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Abstract—Popular applications such as email, photo/video gal-
leries, and file storage are increasingly being supported by cloud
platforms in residential, academia and industry communities. The
next frontier for these user communities will be to transition
‘traditional desktops’ that have dedicated hardware and software
configurations into ‘virtual desktop clouds’ that are accessible
via thin-clients. In this paper, we describe experiences from our
research and development of virtual desktop cloud experiments
in GENI. Our experimentation goal is to investigate and develop
optimal resource allocation frameworks and performance bench-
marking tools that can enable provisioning (i.e., resource sizing)
and placement (i.e., resource mapping) of thin-client based virtual
desktops at Internet-scale. We first motivate why virtual desktop
cloud experiments cannot be done only at a table-top level, and
why infrastructures such as GENI are essential. Next, we detail
the methodology of our completed “provisioning” experiments,
and our work-in-progress “placement” experiments in GENI that
leverage multiple kinds of GENI resources such as aggregates,
measurement services and experimenter workflow tools, as well
as commercial software. Lastly, we present our vision on how our
experiment slice setup and application development experiences,
as well as outcomes can be leveraged in classroom labs, and
‘living labs’ that use GENI resources to foster training and wide-
adoption of Future Internet applications.

Keywords-Virtual Desktop Clouds, Cloud Experiment in GENI,
Optimal resource Allocation, Classroom Courseware in GENI

I. INTRODUCTION

There has been a rapid adoption of “cloud” platforms for
online applications such as email, photo/video galleries and
file storage in academia and industry. The next frontier for
these user communities will be to transition their “traditional
distributed desktops” that have dedicated hardware and soft-
ware installations into “virtual desktop clouds” (VDCs) that
are accessible via thin-clients. Moreover, in the not so distant
future, we can envisage home users signing-up for virtual
desktops (VDs) with a VD Cloud service provider (CSP)
providing Desktop-as-a-Service (DaaS) as a utility. With such
a utility service, a thin-client i.e., a set-top-box can be shipped
to residential user to access a VD, similar to the model we have
today for other common computing and communication needs
such as VoIP (e.g., Vonage), and IPTV (e.g., Roku). This box
can be connected to television monitors, or computer monitors,
and multiple residential users can have their own unique login
through this box to their personalized VDs.

The drivers for these transitions of traditional desktops to
VDCs are obvious in terms of user convenience, consistent
user-perceivable peak performance, and cost-savings: (i) desk-
top support in terms of hardware, operating system, application
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and security upgrades will be easier to manage, (ii) the number
of underutilized distributed desktops unnecessarily consuming
power will be reduced, and (iii) mobile users will have wider
access to their desktop applications and data.

However, to allocate and manage VDC resources in a
scalable and cost-effective manner at Internet-scale user loads,
CSPs are faced with unique “provisioning” (i.e., resource
sizing) and “placement” (i.e., resource mapping) challenges.
User workload profiles in VDCs are bursty (e.g., during
daily desktop startup, when user switches between text and
graphic intensive applications), and thin-client user Quality
of Experience (QoE) is highly sensitive to network health
variations in the Internet. Unfortunately, existing works focus
mainly on managing server-side resources based on utility
functions of CPU and memory loads [1 - 4], and do not
consider network health and thin-client user QoE. There is
surprisingly sparse work [5 - 6] on resource adaptation coupled
with measurement of network health and user QoE. Works
such as [6] and [7] highlight the need to incorporate network
health and user QoE factors into VDC resource allocation
decisions.

It is self-evident that any cloud platform’s capability to
support large user workloads is a function of both the server-
side desktop performance as well as the remote user-perceived
QoE. In other words, a CSP can provision adequate CPU and
memory resources to a VD in the cloud, but if the thin-client
protocol configuration or VD placement does not account for
network health degradations and application context, the VD
may become unusable for the user.

Another real-world scenario that motivates our research
focus is the fact that - CSPs today do not have frameworks
and tools that can estimate how many concurrent VD requests
can be handled on a given set of system and network resources
at a data center such that resource utilization is maximized,
and at worst, the minimum user QoE is guaranteed as ne-
gotiated in service level agreements (SLAs). Hence, resource
allocations without combined utility-directed information of
system loads, network health and thin-client user experience
in VDC platforms inevitably results in costly guesswork and
over-provisioning, even for as few as tens of users. Ultimately,
such resource allocations tend to annoy users due to high
service cost and unreliable QoE.

