
Programming Assignments for
Graduate Students using GENI

Exploring the Network Awareness of
TCP using GENI

Copyright c© 2012 Purdue University

Please direct comments regarding this document to fahmy@cs.purdue.edu.

1 INTRODUCTION 1

1 Introduction

This project leverages resources on the ProtoGENI aggregate, using the Proto-

GENI test scripts [7] or the Omni GENI client [5]. The ProtoGENI tutorial [8] is

a good starting point to become familiar with the ProtoGENI aggregate. General

documentation on the GENI project and its available resources is found on the

GENI wiki [2].

GENI resources are shared resources provided by members of the networking

community. Please release your slivers when you are done with them, or if you

are going to have to leave them for an extended period of time. Remember that

in many cases you may be able to perform an experiment, copy the data off to

another host, and release the sliver.

1.1 Objectives

The objective of this assignment is to familiarize you with the details of TCP

congestion control, and the impact of network conditions on the TCP congestion

control algorithms. You will specifically learn about:

• The NewReno [11] loss recovery and intertwined congestion control mech-

anisms

• The CUBIC [10] congestion control mechanism

• The impact of the ssthresh and cwnd TCP state variables on TCP network

performance

• Measuring the performance of TCP flows

• The impact of path delay and bottleneck bandwidth on TCP performance

• TCP fairness concerns

• The Linux pluggable congestion control module interface

1.2 Tools

The two primary tools used in this assignment are:

2 SETTING UP THE EXPERIMENT 2

1. Traffic Control (tc)

The tc command is available in the GNU Linux distributions on Proto-

GENI nodes, found in the /sbin directory. This command manipulates

the Linux network forwarding tables, allowing for configuration of queu-

ing disciplines, which change the policies controlling which packets are

forwarded in what order and which are dropped; and network emulation,

which allows the Linux kernel to emulate various network conditions such

as delay or loss. These two effects are provided by the qdisc and netem

subcommands, respectively.

In these exercises, tc will be used to modify network conditions and enable

different scheduling policies. Example command lines will be provided.

2. Iperf [3]

Iperf is available on the ProtoGENI nodes, located at

/usr/local/etc/emulab/emulab-iperf. Iperf is used to measure the

bandwidth performance of Internet links. In these exercises, it is used to

study the behavior of TCP in the face of changing link characteristics.

Iperf runs as both a server and a client. The server is started with the -s

command line option, and listens for connections from the client. The client

is started with the -c <server> command line option, and connects to the

server and sends data at either the fastest possible rate (given the underly-

ing network) or a user-specified rate. The -u option causes the sender or

receiver to use UDP instead of TCP. Various other options will be required

for these exercises, and provided in the appropriate sections.

All Iperf measurement data should be recorded from the TCP receiver (server)

side.

2 Setting up the Experiment

After creating a slice using the ProtoGENI test scripts, create a sliver using the

RSpec request in Figure 1. This RSpec is included in:

http://www.cs.purdue.edu/homes/fahmy/geni/geni-tcp_exp.tar.gz

The sliver created from this RSpec will contain a set of hosts in a “star” topol-

ogy having 4 nodes each connected to a center node with 100 Mbps links, as

shown in Figure 2.

http://www.cs.purdue.edu/homes/fahmy/geni/geni-tcp_exp.tar.gz

2 SETTING UP THE EXPERIMENT 3

<?xml v e r s i o n =”1 .0” encod ing =”UTF−8”?>

<r s p e c xmlns=” h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2 ”

xmlns : x s i =” h t t p : / / www. w3 . o rg / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : s chemaLoca t ion =” h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2

h t t p : / / www. p r o t o g e n i . n e t / r e s o u r c e s / r s p e c / 2 / r e q u e s t . xsd ”

t y p e =” r e q u e s t ” >

<node c l i e n t i d =” c e n t e r ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i s k i m a g e name=” urn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 0 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 1 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 2 ” />

<i n t e r f a c e c l i e n t i d =” c e n t e r : i f 3 ” />

</node>

<node c l i e n t i d =” l e f t ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i s k i m a g e name=” urn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” l e f t : i f 0 ” />

</node>

<node c l i e n t i d =” r i g h t ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i s k i m a g e name=” urn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” r i g h t : i f 0 ” />

</node>

<l i n k c l i e n t i d =” l e f t L i n k”>

<i n t e r f a c e r e f c l i e n t i d =” l e f t : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 0 ” />

