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1   Introduction 
GENI—a Global Environment for Network Innovations—is an experimental facility intended to 
enable fundamental innovations in networking and distributed systems. The essence of the 
GENI facility is its ability to rapidly and effectively embed within itself a broad range of 
experimental networks, interconnect these experimental networks as appropriate with other 
experiments and the existing Internet, provide these networks with users and an operating 
environment, and rigorously observe, measure, and record the resulting experimental 
outcomes. The proposed facility will span a range of extant and emerging technologies (e.g., 
wireless sensors, mobile wireless, high function optical), layers of network architecture (e.g., 
physical to network to network services), geographic reach (e.g., wearable personal-area 
networks to wide-area networks), and application domains (e.g., high bandwidth, compute 
intensive e-science to low bandwidth, low duty-cycle sensor applications to large scale 
information dissemination).  

GENI provides these capabilities through an innovative combination of techniques: 
virtualization, programmability, controlled interconnection, and modularity. Virtualizing the physical 
hardware allows multiple network architectures and services to run simultaneously. This 
includes long-running services and applications that attract real users, which results in realistic 
evaluations and drives adoption and deployment. Programmability allows clean-slate designs 
to run side-by-side with incremental experiments. Controlled interconnection allows a wide 
variety of experiments to build on and interoperate with each other, while providing for each 
experiment an appropriate controlled-risk environment. GENI’s modular design structure 
explicitly accommodates the evolution of new building block technologies over time. This same 
structure supports federation, which allows other countries and research communities to “plug 
into” GENI. 

This document, building on the research plan and facility requirements presented elsewhere 
[GDD-06-28], describes the design of the GENI facility. It introduces the key hardware and 
software elements that make up GENI, along with the system architecture that combines these 
elements into a coherent facility. The document also sketches a reference design for the various 
pieces that define the facility, which forms the basis for a concrete budget and construction 
plan, which are also presented elsewhere [GDD-07-45]. 

1.1   System Architecture 
The overall facility architecture can be divided into three levels, as illustrated in Figure 1.1. At 
the bottom level, GENI provides a set of physical facilities (e.g., routers, processors, links, 
wireless devices), which we refer to as the physical substrate. The design of this substrate is 
concerned with ensuring that physical resources, layout, and interconnection topology are 
sufficient to support GENI’s research objectives. As technology evolves, it is expected that the 
set of network technologies included in the substrate will evolve as well. A key goal of the 
overall GENI architecture is to enable and accommodate the evolution of these technologies 
throughout the lifetime of the facility. 
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Figure 1.1: Overview of the GENI Architecture 

At the top level, GENI’s user services provide a rich array of user-visible support services 
intended to make the facility accessible and effective in meeting its research goals. As researcher 
requirements change and GENI’s sophistication advances, it is expected that the set of available 
user services will change and advance as well. A key goal of the overall GENI architecture is to 
foster the evolution of these services throughout the lifetime of the facility. 

Sitting between the physical substrate and the user services is the GENI Management Core, or 
GMC. The purpose of the GMC is to define a stable, predictable, long-lived framework—a set of 
abstractions, interfaces, and name spaces—to bind together the GENI architecture. Because 
GENI’s physical substrate and user services will develop and evolve rapidly as the facility is 
constructed and used, the GMC is designed to provide a narrowly defined set of mechanisms 
that both support and foster this development and isolate developmental change in one part of the 
system from that in other parts, so that independent progress may be made. 

By analogy with today's Internet architecture, the GENI architecture conforms with the hour-
glass model: the GMC corresponds to the IP layer of the Internet stack with its attendant 
addressing routing and service model  (i.e., it defines the “narrow waist” of the GENI 
hourglass); the set of high-level user services corresponds to the additional functionality needed 
to make the Internet a complete system (e.g., HTTP, WWW, BGP); and the GENI substrate 
corresponds to the collection of computing and networking devices that make up the physical 
Internet.  
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For GENI to function, the GMC must be reduced to a specific implementation. We refer to this 
implementation as the GENI Management Core Implementation, or GMCI. The GMCI provides 
two key elements of the overall GENI system: (1) the small set of core services that are necessary 
for the system to operate, and (2) an underlying messaging and remote operation invocation 
framework needed for elements of the GENI system to communicate with each other. An 
important aspect of the GMCI is its ability to allow different implementations and versions of 
non-core user services to be easily added to the system as appropriate. 

1.2   Physical Substrate 
The physical network substrate consists of an expandable collection of building block 
components. The set of components chosen for inclusion within GENI at any given time are 
intended to allow the creation of virtual networks covering the full range needed by GENI’s 
constituent research communities.  

We expect the set of building block components to evolve over time as technology and research 
requirements advance, but we define an initial set of components to be deployed: 

• Programmable Edge Clusters (PEC) intended to provide the computational resources 
needed to build wide-area services and applications, as well as initial implementations of 
new network elements. 

• Programmable Core Nodes (PCN) intended to implement core network data processing 
functions for high-speed, high volume traffic flows. 

• Programmable Edge Nodes (PEN) intended to implement data forwarding functionality at 
the boundary between access networks and a high-speed backbone. 

• Programmable Wireless Nodes (PWN) intended to implement proxies and other 
forwarding functionality within a wireless network. 

• Client Devices intended to run applications that give end-users access to experimental 
services available on the combined wired/wireless substrate. 

• A National Fiber Facility intended to provide 10-40Gbps light path interconnection 
between GENI core nodes, forming a nationwide backbone network. 

• A large number of tail circuits of varying technologies, intended to connect GENI edge sites 
to the GENI core, and with appropriate security mechanisms, to connect the GENI core to 
the current commodity Internet. 

• Multiple Internet Exchange Points connecting the nationwide backbone to the commodity 
Internet. 

• One or more Urban 802.11-based Mesh Wireless Subnets intended to provide real-world 
experimental support for ad-hoc and mesh network research based on an emerging 
generation of short-range radios. 

• One or more Wide-Area Suburban 3G/WiMax-based Wireless Subnets intended to 
provide open-access 3G/WiMax radios for wide area coverage, along with short-range 
802.11 class radios for hotspot and hybrid service models.  
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• One or more Cognitive Radio Subnets intended to support experimental development and 
validation of emerging spectrum allocation, access, and negotiation models. 

• One or more Application-Specific Sensor Subnets capable of supporting research on both 
underlying protocols and specific applications of sensor networks. 

• One or more Emulation Grids that allow researchers to introduce and utilize controlled 
traffic and network conditions within an experimental framework. 

 

Figure 1.2: Global perspective of GENI physical substrate. 

Figure 1.2 gives a high-level depiction of the physical substrate, showing a national fiber facility 
connecting a set of backbone sites, each of which is connected by tail circuits to edge sites that 
host clusters, wireless subnets, and sensor networks. Some of the backbone sites are also 
connected, via Internet Exchange Points, to the commodity Internet. Figure 1.3 provides an 
alternative view of a given backbone site, illustrating how the different components are 
connected into GENI. Note that each subnet (site) is connected to both the GENI backbone and 
the commodity Internet. 
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Figure 1.3: Backbone site perspective of GENI components that make up the physical substrate. 
The PCN at the backbone Point-of-Presence is connected to edge sites via some tail circuit 

technology. Edge sites are connected to both the GENI backbone and the commodity Internet. 

1.3   User Services 
The user services collectively knit the building blocks that comprise the physical substrate 
together into a coherent scientific instrument—a single distributed facility that is capable of 
supporting the research agenda. These services must support several distinct user communities, 
including: 

• Owners of parts of the substrate, who are therefore responsible for the externally visible 
behavior of their equipment, and who establish the high-level policies for how their portion 
of the substrate is utilized. 