To overcome the above provisioning and placement chal-
lenges, our research and development of VDC experiments
[8] in GENI is aimed at coupling “network-and-human aware-
ness” within Internet-scale resource allocation frameworks and
performance benchmarking tools for: (a) minimizing costly
cloud resource over-provisioning, (b) avoiding guesswork in
configuring thin-client protocols and VD placement, and (c)
ultimately delivering optimum user QoE of virtualized desktop
applications.



Towards this purpose, we are pursuing three research
themes:

1) We are developing a virtual desktop benchmarking
toolkit viz., “VDBench” [9] for measuring user QoE
and resource consumption characteristics of “atomic”
(e.g., loading web-page content in an Internet browser)
and “aggregate” (e.g., opening an worksheet, making
calculations and plotting a graph) tasks executed via
thin-client protocol configurations at different system
load and network health conditions. For obtaining the
measurements, VDBench uses a novel “marker packets”
methodology to identify VD flows within a network, as
well as to correlate thin-client user events with server-
side resource performance events.

2) We are developing a utility-directed resource allocation
model (U-RAM) [10] [11] that optimizes resource al-
location and management (i.e., VD provisioning and
placement) by leveraging utility-functions derived from
VDBench toolkit measurements of server-side desktop
performance, network performance, as well as the re-
mote user-perceived (objective) QoE.

3) We are validating and tuning our U-RAM and VD-
Bench toolkit in a distributed testbed under realistic
user and system loads (i.e., characteristics of steady
state, spikes/bursts, flash crowds) using multiple kinds of
GENI resources [12], and are investigating adaptations
that provide higher transparency and better control of
virtual desktop delivery performance at thin-client user
sites for a variety of desktop applications.

The purpose of this paper is to inform the GENI com-
munity about our VDC experiments: background, progress,
accomplishments, broader vision for sustainability in GENI
and related open challenges. The remainder of the paper is
organized as follows: In Section II, we motivate why VDC
experiments cannot be done only at a table-top level in VMLab
pilot infrastructure [13] at The Ohio State University, and why
infrastructures such as GENI are essential to accomplish our
research and development goals.

In Section III, we present an overview of our completed
“provisioning” experiments, and our work-in-progress “place-
ment” experiments that leverage multiple kinds of GENI
resources that include: aggregates such as ProtoGENI, GENI
Meso-scale backbone network, measurement services such as
OnTimeMeasure and experimenter workflow tools such as
Gush, as well as commercial software such as VMware View.

In Section IV, we detail our experiment slice setup/configu-
ration, VDC application development as well as its deployment
within GENI to enable other experimenters to potentially
reproduce our experiments or at the least, use any best-
practices we adopted in GENI.

In Section V, we present our vision on how our experiment
experiences as well as outcomes can be leveraged in: (a)
classroom labs such as the one being planned at Purdue
University [20], and (b) “living labs” being envisioned as part
of the US Ignite initiative [21]. These labs aim at leveraging
GENI resources to foster training and wide-adoption of Future
Internet applications.

Lastly, in Section VI, we conclude the paper by presenting
a GENI outlook discussion on current capabilities and limita-
tions in early experimenter support. In addition, we identify
on-going activities in GENI that could make it easier for us
and for future experimenters to setup and execute experiments
similar to our VDC experiment in GENI.

Fig. 1. VD Clouds Today - Overprovisioning and Guesswork in
resource allocation with F-RAM

II. GENI RESEARCH EXPERIMENT CONTEXT

1) Research Problem: A “utility function” indicates how
much of application performance in a VD can be increased
with larger resource allocation [10] [14]. Beyond a point,
VD application utility saturates and any additional resource
allocation fails to further increase application performance.
Today, VDCs allocate resources to VD requests without the
awareness of system, network and human utility functions
and thus tend to use a Fixed Resource Allocation Model (F-
RAM), where all VDs are allocated equal amount of resources
(e.g., every VD gets 2 GHz CPU, 2 GB RAM, 2 Mbps
network bandwidth) as shown in Fig. 1. Such allocations
overprovision and guess the required amount of resources
needed for different VDs, and thus increase operation costs
due to resource wastage and could fail to meet user SLAs.
Consequently, some users are allocated more resources than
their application utility saturation points (see mobile user in
Fig. 1), and other users who need more resources are under
provisioned (see home user or research scientist in Fig. 1).

