
Proposed GENIAPI AM Changes to 
Support ABAC Authorization

Ted Faber, USC/ISI

John Wroclawski, USC/ISI

Version 1.0

31 October 2011

Corresponding to GENIAPI version 1.0



ABAC/GENIAPI changes Oct 31, 2011

Table of Contents

1 Introduction...................................................................................................................................3

2 Proposed GENIAPI Changes........................................................................................................4

2.1 Return Values.........................................................................................................................4

2.2 Proposed Structures................................................................................................................5

3 Summary.......................................................................................................................................6

2



ABAC/GENIAPI changes Oct 31, 2011

1 Introduction

This document describes an initial integration of the Attribute-Based Access Control (ABAC) 
implementation from USC/ISI and Sparta (version 0.1.2)[1] with the current implementation of 
the GENIAPI AM (version 1.0)[2] from BBN.  The implementation passes the GENIAPI tests 
included with the system, with minimal modification to the test scaffold to support a change in 
the unstandardized Clearinghouse interface. This document makes recommendations to the 
GENIAPI specification based on that implementation and describes the next steps in ABAC 
design motivated by furthering this kind of access control.

The current GENIAPI implementation provides an aggregate manager that makes resources 
available within the slice-based facility architecture of GENI.  The interface between users (or 
their agents) and the aggregate manager is well-defined, though interfaces to other parts of the 
system (slice managers, clearinghouses) are still being standardized.

ABAC[3], which had its formal conceptual design done at Stanford with initial implementations 
and collaborations at Sparta (then Network Associates), is an access control system based on 
formal derivation of attributes possessed by principals making requests.  These attributes and the 
rules about reasoning with them allow access control to proceed using the same kind of 
reasoning that real world decisions encompass.  Proof of an attribute may involve multiple 
rounds of negotiation.

In ABAC, principals assign attributes to other principals. This is analogous to  USC asserting 
that Ted Faber is an employee.  Principals can also assert rules for deriving attributes from other 
attributes: if USC says someone is an employee the campus bookstore says they get a discount. 
The current ABAC library supports the RT0 logic, which allows multi-layer delegation and 
intersection of attributes as well as simple derivation.

Incorporating ABAC also separates access policy specification and access validation, provides 
enhanced logging of access control decisions by both the aggregate manager and the clients, and 
enables multi-round access control negotiation.  ABAC access control requests are either 
satisfied by a proof of access rights in terms that both sides understand, or a partial proof of 
access that can be used as a basis for continued negotiations.  Complete proofs can be logged as 
an audit trail.

While the GENIAPI interface leaves room in the specification for much of this integration to 
proceed, the interface must be tweaked in several important ways to get the best out of the more 
flexible and powerful ABAC system.  Key parts of the interface need to be widened to support 
ABAC negotiation, support added for self-validating identities, and the user/agent to 
clearinghouse and aggregate manager to clearinghouse/slice manager interfaces need to be 
standardized.

In the GENIAPI, the general request/response exchange pattern tends to assume most requests 
succeed, resulting in very little information from failed requests.  Once a request has failed, a 
user has little idea what changes to the request, if any, may result in success. To implement 

3



ABAC/GENIAPI changes Oct 31, 2011

ABAC's multi-round negotiation, the system must communicate the successful proof of access or 
alternatively a partial proof to act as the starting point for the next round. 

2 Proposed GENIAPI Changes

The primary issues with adding ABAC to the current GENIAPI are the request/response model 
and  limited semantics of the return values, and the imposition of hierarchical names.  We also 
comment on the importance of separating access control attributes and object names in coming 
development of the specifications.

2.1 Return Values

Though ABAC can require multiple rounds of negotiation and the GENIAPI supports 
request/response interactions, it is possible to support the extended negotiation of the former in 
the simple model of the later, if the GENIAPI response to a denied request includes enough 
information.  In practice this means always returning a structure with error codes and more 
access control data, including new credentials and ABAC proofs/partial proofs.  This allows 
future multi-round negotiation because ABAC captures the entire state of the negotiation in its 
proofs/partial proofs.  It also allows current implementations to log ABAC proofs of success and 
failure.