• Administrators of parts of GENI, often working for owners or under contract to the GENI 
organization, whose job it is to keep the platform running, provide a service to researchers, 
and prevent malicious or otherwise damaging activity exploiting the platform. 

• Developers of user services who build on the GMC interfaces to implement services of 
general use to the GENI community. 
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• Researchers employing GENI in their work, for running experiments, deploying 
experimental services, measuring aspects of the platform, and so on. 

• End users not affiliated with GENI, but who access services provided by research projects 
that run over GENI. 

• Third parties that may be confused or concerned about the effect that GENI-hosted 
experiments and services are having on their own enterprises. 

Based on this list of players, we identify the following activities that the user services must 
provide (and the GMC must mediate): 

• Allow owners to declare resource allocation and usage policies for substrate facilities under 
their control, and to provide mechanisms for enforcing those policies. The assumption is 
that there will be multiple owners and it will be a federation of these facilities that will form 
the entirety of the facility. 

• Allow administrators to manage the GENI substrate, which includes installing new physical 
plant and retiring old or faulty plant, installing and updating system software, and 
monitoring GENI for performance, functionality, and security. Management is likely to be 
decentralized: there will be more than one organization administering disjoint collections of 
GENI sites. A broad spectrum of management styles is possible, ranging from individual 
owners managing their own machines, to a small number of large organizations that 
federate at a coarse grain.  

• Allow researchers to create and populate experiments, allocate resources to them, and run 
experiment-specific software. Some of this functionality, such as convenient installation of 
software, including libraries or language runtimes, may be provided by higher-level 
services; the GMC aims to support the deployment and configuration of such software (see 
next point). The GMC must also expose an execution environment to researcher's 
applications, experiments, and services. These execution environments must be flexible (i.e., 
support a wide-range of program behavior) and perform satisfactorily (i.e., not unduly 
interfere with or distort the measurements or results). 

• Expose low-level information about the state of the GENI substrate to developers, so they 
can implement high-level monitoring, measurement, auditing, and resource discovery 
services. In some sense, GMC can be regarded as analogous to the “kernel” of GENI as a 
distributed system, and consequently should expose (in a controlled manner) information to 
services interested in managing the system, using it effectively, and scientifically observing 
its operation. 

2   System Architecture 
This section describes, at a high level, the architecture of the GENI facility. The focus is on the 
GENI Management Core (GMC), which defines a stable, predictable, and long-lived framework—
a set of abstractions, interfaces, and name spaces—that binds together the GENI architecture. 
Because GENI’s physical substrate and user services will develop and evolve rapidly as the 
facility is constructed and used, the GMC is designed to provide a narrowly defined set of 
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mechanisms that both support and foster this development and isolate developmental change in 
one part of the system from that in other parts, so that independent progress may be made. 

2.1   Abstractions 
The GMC defines three key abstractions: components, slices, and aggregates. This section 
introduces the abstractions; the following section describes the interfaces they support. 

2.1.1   Components 

The GMC defines components as the primary building block of GENI. For example, a component 
might correspond to an edge computer, a customizable router, or a programmable access point.  

A component encapsulates a collection of resources, including physical resources (e.g., CPU, 
memory, disk, bandwidth) logical resources (e.g., file descriptors, port numbers), and synthetic 
resources (e.g., packet forwarding fast paths). These resources can be contained in a single 
physical device or distributed across a set of devices, depending on the nature of the 
component. A given resource can belong to at most one component.  

Each component is controlled via a component manager (CM), which exports a well-defined, 
remotely accessible interface. The component manager defines the operations available to user-
level services to manage the allocation of component resources to different users and their 
experiments. 

A component owner is a principal that establishes policies about how the component's resources 
are assigned to users; that is, owners define the resource allocation and acceptable use policies 
for their components. 

Multiplexing 

It must be possible to multiplex (slice) component resources among multiple users. This can be 
done by a combination of virtualizing the component (where each user acquires a virtual copy 
of the component's resources), or by partitioning the component into distinct resource sets 
(where each user acquires a distinct partition of the component's resources). In both cases, we 
say the user is granted a sliver of the component. Each component must include hardware or 
software mechanisms that isolate slivers from each other, making it appropriate to view a sliver 
as a “resource container.” 

Although every component must respond to the slice creation and control operations, each 
component may establish limits on the number of simultaneous users it can support. In 
particular, a component that is incapable of being shared may limit itself to supporting one 
active user at any given time. 

A sliver that includes resources capable of loading and executing user-provided programs can 
also be viewed as supporting an execution environment. Slivers that support such execution 
environments are said to be active slivers. 
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Containment 

It must also be possible to restrict the behavior of a component—and the slivers it hosts—in the 
surrounding network. This is particularly important with respect to traffic that flows between 
the component and the legacy Internet. This containment includes the rate at which a 
component can send traffic into the network, the other components and slivers with which it 
can communicate, and the rate at which a component can initiate communications with new 
components. It may also restrict packet-formats and the ability to spoof source addresses, as 
well as place protocol-specific rate limits on slivers. The component must also audit packets that 
are transmitted to the Internet so that responsibility for any unwanted or disruptive traffic can 
be traced back to the responsible sliver. 

In the worst-case scenario, it must be possible to rapidly disconnect the component from the 
network, and bring it into a safe state, from which problems (including potential security 
compromises) can be diagnosed. 

Virtual Interfaces 

The precise execution environment provided by a sliver can be defined along several 
dimensions, and hence, any type system for slivers could become arbitrarily complex. We 
therefore define four base sliver types, and give users the ability to customize their 
environments by installing additional software packages. The four base sliver types correspond 
to the interface by which slivers access the underlying network substrate; they include: 

• Socket Interface: Slivers access the network through the standard socket interface. This 
interface allows inter-component communication is via TCP or UDP connections, or IP 
tunnels. The socket interface does not imply a fixed topology—all components participating 
in the experiment are reachable (addressable) to the extent they are reachable via today’s 
Internet. The experiment is free to choose whatever peering arrangement it wishes. 

• Virtual Link Interface: Experiments access the network through a virtualized link interface. 
This interface exposes transmission queues and link failures, and the virtual links can be 
configured to provide best-effort service or CBR guarantees. The virtual link interface 
implies a fixed topology—the set of links (peers) available at each component is statically 
defined when the sliver is created, and is not under control of the experiment running in the 
sliver.1 There are two sub-cases of this interface: (1) the virtual link is point-to-point 
between a pair of components; and (2) the virtual link is multi-point, corresponding to a
VLAN. Details of this interface can be found elsewhere [GDD-06-25]. 

 

                                                     

• Virtual Radio Interface: Experiments access radio spectrum through a virtualized radio 
interface. This interface exposes the characteristics of radio devices at the PHY/MAC layers. 
Specifically, the virtual radio can be configured to select a specific physical transmission 
rate, adjust the transmit power within a range, set threshold values of certain radio 

 

1 The experiment running in the slice is free to logically “inject failures” so as to logically bring 
one or more of its links down, for example, to evaluate a new routing algorithm. 
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parameters, and so on, depending on the type of radio device. Details of this interface can be 
found elsewhere [GDD-06-21]. 