In comparison, U-RAM uses awareness of utility functions
of system, network and human components and profiles VD
requests into distinct desktop pools in order to provision the
appropriate amount of resources within each desktop pool.
Thus, U-RAM succeeds in minimizing operation costs and
reliably meets user SLAs as shown in Fig. 2. To realize the
benefit of U-RAM, we can see from Fig. 2 that additional
instrumentation and measurement with VDBench toolkit is
needed on the thin-client side, and resource adaptation has to
be based on profiling and feedback of thin-client and server
performance. The feedback can also be used for user QoE
measurement and bottleneck analyses as part of user “auto-
support” services of CSPs, who need the ability to qualify
and troubleshoot VD user QoE from the server-side (i.e., from
within the cloud).

2) VMLab → GENI Transition Motivations: Our early
experiments in developing VDBench toolkit and U-RAM
were performed in a table-top manner in our “VMLab” pilot
infrastructure [13] at The Ohio State University. VMLab is
a shared testbed developed in collaboration with VMware,
Dell and IBM in support of desktop virtualization experiments
for research and education communities. As shown in left-
half of Fig. 3, we used VMLab as a VDC data center that
features: (a) popular user applications (Spreadsheet Calculator,
Internet Browser, Media Player, Interactive Visualization), and
(b) TCP/UDP based thin-client protocols (Microsoft RDP,
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Fig. 2. VD Clouds in the Future - Intelligent resource allocation with
U-RAM and smart thin-clients

HP RGS, Teradici PCoIP) under a variety of emulated user
load and network health conditions. We obtained combined
utility functions of exemplar user groups from the testbed
[10] [11], which in turn were used to derive corresponding
desktop pools in U-RAM. For argument sake, we considered
three user groups: Engineering Site, Distance Learning Site
and Campus Lab, each provisioned as a separate desktop pool
within the VDC with a custom set of applications that use
different amounts of CPU, memory and network bandwidth
resources.

Although our preliminary experiments within VMLab
showed promise, true validation of U-RAM and VDBench
toolkit methodologies, and demonstration of their relevance
- needed to be done in a multi-data center VDC setting with
more realistic user, network and system loads, and with multi-
ple geographically distributed thin-client sites as shown in the
right-half of Fig. 3. We found that the GENI infrastructure
which has emerged as the “federated cloud” to be ideal for
transitioning and scaling up our VDC experiments. It provides
state-of-the art system and networking resources, as well as a
vibrant user community that is engaged in the creation, support
and usage of next-generation system and networking technolo-
gies. It also provides wide-area network programmability that
gives us the flexibility to conduct dynamic allocations and
migrations in our VDC experiments. The computational power,
networking bandwidth, network programmability, user opt-in
mechanisms, instrumentation-and-measurement services, and
experiment workflow tools in GENI are also appealing to run
cloud-based research experiments in a repeatable, scalable and
distributed manner.

III. EXPERIMENT GOALS AND ACCOMPLISHMENTS

3) Provisioning Experiments: In our first set of experi-
ments in GENI illustrated in Fig. 4, we validated the pro-
visioning performance of U-RAM described in our related
work in [10]. We were able to setup a VDC experiment
in the GENI infrastructure using ProtoGENI/Emulab system
resources [15], network resources spanning Internet2/NLR and
OARnet, OnTimeMeasure instrumentation and measurement
service [16], and Gush experimenter-workflow tool [17]. We
evaluated the feasibility of including PlanetLab [18] resources
into our experiment, but were unable to utilize the resources
due to lack of stability in the nodes to host a data center

Fig. 4. GEC10 Demo of VDCloud Provisioning Experiment to
compare U-RAM and F-RAM Schemes

environment, and also due to lack of graphics capabilities such
as X11 server needed to initiate thin-client VD connections.
Given that our VDC experiment had special needs (e.g., there
has not been a precedent in ProtoGENI/Emulab with setting up
ESXi hypervisor as part of a cloud experiment’s data center),
we faced challenges initially in our GENI slice setup. How-
ever, we have successfully over time - overcome most of the
challenges with very helpful assistance from the ProtoGENI
team (e.g., we now have a custom OS image installation
procedure that is consistent with ProtoGENI operations and
is repeatable).

We gave a live demonstration of our VDC experiment in
GENI at the GEC10 Networking Reception. We setup a slice
with 2 data centers, one at OSU VMLab and one at Utah
Emulab and reserved several other nodes in a separate “user
slice” to emulate thin-client VD connections. We set rate limits
at the data centers to 10 Mbps network bandwidth using
network emulators in order to setup a realistic environment
for data center networking for approximately 15 VD users.
Although we had setup the Utah Emulab data center earlier
for a brief period, due to slice expiration and our initial
challenges in making the hypervisor installation repeatable,
we were unable to use the Utah Emulab data center in our
live demonstration. As a result, we ended up using the OSU
VMLab data center for the U-RAM and F-RAM performance
comparisons.