A general ABAC exchange consists of several messages negotiating access to a resource where 
each principal reveals a little more about their attributes until each knows enough to agree that 
the access is valid.  We show such an exchange in Figure 1. 

Simple exchanges between principals who have little information to hide look like conventional 
request/response exchanges that the GENIAPI supports.  Longer exchanges can be carried out in 
the request/response paradigm as long as successive messages requesting or denying the access 
provide the other player with new information to advance the negotiation.

An ABAC partial proof contains the entire state of the negotiation.  Passing the partial proof 
back as a return value in a failed request allows the recipient to extend the proof and try again. 
The extended proof contains the complete state for the other side to continue the negotiation. 
The result of a series of denied accesses, extensions, and retries constitutes a negotiation.

4

Figure 1: An ABAC exchange



ABAC/GENIAPI changes Oct 31, 2011

In principle, such exchanges are easily integrated with the GENIAPI, but in practice the 
responses do not carry enough information to support a negotiation.  In many cases there is not 
enough information returned to support detailed auditing information.

Many requests include parameters of sets of attribute value pairs, for example the options field of 
the ListResources operation, which provides an extensible interface.  Return values should 
have a similar structure that includes ABAC partial proofs.  Where such fields already exist, 
current code appends that information.

The current reference AM expresses access control failures as XMLRPC faults, which have 
limited message capacity.  To support ABAC, encode all access denials in the same extensible 
format, including error code and ABAC partial proofs.  Faults are too format constrained for this 
purpose.  We believe XMLRPC faults should only be used to communicate low-level protocol 
errors.

Though this change is motivated by adding ABAC, there are other good reasons to add multi-
valued return codes, and other parties are proposing extended error codes as well.  Some failures 
can be retried for reasons other than presenting insufficient access controls – e.g., a busy internal 
resource. Other failures could include hints for a modifying subsequent requests, for example, 
requesting less constrained resources or lower bandwidth.  Providing such iterative interfaces 
benefits the API in many ways going forward.

2.2 Proposed Structures

We propose the following return structures:

• ListResources: a three-element structure

◦ code: a success or failure code

◦ manifest: the Rspec as a string, or an empty string on failure

◦ proof: a binary encoding the ABAC proof or partial proof

• CreateSliver: a three element structure:

◦ code: a success or failure code

◦ manifest: the Rspec representing allocated resources as a string, or an empty string on 
failure

◦ proof: a binary encoding the ABAC proof or partial proof

◦ credentials: new credentials for the user as a list of strings or binary objects (ABAC 
credentials would be binary)

• SliverStatus: a five element structure

5



ABAC/GENIAPI changes Oct 31, 2011

◦ code: a success or failure code for the operation

◦ geni_urn: a string containing the sliver URN

◦ geni_status: a string with the status

◦ geni_resources: a structure as described in the current specification

◦ proof: a binary encoding the ABAC proof or partial proof

• RenewSliver: a two-element structure

◦ code: a success or failure code

◦ proof: a binary encoding the ABAC proof or partial proof

◦ credentials: new credentials for the user as a list of strings or binary objects (ABAC 
credentials would be binary)

• DeleteSliver: a two-element structure

◦ code: a success or failure code

◦ proof: a binary encoding the ABAC proof or partial proof

• Shutdown: a two-element structure

◦ code: a success or failure code

◦ proof: a binary encoding the ABAC proof or partial proof

3 Summary

This document summarizes design changes necessary to integrate ABAC with the GENIAPI. 
Other changes are being suggested from other quarters.

References

[1]LibABAC Home Page, http://abac.deterlab.net, 2011.

[2]GCF Project Home Page, http://trac.gpolab.bbn.com, 2011.

[3]Ninghui Li, John C. Mitchell, and William H. Winsborough, “Design of a Role-Based Trust 
Management System,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy, (May, 
2002).

6

http://abac.deterlab.net/
http://trac.gpolab.bbn.com/

	1 Introduction
	2 Proposed GENIAPI Changes
	2.1 Return Values
	2.2 Proposed Structures

	3 Summary