</ l i n k>

<l i n k c l i e n t i d =” r i g h t L i n k”>

<i n t e r f a c e r e f c l i e n t i d =” r i g h t : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 1 ” />

</ l i n k>

<node c l i e n t i d =” t o p ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i s k i m a g e name=” urn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” t o p : i f 0 ” />

</node>

<node c l i e n t i d =” bot tom ”

e x c l u s i v e =” t r u e”>

<s l i v e r t y p e name=” raw−pc”>

<d i s k i m a g e name=” urn : p u b l i c i d : IDN+emulab . n e t +image+emulab−ops / / FEDORA10−STD” />

</ s l i v e r t y p e>

<i n t e r f a c e c l i e n t i d =” bot tom : i f 0 ” />

</node>

<l i n k c l i e n t i d =” topLink”>

<i n t e r f a c e r e f c l i e n t i d =” t o p : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 2 ” />

</ l i n k>

<l i n k c l i e n t i d =” bo t tomLink”>

<i n t e r f a c e r e f c l i e n t i d =” bot tom : i f 0 ” />

<i n t e r f a c e r e f c l i e n t i d =” c e n t e r : i f 3 ” />

</ l i n k>

</ r spec>

Figure 1: RSpec request used in this assignment

3 EXERCISES 4

Figure 2: Star topology of ProtoGENI nodes

The nodes in the topology are named Left, Center, Right, Top, and Bottom. The

Center node connects to the nodes Left, Right, Top, and Bottom via the interfaces

L, R, T, and B, respectively. The network path properties between end nodes are

tweaked by controlling the four interfaces L, R, T and B on the Center node. These

interfaces are usually named from eth1 to eth4. You can determine the physical

interfaces that correspond to L, R, T and B by comparing the IP addresses of the

interfaces on the Center node and the ping responses from the Leaf nodes to the

Center node.

The parameters of the interfaces on the Center node will be modified to mimic

different network path properties between the other hosts. Several TCP parame-

ters and congestion control mechanisms will be varied at the end hosts to compare

performance.

After the sliver is ready, you can begin the exercises.

3 Exercises

3.1 Comparison of Reno and CUBIC

ProtoGENI nodes provide two TCP congestion control algorithms, CUBIC and

Reno, that can be chosen at run-time. The list of available algorithms are listed

in the file /proc/sys/net/ipv4/tcp available congestion control. The

“Reno” congestion control provided by the Linux kernel is actually the NewReno [11]

3 EXERCISES 5

algorithm, but we will refer to it as Reno here to be consistent with Linux termi-

nology. Note that congestion control actions are very similar between Reno and

NewReno, but NewReno has a more nuanced approach to loss recovery.

These congestion control algorithms can be chosen by placing the keywords

reno or cubic in the file /proc/sys/net/ipv4/tcp congestion control. For

example, to configure a host to use the Reno algorithm, use:

echo reno | sudo tee /proc/sys/net/ipv4/tcp congestion control

The tc command will then be used to set up network conditions for observa-

tion and testing. For example, if eth1 is the physical interface representing the

link L in Figure 2 on the Center node, the following command on the Center node

will add a 200 ms delay to all packets leaving the interface:

sudo /sbin/tc qdisc add dev eth1 root handle 1:0 netem \
delay 200ms

Specific network setup commands will be provided as needed.

Run an Iperf server on the Left node. The Iperf client will be run on the Right

node. The duration for an Iperf session (-t option) is 60 seconds unless otherwise

mentioned. Note carefully that some exercises require a much longer duration.

Ensure that your sliver lifetimes are long enough to capture the duration of your

experiment. All of the experiments should be repeated at least a 5 times (espe-

cially when the interfaces include random delays or losses) to ensure confidence

in the results, as transient conditions can cause significant variations in any indi-

vidual run.

1. Question: What are the goodputs when the Reno and CUBIC algorithms

are used on the network with no emulated delay or loss? Which is better?

2. Question: Qualitatively, under what conditions does BIC/CUBIC perform

better than Reno’s AIMD?

3. Question: Change the delay to of interface L to 300 ms using the following

command, and run an Iperf session for 1800 seconds.

sudo /sbin/tc qdisc add dev L root handle 1:0 netem \
limit 1000000000 delay 300ms

What are the goodputs of Reno and CUBIC? Which performed better?

What do you conclude?

4. Question: Repeat the above experiment with 30 parallel connections and

1800 seconds for each algorithm by using the -P 30 option on Iperf. How

do CUBIC and Reno differ? What do you conclude?