On the user nodes reserved in GENI, we installed our
VDC application scripts, and OnTimeMeasure. Our VDC
application scripts were used to control the load generation
of thin-client VD connections, and OnTimeMeasure was used
along with VMware tools to collect and analyze performance
measurements in the network and at host resources. The
VMware tools provided an API for OnTimeMeasure to obtain
measurements relating to CPU, memory, and number of VD
connections at server-side. OnTimeMeasure was instrumented
with the Gush experiment XML files to control sampling and
query of measurements. Root Beacon of OnTimeMeasure was
installed at the OSU VMLab data center, and several Node
Beacons of OnTimeMeasure were installed at the thin-client
VD nodes to measure end-to-end network path measurements
of available bandwidth, latency and loss.

3



Fig. 3. VMLab Table-top Experiments transition to VMLab-GENI Cloud Experiments

A “cloud broker” 1 was developed that had a web-portal user
interface to live demonstrate increasing system and network
loads at experiment’s data centers through generation of thin-
client connections belonging to different user desktop pools.
The user slice included a demo site at the GEC10 Puerto
Rico conference venue, which initiated two separate thin-client
connections - one to check U-RAM performance and one to
check F-RAM performance. We used Matlab-based animation
of a horse point-cloud as the VD application to demonstrate
that U-RAM provides “improve performance” and “increased
scalability” in comparison to F-RAM. We characterized sat-
isfactory user QoE performance as the “smooth” rotation,
and unsatisfactory user QoE performance as the “irregular”
rotation - of the point-cloud horse animation. More details of
the above experiment setup and results can be found in [12].

4) Placement Experiments: In our second set of experi-
ments in GENI illustrated in Fig. 5, we are working towards
validating the performance of coupling U-RAM provisioning
with subsequent “placement” strategies across distributed data
centers, as described in our related work in [11]. The place-
ment decisions in VDCs are influenced by session latency,
load balancing and operation cost constraints. In addition,
placement decisions need to be changed over time for: (a)
proactive defragmentation of resources for improved perfor-
mance and scalability, and (b) reactive VD migrations for
increased resilience and sustained availability. The proactive
defragmentation of resources is performed using global op-
timization schemes to overcome the “resource fragmentation
problem” in VDCs that occurs due to placements being done
opportunistically to reduce user wait times for initial VD
access. We refer to opportunistic placements as those that are
performed using local schemes that use high-level information
about resource status in data centers. Over time, resource
fragmentation due to careless packing of VDs on resources
and due to changing application workloads - leads to the “tetris
effect” [19] that decreases scalability (VDs/core) and perfor-

1The objective of a cloud broker in practice is to handle online VD requests
and make decisions regarding the provisioning (i.e., resource sizing) placement
and (i.e., resource mapping) of resources. Thereby, it ensures user QoE is
satisfied while maintaining scalability of the VDC in terms of the overall
number of VDs handled.

Fig. 5. “Work-in-progress” VDCloud Provisioning and Placement
Experiment to validate U-RAM coupled with Cost-aware Migration

mance (user QoE), hence the VDC Net-Utility. In contrast,
the reactive VD migrations are triggered by cyber-attack or
planned maintenance events, and should be performed in a
manner that does not drastically affect the VDC Net-Utility.
However, it is important to note that - not all VD migrations
suggested by proactive or reactive schemes generate positive
benefit in VDC Net-utility, since VD migration is an expensive
and disruptive process. Hence, we model the cost-of-migration
and normalize it to utility of VDs, and migrate only the
VDs (“positive pairs”) that generate positive Net-benefit in
the VDC.

IV. SLICE TOPOLOGY SETUP AND CONFIGURATION

We now describe our latest experiment slice topology setup
and configuration that we are developing to validate our U-
RAM coupled with cost-aware migration scheme. There are
four major components of our VDC experiment: (i) data cen-
ters, (ii) thin-client sites, (iii) programmable network, and (iv)
cloud broker application. We have a 2 data center configuration
comprising of OSU VMLab and Utah Emulab resources with
IP connectivity (Layer 3) on the Internet. The “wide-area
ProtoGENI” (WAPG) nodes located at meso-scale campuses
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(e.g., Stanford, Georgia Tech, Clemson, Wisconsin, BBN)
will serve as thin-client sites. One of the WAPG nodes will
be used to host our VDC experiments OpenFlow controller.
The traffic from the thin-client sites are being made to flow
within VLANs (Layer 2) through OpenFlow-enabled network
segments in the GENI meso-scale backbone [22] network
(operated by Internet2/NLR) before reaching the data centers.