• Virtual Wire Interface: Experiments access the network through a virtualized control 
interface that permits the dynamic creation, termination, and provisioning of end-to-end 
circuits. Some amount of physical link capacity (e.g., an optical wavelength) is allocated to a 
slice when it is created, with the set of end-to-end circuits multiplexed onto that capacity 
under the control of the experiment running in the slice. There are three sub-cases of this 
interface: (1) the underlying capacity corresponds to a framed TDM electrical circuit; (2) the 
underlying capacity corresponds to an unframed TDM electrical circuit; and (3) the 
underlying capacity corresponds to an unframed optical circuit (e.g., a wavelength). Details 
of this interface can be found elsewhere [GDD-06-26]. 

Management Authorities 

A hierarchy of management authorities (MA) is responsible for the substrate components. GENI 
assigns a unique identifier to each component (as described in Section 2.2.1), but in addition, a 
component has a human-readable name corresponding to this hierarchy. For example, 

geni.us.backbone.nyc  

might name a component at the NYC PoP of GENI’s US backbone. In this case, the 
geni.us.backbone management authority is responsible for the operational stability of the 
component. 

2.1.2   Slices 

A slice corresponds to a set of slivers spanning a set of GENI components, plus an associated set 
of users (researchers) that are allowed to access those slivers for the purpose of running an 
experiment on GENI. Users run their experiments in a slice of the GENI substrate. 

A slice has a name, which is bound to the set of users associated with the slice, as described 
below. There exists a (possibly empty) set of slivers that participate in the slice, but the GMC 
does not define a concrete representation for slices. Instead, the representation of a slice is 
defined by whatever service creates the set of slivers on behalf of some user. 

Slice Authorities 

A hierarchy of slice authorities (SA) is responsible for the behavior of slice. GENI assigns a 
unique identifier to each slice (as described in Section 2.2.1), but in addition, a slice has a 
human-readable name corresponding to this hierarchy. For example, 

geni.us.princeton.codeen  

might name a slice created by the GENI slice authority, which has delegated to the US, and then 
to Princeton, the right to approve slices for individual projects (experiments), such as CoDeeN 
[WPPP04]. GENI defines a set of expectations for all slices it approves, and directly or indirectly 
vets the users assigned to those slices. Note that the GENI slice authority is expected to support 
slice creation on behalf of network and distributed systems researchers as part of the NSF GENI 
project. Because it is possible that other related facilities will federate with GENI, and there will 
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be other uses of the greater GENI ecosystem, we allow for the possibility that there will be other 
top-level slice authorities. 

Note that slice names are used for many purposes: 

• they identify slices to human users; 

• they represent a hierarchy of slice authorities, where we assume a slice name is not both a 
slice and a slice authority;  

• they represent authorization to create slices and manipulate slices, both in the sense that a 
user may invoke a slice create operation on a slice name in the slice authority hierarchy and 
in the sense that a user bound to this slice is explicitly authorized to perform all operations 
on the slice; 

• they identify slices within an audit trail of responsibility; and 

• they index a database describing all resources found in all slices (e.g., authorization keys).  

Experiments 

An experiment is a researcher-defined use of a slice; we say an experiment runs in a slice. 
Although often conflated, it is important to distinguish between the two concepts. The GMC 
defines an interface that is used to create and control slices. This includes operations for 
embedding the slice in a set of GENI components. Once a slice exists and resources have been 
bound to it, a researcher is free to further configure (program) the slice as part of an experiment, 
either directly, or by utilizing available experiment management services (Section 4.2). This 
includes loading and executing code in the slice’s constituent slivers, and setting any 
parameters exposed by the constituent execution environments. Thus, slice creation is distinct 
from experiment configuration, and in fact, multiple experiments may run in a single slice over 
time, each parameterized in a different way but all utilizing the same set of component 
resources. 

Many experiments are expected to be short-lived, for example, they might run for an hour at a 
time. Some experiments will be longer-lived, running continuously and processing real network 
traffic on behalf of a user community. Because such experiments are likely to provide a useful 
service to some user community, we often call them experimental services. In many respects, 
these experimental services are similar to the user services described in Section 4, the only 
difference being the former are likely targeted at end users not affiliated with GENI, while the 
latter are specifically designed on behalf of GENI researchers. 

Services 

We expect the set of distributed services that users employ to help manage their slices, and 
leverage to help implement the experiments running in those slices—collectively called user 
services—will themselves often run in slices of GENI. For example, 

geni.monitor 

geni.filesystem  
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geni.repository 

might denote GENI-wide monitoring, file system, and repository services, respectively. All 
three of these services run in their own slice of GENI and export an interface to other GENI 
users. Note that similar services can be provided by any SA in the system; e.g., 

geni.us.utah.monitor  

might correspond to an alternative monitoring service. Because it is often the case that slice 
names and service names are equivalent from a user's point of view, we sometimes use the 
terms “slice” and “service” interchangeably. 

When a slice name is used to also denote a service, the slice name is sometimes bound to a URI 
at which an interface for the service can be called. Note that there are likely to exist services that 
do not run in a slice, for example, by supporting the composition of other services, where we 
sometimes call a user interface constructed from the composition of sub-services a portal.  

2.1.3   Aggregates 

While the architecture does not mandate any particular relationship among components—users 
are free to create a set of slivers on any set of components for which they can acquire the 
necessary rights—for a variety of reasons it is useful to define functionality relative to a related 
set of components. We introduce an aggregation construct for this purpose. 

An aggregate is a GENI object that represents an unordered collection of components. It has an 
identity and supports the natural operations of a collection (e.g., addition, deletion, and 
enumeration). Aggregates provide a way for users, developers, or administrators to view a 
collection of GENI components together with some software-defined behavior as a single 
identifiable unit. 

Aggregates can be hierarchical, that is, they can contain other aggregates as well as components. 
A given aggregate or component can be a member of zero, one, or many aggregates. 

Example aggregates might correspond to a physical location (components co-located at the 
same site), a cluster (components that share a physical interconnect), an authority (a group of 
components managed by a single authority), a configuration (a group of components that share 
configuration information), or a network (a group of components that collectively implement a 
backbone network or a wireless subnet). There also might be a “root” aggregate that 
corresponds to all GENI components. 

An aggregate is an active object, able to accept and respond to operations invoked on it. These 
operations are implemented by an aggregate manager (AM). Similar to a component and its 
component manager, an aggregate has a unique identifier that is used by the GMCI to invoke 
operations on the aggregate, and it has a human-readable name drawn from the same name 
space as components.  

To the extent that an aggregate exports a component interface, it can be treated as a component, 
and there is a good argument for naming it as such.  However, it is clear that aggregates will 
also export other interfaces that components will not; e.g., the aggregation interface. Our 
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approach is to name aggregates in the component space and provide a reflection interface to ask 
about other interfaces that the aggregate exports.   

A more detailed discussion of how the component and aggregate abstractions can be used in 
practice can be found in a companion document [GDD-07-42]. 

2.1.4   Users 

GENI users create and manipulate slices.  Each user is identified by a certificate and key pair 
issued by one of the GENI authorities, where the ability to credential users is delegated.  Rights 
to operate on slices are associated with user credentials.  User credentials are associated with 
slices as described above. 

2.2   Interfaces 
This section briefly introduces the set of interfaces by which principals manipulate components, 
slices, and aggregates. It also describes how objects are identified, and defines the key data 
types that complete the interface picture. The discussion is purposely high-level. A companion 
set of XSD and WSDL specifications give precise definitions of the GMC interfaces [GMC Spec].  

2.2.1   Names & Identifiers 

The GMC defines unambiguous identifiers—called GENI Global Identifiers (GGID)—for the set 
of objects that make up GENI.  GGIDs form the basis for a correct and secure system, such that 
an entity that possesses a GGID is able to confirm that the GGID was issued in accordance with 
the GMC and has not been forged, and to authenticate that the object claiming to correspond to 
the GGID is the one to which the GGID was actually issued. 