3 EXERCISES 6

5. Question: Remove the netem queueing discipline which causes delay and

add a loss of 5% by using the following commands on the center node.

Replace L with the appropriate physical interface. Alternatively, one can

change a queueing discipline instead of deleting and adding a new one.

sudo /sbin/tc qdisc del dev L root

sudo /sbin/tc qdisc add dev L root handle 1:0 netem loss 5%

How do the goodputs of Reno and CUBIC differ under loss for 60 s Iperf

sessions?

3.2 Ensuring Fairness Among Flows

Restore the network state with the following command:

sudo /sbin/tc qdisc del dev L root

Run an Iperf client on the Right node with 10 parallel TCP connections (use the

-P option), connecting to an Iperf server on the Left node for 60 seconds. Simul-

taneously, run a 20 Mbps UDP Iperf client on the Top node connecting to an UDP

Iperf server session running on the Left node for 60 seconds.

1. Question: What are the throughput shown by the UDP and TCP Iperf server

sessions? Why are they what they are?

2. Question: Provide the necessary steps and commands to enable queueing

disciplines that enforce fairness among all the 11 flows in the network, and

demonstrate that your solution is effective.

3.3 Reordering

Delete the previous queuing discipline and use the following netem configuration

on interface L to create an 100 ms delay:

sudo /sbin/tc qdisc del dev L root

sudo /sbin/tc qdisc add dev L root handle 1:0 netem delay 100ms

As before, run a TCP Iperf client on the Right node connecting an Iperf server

on the Left for 60 seconds.

1. Question: What is the TCP goodput?

2. Question: Introduce packet reordering, adding a 75 ms delay variance to

3 EXERCISES 7

the interface L with the following command:

sudo /sbin/tc qdisc change dev L root handle 1:0 \
netem delay 100ms 75ms

What is the TCP goodput now?

3. Question: By tweaking the parameters in the file

/proc/sys/net/ipv4/tcp reordering, how much can the TCP goodput

be improved? What is the best goodput you can show? Why is too high or

two low value bad for TCP?

3.4 Performance of SACK under Lossy Conditions

Using Cubic as the congestion avoidance algorithm, set the loss characteristics on

interface L using the following commands:

sudo /sbin/tc qdisc del dev L root

sudo /sbin/tc qdisc add dev L root handle 1:0 netem loss 10%

1. Question: What kind of goodput do you get using CUBIC with SACK (the

default configuration)? Why do you see this performance?

2. Question: Disable SACK at the sender using this command:

echo 0 | sudo tee /proc/sys/net/ipv4/tcp sack

What is the goodput without SACK? In what circumstances is SACK most

beneficial? Remember that, due to the random nature of loss events, these

experiments must be repeated at least five times to draw any conclusions.

3.5 An Experimental Congestion Avoidance module for Linux

In this exercise, you will develop and evaluate a TCP congestion control module

for the Linux kernel. Linux provides a pluggable interface for TCP congestion

control, which allows named congestion control modules to manipulate its send-

ing rate and reaction to congestion events. You have already used the reno and

cubic modules, and in this exercise you will create one named exp.

Linux kernel modules must be compiled against kernel source that matches the

kernel into which the module will be loaded. In order to prepare your ProtoGENI

host for kernel module development, follow these steps:

1. Comment out the line:

exclude=mkinitrd* kernel*

in the file /etc/yum.conf, to allow yum to install kernel headers.

3 EXERCISES 8

2. Install the required packages with this command:

sudo yum install kernel-devel kernel-headers

3. Fix up the kernel version in the installed headers to match the running ker-

nel; this can be tricky, but these steps should handle it.

(a) Find your kernel sources. They are in /usr/src/kernel, in a direc-

tory that depends on the installed version. As of the time this handout

was created, that directory is 2.6.27.41-170.2.117.fc10.i686. We

will call this directory $KERNELSRC.

(b) Identify your running kernel version by running uname -r. It will be

something like 2.6.27.5-117.emulab1.fc10.i686. The first three

dotted components (2.6.27, in this case) are the major, minor, and

micro versions, respectively, and the remainder of the version string

(.5-117.emulab.fc10.i686) is the extraversion. Note the extraver-

sion of your kernel.

(c) In $KERNELSRC/Makefile, find the line beginning with EXTRAVERSION.

Replace its value with the extraversion of your kernel.

(d) Update the kernel header tree to this new version by running the com-

mand:

sudo make include/linux/utsrelease.h

More details to handle version issues are provided at [1].