The slice topology has multiple network paths with long
and short geographical distances between the thin-client sites
and the data centers. As a result, we will be able to investigate
the use of OpenFlow for dynamic link bandwidth sizing and
the load balancing of multiple thin-clients connecting to the
data centers on diverse paths. We were advised to ensure that
we develop our OpenFlow implementations such that they
could be done in the GENI infrastructure routers/switches at
the hardware-level, as opposed to at the software-level, where
routing performance can be very slow. Currently, most actions
in OpenFlow implementations that pertain to Layer 2 headers
can be performed at hardware-level in the GENI infrastructure
routers/switches, however manipulating IP headers are mostly
done at the software-level.

Hence, the triggering of OpenFlow implementations to
identify, route and tear-down flows in our experiment will be
based on VDBench “marker packets” (shown in Fig. 5) that
will be sent from the data centers to the thin-client sites as
part of non-IP traffic sessions. The marker packets contain:
(a) Layer 2 information of the VDs in the data centers, (b)
information regarding the thin-client protocol being used, and
(c) information pertaining to the user group (i.e., Engineering
Site, Distance Learning Site and Campus Lab) of the VD
session. For emulating the OpenFlow implementation, we
recreated our slice topology in MiniNet [23] and validated
our OpenFlow controller software with simulated traffic.

We are planning to demonstrate our latest experiment
progress at GEC13 using a demo thin-client as shown in
Fig. 5. The demo thin-client will be used to show applica-
tion performance in virtual desktops under varying request
loads and fault-conditions. In conjunction, we are planning
to demonstrate our VDC simulator viz., “VDC-Sim” that also
acts as a cloud broker application for: VD request load control
using adjustable sliders, resource provisioning (i.e., U-RAM)
and placement (i.e., local and global cost-aware optimizations)
scheme selections, as well as for introducing fault-levels
(e.g., cyber-attacks, planned maintenance). We have already
seen promising results running simulation scenarios within
VDC-Sim, and we hope to validate our VDC-Sim with our
experiment demo at GEC13.

In Appendix A through C, step-by-step instructions on our
experiment slice setup/configuration as well as its deployment
within GENI are presented. Our hope is that these instructions
will enable other experimenters to potentially reproduce our
experiments or at the least, use any best-practices we adopted.

V. SUSTAINABILITY AND BROADER IMPACT

A. Experiment Evolution Requirements
We believe that our VDC research experiment experiences

and outcomes could serve as a basis for education and inno-
vation use cases, which leverage GENI resources to foster and
cross-pollinate: training, entrepreneurial enterprise outgrowths
and wide user-adoption - of Future Internet applications. We
hope to evolve our experiment in a manner that it can be
sustainable in the GENI community, and can attract actual

users for a future VDC instance leveraging GENI capabilities.
Also, we hope that we can convincingly demonstrate the
relevance of our schemes so that CSPs and industry vendors
of VDC related technologies such as VMware and Dell can
eventually adopt our schemes that are validated in GENI. The
evolution requirements that we plan to address relate to critical
attributes such as: reproducibility, modularity, programmabil-
ity and intuitiveness (or ease of use). Fortunately, these are the
evolution requirements of the various GENI components (e.g.,
infrastructure, software services) as well, that are inherent
in our VDC experiment. Ultimately, we plan to develop a
“portable VDC GENI experiment suite” that encompasses
our VDC-Sim, experiment methodology, VDBench toolkit,
cloud broker application and best practices in GENI. In the
following two sub-sections, we describe our early efforts to
improve sustainability and influence broader impacts of our
VDC experiment within the GENI community, and in turn
motivate the development of our VDC experiment suite.

B. Classroom Lab Use Case
We are collaborating with Purdue University to develop

classroom courseware (details of the proposed courseware can
be found in [20]) that exposes students to concepts relating to
computer and network virtualization, which have been realized
in practice within the GENI infrastructure. Students will have
the opportunity to obtain hands-on experience by modifying
our VDC experiment suite in GENI and will be able to
compare resource allocation schemes and performance of thin-
client protocols for diverse virtualized desktop applications.
They will be able to use the VDBench and OnTimeMeasure
tools to obtain network, system and user QoE measurements,
and will be able to reconfigure GENI slices to optimize
resource allocations. Further, as part of a more advanced
course or for extra credit, students could extend the VDC
experiment suite for more in-depth evaluations of thin-client
protocol optimization (e.g., aggressive pipelining, forward
error correction, tunneling) or even write new OpenFlow
controllers within the cloud broker application in the VDC
experiment suite.