Specifically, a GGID is represented as an X.509 certificate [X509, RFC-3280] that binds a 
Universally Unique Identifier (UUID) [X667] to a public key. The object identified by the GGID 
holds the private key, thereby forming the basis for authentication. Each GGID (X.509 
certificate) is signed by the authority that created and controls the corresponding object; this 
authority must be identified by its own GGID. There may be one or many authorities that each 
implement the GMC, where every GGID is issued by an authority with the power and rights to 
sign GGIDs. Any  entity may verify GGIDs via cryptographic keys that lead back, possibly in a 
chain, to a well-known root or roots. 

A name registry maps strings to GGIDs, as well as to other domain-specific information about 
the corresponding object (e.g., the URI at which the object’s manager can be reached, an IP or 
hardware address for the machine on which the object is implemented, the name and postal 
address of the organization that hosts the object, and so on). The GMCI provides a default 
registry that defines a hierarchical name space for objects, corresponding to the hierarchy of 
authorities that have been delegated the right to create and name objects. This default registry 
assumes a top-level naming authority trusted by all GENI entities, resulting in names of the 
form: 

top-level_authority.sub_authority.sub_authority.name 
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For the purpose of this document, we assume “geni” is the top-level authority, but allow for the 
possibility that other similar authorities might federate in accordance with the GMC. 

Note that the name assignment trust relationship represented by the default registry is distinct 
from other trust relationships in GENI.  Rights to manipulate GENI objects may stem from 
different trust relations than the rights to name objects.  For example, the right to name 
components might belong to a systems administrator, while the right to allow access to them 
might be allocated by the researcher in charge of a laboratory or by the GENI Science Council. 
There is no requirement that the name assignment hierarchy and these other hierarchies are 
distinct, but the flexibility of separating them is intended to allow different services to be 
implemented and to cleanly allocate responsibilities. 

The GMCI includes two core repositories, as described in Section 2.4.2, but the architecture does 
not constrain the implementation of repositories.  Any registry must be able to support retrieval 
of GGIDs and contact URIs, in response to whatever query format they export via WSDL.  
Repositories must scale appropriately to their domain, which implies that the default 
repositories must scale significantly.  Their implementations and additional interfaces are 
unconstrained by this specification.  Future repositories need not be hierarchical—e.g., they 
may be attribute-based—although GGID validation will continue to be constrained by the X.509 
certificate structure. 

The separation of identity (GGID) from the various present and future system name spaces 
(repositories) allows for simplicity of the GMC implementation, while encouraging new ways to 
organize system data.  The GMC itself operates on GGIDs—no matter what name a caller uses 
to retrieve a GGID from a registry, the object the caller contacts will be asked to authenticate 
itself as the GGID, not the name.  New services may create new name spaces without disrupting 
GMC operations.  New interfaces can become visible to the system by using a registry to bind 
them to a GGID/URI pair. 

2.2.2   Data Types 

The GMC defines two key data types, which we briefly describe here. A more complete 
discussion can be found elsewhere [GDD-06-11]. 

RSpec 

A resource specification, or RSpec, is the data structure used to describe resources in GENI. As 
such, it contains data about the resources possessed by components, such as their processing 
capabilities (such as processor architecture and speed), their network interfaces (including 
bandwidth and the like), and the instrumentation available on them (such as packet logging 
capabilities). The purpose of the RSpec standard is to give component managers, user services, 
and end users a common resource vocabulary.  

RSpec describes a component in terms of the resources it possesses. Each resource (such as a 
processor or a network interface) is identified by an identifier (RID), which is assigned by the 
component manager and must be unique within the component. Thus, a combination of a 
component name and an RID is sufficient to unambiguously identify any resource in GENI. 
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RSpec is also used to describe the relationships between components, most significantly, the 
network links connecting components. This will require the ability to reference resources in 
other components' RSpecs, which, as noted above, can be done unambiguously. At this time, the 
component description role of RSpec is firmer than the relationship specification role of RSpec. 
Thus, the latter is still subject to change. 

Most users are not expected to use RSpecs directly. In this sense, it can be thought of as a 
“machine language,” used below the user-visible level of GENI. It should concentrate on clarity 
of definition and expressiveness, with lower priority given to user-friendliness. As with any 
assembly or machine language, some users may choose to use this language directly, but we 
expect that most will use some high-level interface. Such high-level specifications will be 
“compiled” to an RSpec by the service or aggregate that offers it. The GMC will support a wide 
variety of such higher-level embedding services (Section 4.2.2).  The ability for higher-level 
services to provide a user-friendly interface relies on RSpec syntax and semantics having the 
desirable properties of an output language for machine-compiled higher level specifications, so 
that it will be a suitable target for a range of front-ends. 

Much of the complexity of the GMC is embedded in resource specifications. RSpecs are an 
extensible part of the GMC interface. As new resources and capabilities are added, these 
specifications will inevitably need to be extended. While we strongly support a GENI-wide 
standardization process for extending RSpecs, we also expect these extensions will leverage a 
hierarchical name space. This will allow new communities that federate with GENI to extend 
RSpecs within their own partition of the name space, and components that offer specialized 
resources will similarly extend the RSpec in their own name space. 

Ticket 

A component owner signs an RSpec—one that includes the right to allocate the corresponding 
resources—to produce a ticket. Such tickets are “granted” by a component owner, and later 
“redeemed” to acquire resources on the component; these operations are defined more fully in 
Section 2.2.4. The GMC defines the format for tickets, and the set of rules governing their 
delegation. A ticket includes at least the following information: 

1. an RSpec, describing the resources for which rights are being granted by the component 
owner; 

2. a Slice Name, indicating the slice, or slice authority, to which rights to allocate the resources 
are being granted; 

3. a timestamp indicating for how long the ticket is valid (the ticket must be “redeemed” 
before this time); 

4. a timestamp indicating the period of time during which the resources specified in the ticket 
are available to be consumed by the slice; and 

5. an indication of specific rights or privileges associated with the ticket. 
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2.2.3   Slice Operations 

Slices are instantiated and represented by slice names, that is, the act of creating a slice name is 
indistinguishable from the act of creating a slice. Thus, slice operations are essentially 
operations performed by the GMC’s slice naming service. The GMC slice registry supports 
three operations: 

GGID = CreateSliceName(Name, UserInfo) 

FreeSliceName(Name) 

UserInfo = ResolveSliceName(Name)  

The first operation creates a Name for a slice and binds it to the associated UserInfo, and the 
second operation deletes the given Name. The third operation returns the UserInfo bound to the 
named slice.  

Once a slice name has been registered, the slice exists “in name only.” The slice must also be 
instantiated as a set of slivers before it can be used by a researcher to conduct an experiment on 
GENI. This instantiation is performed by invoking operations on components on behalf of the 
slice, as described next. 

2.2.4   Component Operations 

Once a slice name has been registered with a trusted slice authority, the user can instantiate and 
provision the slice with the following operations. Although a particular user invokes these 
operations, it is reasonable to think of the slice as an “actor” that acquires, redistributes, and 
uses component resources; the users affiliated with the slice are effectively making requests 
under the name of the slice. We sometimes take the liberty of letting slices be the actors 
(representing user principals) in the following description. 

Note that a single component is able to create only local slivers, meaning that the following 
operations must be invoked on each component that the slice is expected to span. We return to 
the issue of how a high-level service might assist the user in creating a slice that spans multiple 
components in Section 4. 