A Makefile for compiling the module and the source for a stub TCP congestion

control module are included in: http://www.cs.purdue.edu/homes/fahmy/geni/geni-tcp_exp.tar.gz

The module is named tcp exp (for experimental TCP), and the congestion

control algorithm is named exp. Comments in the provided source file explain the

relationship between the various functions, and more information can be found

in [6].

The compiled module (which is built with make and called tcp exp.ko) can

be inserted into the kernel using insmod. It can be removed using the command

rmmod tcp exp and reloaded with insmod if changes are required.

Once the module is complete and loaded into the kernel, the algorithm imple-

mented by the module can be selected in the same manner that reno and cubic

were selected in previous exercises, by placing the keyword exp in

/proc/sys/net/ipv4/tcp congestion control.

http://www.cs.purdue.edu/homes/fahmy/geni/geni-tcp_exp.tar.gz

3 EXERCISES 9

3.5.1 Algorithm Requirements

The experimental congestion control module is based on Reno, but has the fol-

lowing modifications:

• It uses a Slow Start exponential factor of 3. Reno uses 2.

• It cuts ssthresh to 3× FlightSize/4 when entering loss recovery. Reno

cuts to FlightSize/2.

3.5.2 Hints

These hints and suggestions may help you get started.

• The existing congestion avoidance modules are a good start. See net/ipv4/tcp cong.c

in the Linux source for the Linux Reno implementation.

• The file net/ipv4/tcp input.c is a good place to learn how the conges-

tion avoidance modules are used and invoked.

• RFC 5681 [9] specifies the Reno congestion control actions in detail, and

may be helpful in understanding the kernel code.

• The Linux Cross Reference at http://lxr.linux.no/linux may be use-

ful for navigating and understanding how the code fits together.

• If one of the hosts becomes unresponsive due to a bug in your congestion

control module, you can restart the sliver to reboot it.

• The Linux Kernel Module Programming Guide [4] provides a good intro-

duction to kernel module programming in general.

3.5.3 Evaluation

Once you have implemented the algorithm described above, answer the following

questions:

1. Question: Discuss the impact of these algorithmic changes in the context

of traditional Reno congestion control.

http://lxr.linux.no/linux

REFERENCES 10

2. Question: Compare the convergence time and fairness of your algorithm

with Reno and Cubic under (a) high delay (500 ms) and (2) high loss (5%)

conditions. Use Jain’s fairness index [12], or some other quantitative mea-

sure of fairness, in your comparison.

References

[1] Building modules for a precompiled kernel.

http://tldp.org/LDP/lkmpg/2.6/html/x380.html.

[2] GENI wiki. http://groups.geni.net/geni.

[3] Iperf. http://iperf.sourceforge.net/.

[4] The Linux kernel module programming guide.

http://tldp.org/LDP/lkmpg/2.6/html.

[5] Omni. http://trac.gpolab.bbn.com/gcf/wiki/Omni.

[6] Pluggable congestion avoidance modules.

http://lwn.net/Articles/128681/.

[7] ProtoGENI test scripts. http://www.protogeni.net/trac/protogeni/wiki/TestScripts.

[8] ProtoGENI tutorial. http://www.protogeni.net/trac/protogeni/wiki/Tutorial.

[9] M. Allman, V. Paxson, and E. Blanton. TCP congestion control. RFC 5681,

September 2009.

[10] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP

variant. SIGOPS Oper. Syst. Rev., 42:64–74, July 2008.

[11] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno modifi-

cation to TCP’s fast recovery algorithm. RFC 6582, April 2012.

[12] R. Jain, D. W. Chiu, and W. R. Hawe. A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems. Technical

Report DEC-TR-301, Digital Equipment Corporation, September 1984.

http://tldp.org/LDP/lkmpg/2.6/html/x380.html
http://groups.geni.net/geni
http://iperf.sourceforge.net/
http://tldp.org/LDP/lkmpg/2.6/html
http://trac.gpolab.bbn.com/gcf/wiki/Omni
http://lwn.net/Articles/128681/
http://www.protogeni.net/trac/protogeni/wiki/TestScripts
http://www.protogeni.net/trac/protogeni/wiki/Tutorial

	Introduction
	Objectives
	Tools

	Setting up the Experiment
	Exercises
	Comparison of Reno and CUBIC
	Ensuring Fairness Among Flows
	Reordering
	Performance of SACK under Lossy Conditions
	An Experimental Congestion Avoidance module for Linux
	Algorithm Requirements
	Hints
	Evaluation