C. “Living Lab” Use Case
We are collaborating with cities of Dublin, OH and Chat-

tanooga, TN to develop “living labs” being envisioned as
part of the US Ignite initiative [21]. Both these cities have
made significant investments in broadband access and data
center infrastructures, and are seeking to deploy novel Gigabit
applications such as our VDC experiment in GENI for their
local communities, especially for high-tech small businesses.
The cities are working towards supporting GENI-enabled racks
in their data centers and are willing to provide “cheap virtual
desktops with custom applications” for small businesses to
use on-demand. As part of our extended VDC experiments in
GENI, our plan is to conduct pilot studies that will enable
small businesses in these cities to use virtual desktops that
generate business value. As a consequence of the studies: (a)
the cities will realize the challenges (e.g., policy, technology
feasibility) of providing the service to small businesses, (b)
we will have the opportunity to modify our VDC experiment
suite to cater real user needs, (c) small business users will
be able to assess benefits from such a city-supported service,
and (d) a business model could be developed for making the
city-supported service a commercially viable enterprise.
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VI. CONCLUSIONS

As an early experimenter in GENI, we were expecting
to gain several benefits as well as face several challenges
in working with the GENI infrastructure and development
community. We found that the GENI community is well setup
to provide experimenter support for our VDC experimenta-
tion through friendly point-of-contacts in the various GENI
projects. In addition, we found that the GENI initiative greatly
removes the burden for us to procure physical resources, and
has several tools to setup and perform routine tasks involved
in running experiments. The GENI Engineering Conference
sessions, demonstrations at networking receptions, tutorials,
wikis, mailing-lists and cluster conference calls are very help-
ful to learn about GENI-wide activities, discuss experiment
ideas and find resolutions to any experiment-related problems.

In terms of challenges, we found in our early days of setting
up our experiments that there were sparse resources with high
amounts of CPU and RAM for setting up multiple geographi-
cally distributed VDC data centers. In addition, given the lim-
ited number of available distributed nodes that can act as thin-
client sites, we have not been able to run as many thin-client
sessions in our experiments as we had originally hoped. Also,
given the shared nature of the infrastructure, experimenters
are not encouraged to have long-standing reservations of non-
sharable resources (such as ProtoGENI resources) in GENI
slices. Further, given that the GENI community is rapidly
enhancing infrastructure and software, finding appropriate
documentation on our own was a challenge, and there is a
significant learning curve for a student in setting up advanced
experiments. However, given the facts that: (a) GENI racks
and other meso-scale deployments are ramping up, (b) tools
to help experimenters are being improved and integrated into
GENI on a daily-basis, and (c) there is a growing trend in
the documentation examples that experimenters can use to
build on - the outlook for future experimenters in terms of
capabilities and ease-of-use in GENI is promising.

The ultimate realization of GENI will be when we will
be able to perform large-scale VDC experiments that possess
the dynamic nature of the Internet in terms of: (a) user
behavior/cyber-attacks/cross-traffic, (b) actual user accessible
VDC services, and (c) classroom labs that use VDC services
in GENI. At that point, we can expect that words in the
GENI glossary such as “slice” will have become mainstream
vocabulary in the society.
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APPENDIX A
DATA CENTERS

A. Resource Reservation
Using the below NS file, we requested a slice in Emulab

with a Dell D710 hardware node and a compatible OS:
set ns [new Simulator]
source tb_compat.tcl
set esxi [$ns node]
tb-make-soft-vtype N {d710}
tb-set-hardware $esxi N
tb-set-node-os $esxi FEDORA10-STD
$ns rtproto Static
$ns run

B. Image Bootup
The ESXi Kickstart files obtained from the ESXi ISO were

deployed on to a web server (http://〈IPAddress〉/kickstart/)
1) A gPXE config ’default’ file was created to describe

the URL location of the kernel files that the web server
accesses.

default 1
prompt 1
menu title VMware VMvisor Boot Menu
timeout 50
label 1
kernel http://<IP Address>/kickstart/esxi/mboot.c32
append http://<IP Address>/kickstart/esxi/vmkboot.gz ks=http

://<IP Address>/kickstart/ks.cfg --- http://<IP Address
>/kickstart/esxi/vmkernel.gz --- http://<IP Address>/
kickstart/esxi/sys.vgz --- http://<IP Address>/
kickstart/esxi/cim.vgz --- http://<IP Address>/
kickstart/esxi/ienviron.vgz --- http://<IP Address>/
kickstart/esxi/install.vgz

label 0
localboot 0x80
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C. Server Customization
1) A kickstart config file ’ks.cfg’ was created that was used

to customize the ESXi’s servers at both the OSU VMLab
and the Utah Emulab data centers.
The following fields were defined:

a) root password
b) disk format issue
c) web server URL of kernel files
d) network settings