Obtaining Rights to Component Resources 

A slice-as-principal invokes the following operations on a component: 

Ticket = GetTicket(Slice, Request)  

to acquire rights to component resources. The Slice argument is a registered name of a slice. The 
Request argument indicates (in the form of an RSpec) what resources the slice wants. The 
returned Ticket effectively binds the slice to the right to allocate on the component the 
resources/rights indicated by the Request. Whether or not the call succeeds depends on any 
access control implemented by the component, the local resources available on the component, 
and the allocation policy implemented by the component. 

Two timestamps are associated with each ticket. One indicates how long the ticket is valid. The 
ticket must be “redeemed” (using the CreateSlice operation described below) within that 
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lifetime. The second indicates a period of time during which the resources specified in the ticket 
are available to be consumed by the slice. Although not described further here, the GMC also 
defines a GrantTicket operation that allows a component (owner) to proactively delegate the 
right to a set of resources to some principal, such as a user or a slice. 

Once a principal possesses a Ticket, it can create a sliver on the component by invoking: 

Sliver = CreateSlice(Ticket)  

The sliver effectively becomes part of the slice identified by the Ticket. In this case, the Ticket 
must include the create privilege. The returned Sliver is a certificate that grants the holder the 
right to invoke other operations (see below) on the sliver. Note that while this call creates a 
sliver, we call the operation CreateSlice because it effectively instantiates the slice on that 
component. 

Resources can be bound to a slice—and the duration of their binding extended—via the 

ModifySlice(Ticket)  

operation with a new Ticket. The consequence of such a call is to augment the slice identified in 
the ticket with the additional resources specified in the ticket's RSpec; the Ticket must include 
the bind privilege. Similarly, resources can be taken away from a slice. In both cases, a signal 
(upcall) indicating how the resource allocation has changed is delivered to the sliver. 

A component (or other principal) that holds a ticket may need to split off a portion of the 
corresponding resources to respond to a GetTicket call. The holder of the ticket may have to go 
back to the original source to do this. This is really just another way to acquire a new ticket, 
hence 

(Ticket1, Ticket2) = SplitTicket(Ticket, Request)  

where Request says how much of the original Ticket to split into Ticket1; Ticket2 corresponds 
to the remainder. Other rights are preserved. 

Controlling a Slice 

Component managers also support the following operations on slivers: 

StopSlice(Sliver) 

StartSlice(Sliver) 

DestroySlice(Sliver)  

The first two operations stop and start the execution of an existing slice. The slice retains any 
acquired resources on the component, although a component that uses work-conserving 
schedulers is free to utilize those resources for the duration of the suspension. These two 
operations are often used in tandem to “reboot” a slice, but are offered as a pair to give any 
management service assisting the slice an opportunity to “clean up state” before restarting. The 
final operation removes the slice from the component and releases all of its resources. 
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The Sliver argument for all three operations corresponds to the value returned by CreateSlice. 
However, any principal with a certificate granting it the right to invoke the operation on a given 
slice may do so; these operations are not limited to the user that created the slice. 

Slice Information 

Finally, any principal may invoke the following operations: 

Names[ ] = ListSlices( ) 

StatusSpec = GetStatus( ) 

Name = GetResponsibleSlice(PacketSignature)  

on a component to learn the names of the set of slices instantiated on that component, the status 
of the component, and the name of a slice responsible for sending a packet with a given 
signature, respectively. A PacketSignature is given by a timestamp and a subset of fields in the 
packet header (e.g., protocol number, source IP, source port, destinationIP, destination-port). 
The GetResponsibleSlice call can only be invoked relative to a packet to/from a GENI 
component and the legacy Internet. 

2.2.5   Aggregate Operations 

All aggregates support the following operations: 

Components[ ] = ListComponents( )  

AddComponent(Component) 

DeleteComponent(Component) 

Aggregates typically extend this interface with a set of aggregate-specific operations, some 
examples of which are given in the next section. Most commonly, aggregates support the 
component interface, thereby serving as a proxy for the set of components in the aggregate. 

2.3   Security 
The principal role of the GMC is to define how users and high-level services access and control 
low-level GENI resources. This section highlights the security-related aspects of the GMC. A 
more expansive discussion can be found elsewhere [GDD-06-23]. 

2.3.1   Requirements 

Security considerations place several requirements on the GENI architecture: 

• Explicit Trust: Privileges in a distributed system should be managed explicitly and 
formally.  Enforcing security in GENI will be something of a moving target, as the facility 
will be used during its construction, and will progress from a single, centralized 
management entity to a federated, decentralized model.  Thus we need a security model 
that can evolve along with GENI.  We need to define access control approaches that provide 
the required flexibility, rather than hard-coding trust relationships. Without explicit trust, it 
is likely that trust will be unintentionally misplaced, leading to system-wide vulnerabilities 
that can be exploited by a determined attacker. 
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• Least Privilege: The principle of least privilege is a tenet of computer security that requires 
each component of a system be given exactly the authority it needs to perform its tasks and 
no more.  Failures to implement this principle are ubiquitous, and we face the consequences 
frequently.  For example, most web servers do not need to be able to open connections to 
arbitrary addresses in order to perform their tasks.  Yet this is permitted, and exactly this 
ability has been used numerous times in the epidemic spread of worms.  While achieving 
least privilege in an absolute sense is arguably not feasible, it is our belief that the GENI 
facility should embrace least privilege as far as is practicable.  Least privilege can secure the 
GENI facility from malicious software, accidental violations, or just simple resource 
exhaustions⎯in general, it can mitigate the risks caused by runaway experiments.  It is also 
equally useful in securing the experimenter's environment against attacks from other 
experiments or faulty system software. 

• Revocation: Despite our best efforts, it is inevitable that keys, slices, and systems will be 
compromised in GENI.  Thus a critical requirement for GENI is to be able to quickly revoke 
and replace keys, suspend all permissions (e.g., slices) derived from a compromised key, 
and reset each node to a known secure state. 

• Auditability: The possibility of compromise also requires us to be able to trace why a 
problem occurred so that it can be prevented from recurring.  GENI needs to include 
mechanisms that identify which slice is responsible for each packet, and also be able to 
determine the entire chain of responsibility (from central administrator to local 
administrator to local user) that gave the user a specific capability that was misused. 

• Scalability: With large-scale distributed systems such as GENI, simple schemes such as 
using a small set of authentication servers and/or replicating information required by 
authentication and authorization tasks are not feasible. GENI adopts a scalable 
authorization architecture, as described below. 

• Autonomy: A key requirement for GENI is the ability to federate autonomous facilities.  A 
GENI site should be able to authenticate and authorize requests from users in other sites, 
support delegation of rights, and it should be able to do so without requiring centralized 
trust.   

• Usability: The user must be explicitly modeled as part of the security architecture.  Any 
system that is hard to use will be evaded and ignored.  The implication is that GENI needs 
to develop intuitive and easy interfaces for users to create roles, restrict rights, and so on.  
GENI  also needs to make it easy for users to protect their private keys.  In essence, secure 
system and user behavior must happen naturally, in the course of operating or using the 
system. 

• Performance: As with usability, the performance overhead of providing security needs to be 
modest, or users will have an incentive to disable or evade the system.  In practice, this 
means managing security information (such as certificates delegating rights to a specific set 
of users) locally as far as possible, as cache-coherent, distributed state.  Caching means that 
lookups can be fast in the common case, without compromising system semantics.  
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2.3.2   Authorization and Access Control 

A key aspect of security is ensuring that appropriate authorization and security structures exist 
to protect the physical substrate and user services. This section gives a brief overview of the 
authorization model supported by the GMC. 

