni/attachment/wiki/GEC11Federation/GENI%20Federation%20-%2022July2011.pdf
http://groups.geni.net/geni/attachment/wiki/GEC11Federation/GENI%20Federation%20-%2022July2011.pdf
http://groups.geni.net/geni/wiki/GeniApi
http://abac.deterlab.net/

	1 Introduction
	1.1 Attribute-Based Access Control (ABAC)
	1.2 Motivation for ABAC and Shared Vocabulary
	1.2.1 Making Policies Understood
	1.2.2 Auditing Agreements

	1.3 Background Materials

	2 Candidate Vocabulary
	2.1 Researcher Attributes
	2.2 Service Attributes
	2.3 Endorsement
	2.4 Operational Attributes
	2.5 Slice Attributes

	3 Review of ABAC Rules and Reasoning
	3.1 RT0 Logic
	3.2 RT0 and RT1

	4 Sample Policies
	4.1 Simple Policy
	4.1.1 Endorsement Credentials
	4.1.2 Facility Credentials
	4.1.3 Slice Authority Policy
	4.1.4 Aggregate Manager Policy
	4.1.5 Example Proofs

	4.2 Policy With Delegation
	4.2.1 Changes at SA
	4.2.2 Changes at AM

	5 Summary