# Accept the VMware End User License Agreement
vmaccepteula

# Set the root password for the DCUI and Tech Support
Mode

rootpw root-password

# Choose the first discovered disk to install onto
autopart --firstdisk --overwritevmfs

# The installation media is in the CD-ROM drive
install url http://<IP Address>/kickstart/esxi

# Set the network to DHCP on the first network
adapater

network --bootproto=dhcp

##%*post --unsupported --interpreter=busybox*
##reboot

At the OSU VMLab data center, the below steps were
done by our system administrator. At the Utah Emulab
data center, we contacted the Emulab administrator for
the steps listed below.

2) gpxelinux.0 and ‘default’ files were given to the Emula-
b/VMLab administrator to place on their TFTP server.

a) The administrator manually set the DB state for
that node to use gPXE

b) The node was then restarted so that it booted using
gPXE

c) The scripts that were previously configured auto-
mated the install process. Upon completion of the
install, the ESXi node stops at a screen saying
‘Press any key to reboot’

d) The Administrator modified the boot order for the
node so that it was able to boot off of the local hard
drive, and not the gPXE. The administrator also set
boot partition to “0” so that it booted through the
MBR. Failure to do this will cause the installation
process to continually loop.

e) TCP/UDP port 902 on the Emulab firewall had to
be opened for this node.

3) At this point, we were able to connect to the Utah
Emulab/OSU VMLab ESXi server with the VMware
vSphere Client.

D. Deploying Desktop Pools
The layer 2 connectivity that was described in Section IV

brings many benefits in addition to the programability that
OpenFlow provides. Since both data centers will be on the
same VLAN, the multiple data center setup can be simplified
to a single IP subnet. This in turn simplifies our DHCP, DNS,
and Active Directory (AD) configuration across both data
centers. We can use the existing DHCP, DNS, and AD in
OSU VMLab to support the Utah Emulab data center. The
only redundant component we need is the connection broker
i.e., VMware View Manager that tunnels a VDC request to the
virtual desktop. Once we have a connection broker in place,

we can deploy our desktop pools in Utah Emulab using the
same methodology we used in OSU VMLab. The steps to
create pools in a data center are listed below:

1. Login to the Connection server web-portal http://<IP
Address>/admin

2. Go to Inventory -> Pools and Click Add
3. Select Automated Pool
4. Select Dedicated Pool and Enable Automated Assignment
5. Select View Composer Linked Clones
6. Enter an ID and give Display name as <usergroup>
7. Pool settings, View Composer Disk settings can be left to

default settings
8. In the provisional settings, give name convention as <

usergroup_> and pool size ˜10
9. In the Default image, select an appropriate

Windows_XP_template and appropriate snapshot.
10. Select appropriate virtual machine folder, and select

host and cluster where you want to deploy the pool.
11. Repeat these for each of the <usergroups: engineering

site, distance learning site, campus lab>

APPENDIX B
THIN-CLIENT SITES

We developed a custom package (available upon request)
that we installed before starting the setup of the thin-clients
and the cloud broker application. The package contains the
scripts necessary for configuring thin-clients and the cloud
broker application.

A. Resource Reservation

We created an “user slice” in GENI and reserved several
nodes that were used as thin-clients. This step requires a
ProtoGENI user account. The sample .ns file below requests
for 5 nodes with FEDORA-8 .

set ns [new Simulator]
source tb_compat.tcl
set node1 [$ns node]
set node2 [$ns node]
set node3 [$ns node]
set node4 [$ns node]
set node5 [$ns node]
set lan0 [$ns make-lan "$node1 $node2 $node3 $node4 $node5"

100Mb 0ms]
tb-set-node-os $node1 FEDORA8-STD
tb-set-node-os $node2 FEDORA8-STD
tb-set-node-os $node3 FEDORA8-STD
tb-set-node-os $node4 FEDORA8-STD
tb-set-node-os $node5 FEDORA8-STD
$ns rtproto Static
$ns run

The above .ns file creates a LAN with 5 ProtoGENI nodes.

B. Configuring Thin-clients

The nodes were installed with software to enable: (i) view-
ing the performance of allocated VDs from the data center (via
VMware View Client), and (ii) users to connect via thin-clients
(via VNC Viewer) to the data centers to generate request loads.
We also created automated scripts that stored username and
password and installed them on all the reserved nodes.