Two primary classes of resources are protected by GMC-based authorization mechanisms. The 
first of these is slices, the containers for user-level experiments. The second is the collection of 
physical and logical resources implemented as, or made available by, components. 

Slices are represented in the GMC by names; the creation of a slice name—bound to a GGID—
creates the slice. Thus, the authorization model for slice creation is based on controlling access 
to the slice name space. The slice name space consists of a naming hierarchy rooted at a top-
level Slice Authority (SA). Below the top level SA, intermediate nodes in the naming tree 
represent intermediate slice authorities, while the leaf nodes represent the slices themselves.  

To support authorization, each SA is expected to implement an access control policy on its 
name creation function. Thus, before creating a sub-node of its portion of the name space, a slice 
authority must check the credentials of the calling user, and any other information as required 
by its local policy. It is assumed that each SA has been delegated authorization authority over 
its portion of the slice name space, and need not refer creation requests to a higher level 
authority. 

GENI’s physical resources are encapsulated as components. Each component has an associated 
component owner. The owner is responsible for defining and implementing the authorization 
policy governing use of the component. Tickets are used to implement this model, where a 
ticket represents a principal's right to (1) create a sliver (perhaps with some initial resources 
bound to it) on a component, and (2) bind component resources to an existing slice. Both rights 
can be delegated. A ticket is essentially an RSpec signed by a component owner, granting rights 
to allocate resources on one or more components.  

We decompose the act of gaining access to a resource into two distinct steps: constructing a 
chain (or more generally, a set) of certificates that proves the access complies with access-control 
policy, and checking that the proof chain of certificates is valid, e.g. that it indeed entails the 
access. 

The task of constructing the proof chain (hereafter, shortened to proof) can be accomplished by 
any of the following means.  In the simplest case, the proof can be obtained using the very 
mechanism that was used for finding the resource.  For instance, if the principal becomes aware 
of the resource through a resource allocator (such as Emulab’s assign [RAL03]), a resource 
discovery tool (such as SWORD [OCCP06]), or a resource broker (such as SHARP [FCCS03]), 
the same underlying tool can be extended to generate the necessary certificates and provide it to 
the principal.  In the more general case, one could use a general-purpose rights manager that 
would perform distributed queries to discover and assemble a set of credentials that would 
constitute the proof for authorized access. However, as the certificates are stored in distributed 
repositories, the certificate discovery process might require multiple remote accesses, 
potentially causing performance bottlenecks.  Various implementation strategies for caching 
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credentials or otherwise mitigating these performance bottlenecks without compromising 
security are available. 

The task of checking the validity of the chain of certificates is performed by a resource monitor: 
when provided with a formal security policy, and a chain of digitally signed credentials that 
claims a request satisfies this security policy, the resource monitor verifies the digital signatures 
on all certificates to ensure their validity, and then verify that the request is indeed allowed by 
the security policy. 

The resource monitor thus embodies significant design decisions, not the least of which is with 
respect to what security policy language the resource monitor verifies the credential proof 
chains.  There appears to be a tradeoff between the expressiveness of the security policy 
language, or underlying logic, and the ease of generating credential chains granting access.  A 
careful study of the tradeoffs is still needed before deciding on the appropriate security policy 
language and underlying logic. 

Within the above framework, we plan to employ a rich set of certificates or declarations to 
implement various forms of authorizations.  Following previous efforts, we envisage the use of 
following abstractions: 

• Identity certificates (i.e., GGIDs) that bind principals to keys.  These certificates are useful 
for authenticating principals. 

• Authorization certificates that attest to privileges associated with principals.  When 
combined with the identity certificates, these certificates enable authorized access. 

• Delegation certificates that pass on privileges (or a subset of privileges) from one principal 
to another.  As part of the delegation certificate, the delegator can state whether the 
delegatee can further delegate the privileges to yet another principal in the system. 

• Group membership certificates that allow an authorizing agent to group together principals 
and manage their privileges in a scalable and efficient manner. 

• Roles that allow a principal to voluntarily restrict its privileges, thereby limiting the dangers 
posed by security violations. 

• Revocation of previously issued certificates, as no authorization service would be complete 
without mechanisms for revoking privileges associated with misbehaving principals or 
compromised keys. 

While it is beyond the scope of this document to define the full set of actions or resources for 
which authority should be checked in GENI, we believe the above framework is flexible enough 
to be used in the following contexts: 

• The authorization service should enable fine-grained controls on resource usage of user-
level experiments.  It should enable the execution of user-level programs in sandboxed 
contexts that enforce least privilege. 

• The authorization service should support the access checks performed during system 
administrative tasks for creating, removing, or modifying information regarding sites and 
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nodes.  It should also support the process of granting, revoking, or checking roles, and 
authorize site-management tasks such as rebooting nodes or setting bandwidth limits. 

• The authorization service should also be useful for implementing user tasks pertaining to 
updating user information, initiating and controlling experiments, including operations 
such as adding or removing slivers from a slice. 

2.4   Implementation 
The GMC is first-and-foremost a specification—a set of interfaces, data types, and name spaces 
that govern how the various sub-systems of GENI (user-level services and substrate devices) 
collectively form a coherent whole. Most of GENI’s implementation is embodied in these sub-
systems. However, there is a small set of core functionality that we consider part of the GMC 
implementation, the so-called GMCI. This set includes the glue code that comprises the 
underlying messaging and remote operation invocation framework used by the sub-systems to 
communicate with each other, and a small set of bootstrap services that must be present before 
the rest of GENI’s sub-systems can function. This section describes this core functionality. 

This section also sketches a reference design for two critical abstractions of GENI: components 
and aggregates. We call these reference designs a canonical component and a canonical aggregate, 
respectively; the description of the physical substrate presented throughout Section 3 then 
leverages these two reference designs by describing how they can be specialized on a sub-system 
by sub-system basis. The canonical objects are important to GENI’s design for two reasons: 

1. They simplify the construction process, exploiting the fact that components and aggregates 
are more alike than they are different, meaning that they are most easily built by 
specializing a common code base rather than starting from scratch. 

2. They reduce unnecessary heterogeneity, giving users a more homogeneous programming 
environment across the set of components that populate the physical substrate. 

Alternative implementations are of course permitted—as long as they adhere to the published 
set of interfaces—but canonical objects have enough value to be explicitly noted in GENI’s 
design. 

2.4.1   Invocation Framework 

The various objects of the GMCI communicate using standard service invocation mechanisms 
from Web Services.  Specifically, service interactions are described in the Web Service 
Description Language version 1.1 [WSDL], where requests and responses are encoded in XML 
Schema 1.1 [XSD1, XSD2] and encoded via SOAP [SOAP] or XML-RPC [XML-RPC]. 

Initially, this implementation provides a simple remote procedure call interface that closely 
follows the specification in the GENI architecture [GDD-06-11].  However, using the Web 
Services framework allows the GMCI to make use of new tools for the analysis and expansion 
of Web Services as those tools become available. 

Although many systems provide the basic function of remote invocation across heterogeneous 
hardware, the GMCI is based on Web Services because that technology is designed to be 
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interoperable, is extensible and being extended, and is widely implemented.  This combination 
allows the system to be developed and deployed quickly, to be enhanced incrementally, and to 
be open to outside developers by design. 

Note that GENI’s design presents a bootstrapping dilemma. On the one hand, GENI must 
provide an environment for experimenting with networking concepts that are not constrained 
by today’s Internet. On the other hand, we must implement GENI in the context of today’s 
Internet since tomorrow’s Internet is yet to be discovered using GENI. The resolution is that 
GENI enables clean-slate experiments, but we leverage today’s Internet to access and control 
GENI. The GMC is designed so that no assumptions about today’s Internet are “architected in”, 
which means alternative control planes can be substituted for today’s protocols as they become 
available [GDD-06-37], but today’s protocols are used to get GENI up-and-running quickly. 