1) To enable auto-login, users need to authenticate with the
new ProtoGENI nodes by logging into all the new Pro-
toGENI nodes. This step can be avoided by adding the
experiment domain to known host list in ∼/.ssh/config.
For example, the below step will ensure that any host
from emulab.net is added to the list of known hosts.

echo -e "Host *.emulab.net\n\tStrictHostKeyChecking no
\n" >> ˜/.ssh/config
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2) To install the required software, we ran the bash
script listed below which automatically installed all
the required scripts on all the thin-client nodes in
listofnodes.

a) login credentials for ProtoGENI node were entered
in RemoteLogin.pl file, lines 15 and 16.

my $user="<your-ProtoGENI-username>";
my $pass="<your-ProtoGENI-password>";

b) Automation of installation procedure:

./RemoteLogin.pl file-with-list-of-all-nodes ./
emulab.sh

To do above step manually, login to each thin-
client node and install software individually as
listed below:
i) Download VMware View Client. For this, login

to one of your ProtoGENI nodes and execute:

wget http://vmware-view-open-client.
googlecode.com/files/VMware-view-open-
client-4.5.0-297975.x86_64.rpm

ii) Copy the contents of the nodeSetup folder on
your web-server to the home directory of your
ProtoGENI node.
Next, manually login to each of the nodes and
execute the emulab.sh script to install the pre-
requisites. Also it is required to create a new
password for vncserver. This would be required
while connecting to the data center through
VNC viewer.

iii) rDesktop setup: rDesktop setup is done by
running scripts corresponding to the usergroup
and the resource allocation scheme preferred.
The contents of the script are shown below:

#!/usr/bin/perl -w
use strict;
system "sudo killall Xvnc;rm -rf .vmware";
eval {‘vncserver :10‘};
sleep 15;
print "starting vmview..";
eval {‘vmware-view -s http://<IP Address>:80

-d vm.lab -n "Engineering" -u
Engineering -p engineering -q --display
=:10> view.log 2>&1 &‘};

print "Done.";

In the second last-line, following parameters
are configured:

-s: view-connection broker address
-d: domain name for your VHDs network
-n: resource pool name
-u: usergroup name
-p: password for the usergroup
-q: silent mode

The required credentials change based on the
usergroup.

APPENDIX C
CLOUD BROKER APPLICATION

The cloud broker application for the resource allocation
scheme was controlled from a web-portal in our VDC provi-
sioning experiments. Experimenters could choose a resource
allocation scheme and move sliders to simulate VD request

loads. Starting the experiment by clicking on “Run” but-
ton would then invoke a series of scripts in the VDCloud-
GENI.tar.gz package. For our VDC placement experiments, we
are developing a MATLAB-based user interface as our cloud
broker application. The setup steps listed below are common
for both the web-portal and the MATLAB based applications.

1) Installing Required Perl Modules
For the VDC provisioning experiment, install
Net::SSH::Perl before running the scripts. For the
VDC placement experiment, below is the list of
modules that were installed:
Net::SSH::Perl
Math::Matrix
List::Util
Config::Tiny
Config::IniFiles

2) Editing the nodes-list file:
We listed all the nodes used in the experiment in
AllNodesURAM, AllNodesFRAM, vanillaNodesURAM
and vanillaNodesFRAM to enable scripts to access the
status of these nodes. ”status” indicates if the node is
available or if it is already assigned to an usergroup as
determined by the cloud broker.
status,your-ProtoGENI-node-name

Initially, status is set to available, the status thereon is
maintained as per experiment state. Example:
available,node1.VMLab.geni.emulab.net
available,node2.VMLab.geni.emulab.net
available,node3.VMLab.geni.emulab.net
available,node4.VMLab.geni.emulab.net
available,node5.VMLab.geni.emulab.net

3) The resourceAtDataCenters file contains the resources
available at the data centers used for the experiment.
The values in this file could be set to be less than the
actual resources in order to constrict certain resource
consumption behavior. An example set of values is
shown below:
L1,"CPU",16,"Network",50,"RAM",32

The userGroupUtilityFunction file contains the user-
group characteristics from ‘VDBench’ measurements.
An example set of values is shown below:
Campus Computer Lab,"CPU",0.5,1.4,"RAM",0.2,0.8,"

Network",0.1,1.2
Engineering Site,"CPU",0.7,1.5,"RAM",0.350,1.2,"

Network",0.2,1.5
Distance Learning,"CPU",0.3,1.5,"RAM",0.2,1.1,"Network

",2,4
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