One important consequence of this bootstrapping strategy is that GENI’s control plane suffers 
from the security vulnerabilities of today’s Internet, and in particular, is may be possible to 
launch a DoS attack against GENI. We are willing to except this tradeoff, since the alternative 
strategy of having GENI depend on yet-to-be-demonstrated DoS-proof network architectures is 
a far greater risk to its success. 

2.4.2   Name Registries 

A name registry is implemented as a service in GENI, and hence, is identified with its own 
GGID. The protocols used to register with or query a repository are described in WSDL and are 
extensible and exportable. The GMCI includes two default name repositories: a component 
registry and a slice registry.  

The component registry binds each component name and GGID to a record of information that 
includes (1) the URI at which the component’s manager can be accessed and (2) other attributes 
and identifiers that might commonly be associated with a component (e.g., hardware addresses, 
IP addresses, DNS names). Entities needing this information ask the registry to translate either 
the component’s name or its GGID into this data record. Note that the component registry also 
maintains information about the management authorities that are responsible for a set of 
components. This information may include the GGID and URI for an aggregate object that 
offers an interface to a set of components. 

The slice registry binds each slice name and GGID to a record of information that includes (1) 
email addresses for the set of users associated with the slice, (2) a set of public keys for each of 
those users,2 and (3) other contact information for each of those users. Entities needing this 
information ask the registry to translate either the slice’s name or its GGID into this data record. 
Note that the slice registry also maintains information about slice authorities that are 
responsible for a set of slices.  

                                                      

2 These keys are uploaded into the user’s slivers so that he or she can securely access it. These 
are not the same as the public keys in the GGID’s X.509 certificates. 
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2.4.3   Security Modules 

The GENI Security implementation includes several software modules, which collectively 
support the secure interaction among the central abstractions of slice, component, aggregate, 
and user.   The security mechanisms implemented in the modules outlined below enable the 
GMCI to implement fine-grained resource and access control on behalf of large numbers of 
users without compromising usability and performance. 

• Resource Monitor: used to check that a request is valid, by determining if the set of rights 
conveyed in the tickets associated with the request are indeed bound to the user invoking 
the operation, and are compliant with the current security policy.  The resource monitor is 
employed by individual components or component managers, as well as services resident in 
a slice, aggregate managers, and other GENI elements. 

• Cryptographic Support Libraries: used to create keys and certificates, and bind them to 
GGIDs for use by components, slices, aggregates and users.  This module also includes 
routines for signing and verifying messages, used to support tickets and other higher-level 
security functions. 

• Security Policy Manager: used to create, manage, modify and distribute security policies. 
Different front-end interfaces for component and aggregate managers, slices/services, and 
slice and management authorities tailor the user-interaction, encapsulating the low-level 
details of security policy representation.  The security policy manager serves as a common 
software module for manipulating the low-level concrete representation of security policies 
used throughout the GENI system.  These security policies are then be consulted, both 
locally and across the distributed GENI system, by enforcement modules. 

• Ticket Generator: used by component owners, component and aggregate managers, and 
management authorities to create, split and delegate tickets.  The ticket generator assembles 
both primitive tickets granting rights to use a single component and more complex 
ensembles of tickets granting coordinated rights to use multiple components or aggregates 
as required to support user experiments. 

• Ticket Agent: used by GENI entities and users as a container in which to hold and select 
tickets for use in subsequent GENI service invocations. In addition to merely acting as a key 
ring for privileges, the ticket agent also facilitates retrieval and management of complex sets 
of tickets.  For example, a user or component might query the ticket agent to determine 
whether a specific set of tickets were sufficient to perform an operation relative to a known 
security policy, and if not, to perform the required steps to acquire additional tickets.  The 
ticket agent supports management of fine-grained privileges, as well as ephemeral 
resources, such as the right to use a certain number of programmable blades or to allocate 
an aggregate number of hours of exclusive use of a component. 

2.4.4   Canonical Component 

A canonical component is a reference implementation of the component abstraction that can be 
specialized for the various sub-systems that make up the physical substrate (Section 3). A more 
detailed discussion of implementation options is presented elsewhere [GDD-06-13]. Here, we 
elaborate on the Component Manager (CM), which exports a well-defined interface through 
which users create and control slivers on that component. This interface implies that the 
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component must provide software and hardware mechanisms that implement a defined set of 
functions, including the ability to:  

1. create and destroy slivers, bind a set of resources to a sliver, and reclaim those resources; 

2. isolate slivers from each other, such that 

a) the resources consumed by one sliver do not unduly affect the performance of another 
sliver, 

b) one sliver cannot, without permission, eavesdrop on network traffic to or from another 
sliver, 

c) one sliver cannot, without permission, access objects (e.g., files, ports, processes) 
belonging to another sliver, and 

d) users are allowed to install software packages in their sliver without consideration for 
the packages installed in other slivers running on the same component; 

3. allow users to securely remotely access a sliver that has been created on their behalf; 

4. deliver signals to slivers, including a “reboot” signal that is delivered whenever the sliver 
starts up; 

5. grant privileged operations to select slivers, including the ability of one sliver to access 
private state associated with another sliver (thereby supporting sliver interposition); 

6. rate-limit the network traffic generated by a sliver, as well as by all slivers running on the 
component; 

7. limit (filter) how a sliver interacts with (exchanges packets with) the Internet; 

8. support a mechanism to audit all packet flows transmitted by slivers to the Internet, and 
determine what sliver (slice) is responsible for a given packet; 

9. disconnect the component from the network and bring it into a safe state, and subsequently 
reboot the component into a correct configuration; 

10. power the component on and off, and monitor its hardware and other software systems for 
errors; 

Layered Implementation 

The layers of software required to implement a canonical component are depicted in Figure 2.1, 
where the CM implements the interface through which these layers are controlled. Functions 1-
5 from above address intra-component requirements, that is, how slivers interact with the 
component and each other. These functions are implemented by a Virtual Machine Monitor. 
Functions 6-8 correspond to inter-component behavior, that is, how the component and its 
slivers interact with the rest of the network. These functions are implemented by a Traffic 
Monitor. Functions 9 and 10 have to do with remotely controlling a component, that is, bringing 
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it into a state that is able to support the other functions. These functions are implemented by a 
Secure Boot Monitor and a Hardware Monitor, respectively.  

Hardware Monitor

CM

Virtual Machine Monitor

Traffic Monitor

Secure Boot Monitor

VM1 VM2 VMn
. . .

 

Figure 2.1. Layers implementing a canonical component. Each virtual machine (VM) 
corresponds to a sliver. 

As discussed more thoroughly in [GDD-06-13], the implementation options for building a 
canonical component are well understood. The hardware consists of a cluster of commodity 
processors (possibly configured as a blade server) and includes substantial storage capacity. The 
Virtual Machine Monitor (VMM) that isolates slivers is a well-developed technology. GENI will 
mostly likely exploit a combination of paravirtualization (e.g., Xen [BDFH03]) and container-
based virtualization (e.g., Vserver [VSERVER]), with thee CM running in a privileged VM.  

The Traffic Monitor is responsible for authorizing, shaping, and auditing network traffic that is 
sent and received by a component. Modules implementing this functionality are widely used in 
modern operating systems. The Secure Boot Monitor interacts with a remote aggregate (Section 
2.4.5) to install and boot a node with the correct software. Such software is commonly employed 
by hosting centers, including PlanetLab [BBCC04, PBFM06]. Finally, the Hardware Monitor 
provides a reliable method of remotely accessing and controlling a component. Such 
mechanisms (e.g., HP’s iLO2 feature) are widely available on state-of-the-art hardware, and can 
be configured to use either a separate control channel or share a single data channel. 

Performance Isolation 

The requirement of performance isolation (2a) is purposely underspecified. Ideally, it would be 
possible to completely and perfectly isolate a sliver from the resources consumed by other 
slivers—i.e., offer absolute resource guarantees to individual slivers—as well as to provide for 
slivers that do not require deterministic guarantees. However, two factors make this difficult in 
practice. 

First, the overhead cost of perfect isolation—which at the limit might include providing 
separate physical resources to the isolated slice—may be very high. In a virtualized system, the 
response to this problem is to provide isolation to an acceptable, rather than perfect, level of 
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fidelity. This in turn triggers the second limitation, which is that it is not clear how to best 
define “acceptable,” balancing user requirements with the implementation pragmatics and 
overheads of isolation. There are many scheduler and virtualization options, each of which 
potentially offer a different level of fidelity to users. Which do we chose? 

Rather than attempt to specify a single, global answer to this question, our response is to allow 
GENI's users to guide us. We provide an architectural framework, allowing different levels of 
isolation to be implemented by different component designs, and allowing users to select 
components based in part on their isolation capabilities and costs. We believe that over time 
usage and implementation experience will lead a small but useful set of design points to 
emerge. To be clear, it is the intent that GENI support both best-effort and reservation-based 
usage. What the architecture cannot (and should not) say is with what precision reservation-
based guarantees can be made; the answer to that question depends on implementation choices. 

2.4.5   Canonical Aggregate 

GENI’s base components are generally organized into aggregates, for example, corresponding 
to the components that comprise a backbone network or a wireless subnet. An Aggregate 
Manager (AM) provides an interface to the set of components, and in turn, implements certain 
functionality across the aggregate. We characterize this functionality as having two parts: 
operations and maintenance (O&M) control, and slice coordination. This section sketches the design 
of a canonical aggregate by describing these two parts. A more thorough description of how one 
might implement this functionality, drawing on the design of PlanetLab, is presented elsewhere 
[GDD-06-39]. 

While a component’s owner might provide the functionality described in this section on a per-
component basis, we envision this role being played on behalf of owners by a set of management 
authorities (MA), where a given authority is responsible for the components in some aggregate. 
Thus, a management authority is the principal responsible for a set of components and an 
aggregate is the object that encapsulates a set of components. We sometimes use the terms 
“management authority” and “aggregate” interchangeably in the following discussion. 

Operations & Maintenance Control 

O&M control corresponds to functionality that one might associate with a network operations 
center. It includes: 

• booting components into the right state,  

• detecting, debugging, and recovering failed components,  

• responding to user queries (diagnosing user-perceived problems),  

• responding to security complaints from aggrieved parties, and  

• monitoring the system for AUP compliance.  

A management authority likely provides an operations center—staffed by a set of 
administrators—but the MA also manifests itself as an aggregate object that exports an interface 
that can be invoked by other objects in the GENI system. For example, a backbone aggregate 
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might provide O&M control for all the components that make up a backbone network, and 
another aggregate might do the same for the components distributed across a particular 
wireless subnet. 

We expect such aggregates to support the standard aggregate interface (e.g., ListComponents 
returns a reference to all components managed by this MA), extended with aggregate-wide 
variants of the component-level informational operations defined in Section 2.2.5: ListSlices, 
GetStatus, GetResponsibleSlice. These operations serve as underpinnings for higher level 
management services provided by the Management Authority. 

While each aggregate exports a public interface to the rest of GENI—e.g., ListComponents, 
GetResponsibleSlice—each MA is free to establish a private interface that it uses to manage its 
components.3 Although a private interface, we expect any MA that is part of GENI proper to 
make this interface open (i.e., to publish it); MAs in the larger GENI ecosystem are not required 
to do so. Note that this private interface need not be XML-RPC based. In addition to the O&M 
design presented in [GDD-06-39], other examples of O&M control tailored for specific networks 
can be found in a set of companion documents [GDD-06-13, GDD-06-15, GDD-06-25]. 

Slice Coordination 

It is often the case that slivers are created in a coordinated fashion across an aggregate of 
components. For example, a backbone aggregate might coordinate link bandwidth allocation 
across a set of backbone components. Similarly, a wireless subnet aggregate might oversee 
spectrum allocation among a set of wireless components. In both examples, the aggregate 
effectively provides a common interface for a related set of components, treating the set as a 
unit for the purpose of allocating resources, instantiating slices, and starting and stopping slices. 
We sometimes say that the aggregate implements a slice coordination function. 

It is likely that the aggregate exports exactly the same interface as the underlying components. 
For example, to create a slice that spans a backbone, a user might invoke CreateSlice on the 
backbone aggregate, which in turn calls CreateSlice on the individual backbone components. In 
this case, the aggregate maintains state for the slice—the set of components it runs on and the 
quantity of resources that have been bound to it.  

A hierarchy of aggregates can be formed through the invocation of GetTicket and GrantTicket 
operations. For example, a set of programmable core nodes might explicitly grant control over 
100% of their resources to a backbone aggregate. Alternatively, an aggregate might be created 
implicitly by sharing a code base across a set of constituent components; such an aggregate 
would simply be programmed (hardwired) to “know” what resources are available on the set of 
components. 

                                                      

3 By private, we mean specific to the aggregate (and possibly different from aggregate to 
aggregate), as opposed to GENI-wide. 
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3   Physical Substrate 
GENI’s physical substrate consists of an expandable collection of building block components. 
Although no single component could do so by itself, the set of components chosen for inclusion 
within GENI at any given time are intended to allow the creation of virtual networks covering 
the full range needed by the constituent research communities. This section describes these 
components. The discussion is structured in accordance with the way we expect to organize the 
substrate components into aggregates. 

3.1   Edge Sites 
A GENI site corresponds to a geographic location that hosts one or more GENI components. 
Most edge sites will host clusters of commodity processors that serve as the workhorse 
components in GENI. These clusters, which we refer to as Programmable Edge Clusters (PEC), 
both provide the computational and storage resources needed to build wide-area distributed 
services and applications, and serve as “ingress routers” for new network architectures. We 
focus on the PEC component in 3.1, but generally, any of the components described in Section 3 
may reside at a GENI site.  

We expect to deploy components at 200 sites, and connect them to the backbone via a variety of 
tail circuit technologies. Moreover, since these components will be embedded in existing access 
networks (e.g., university campuses and research labs) they will be able to exploit existing 
connectivity to the commodity Internet. This will provide a path by which end-clients not 
affiliated with GENI can access experimental applications, services, and architectures deployed 
on GENI. 

The set of PECs deployed across GENI sites will be managed as a single aggregate. This means 
these components will be remotely managed through a common O&M control point (Section 
4.1), and slice embedding services will indirectly include edge sites through a shared slice 
coordinator (Section 4.2). 

3.1.1   Programmable Edge Cluster 

Programmable Edge Clusters require minimal specialization beyond the canonical component 
described in Section 2.4.4. They consist of a rack or chassis populated with commodity 
processors, interconnected by a switch, augmented with significant storage capacity, and 
attached to the local network infrastructure as described in the next subsection. The PEC runs 
well-understood virtualization software that implements a sliver as a virtual machine (VM), each 
of which can be bound to some amount of processor, memory, disk, and link capacity under the 
control of the Component Manager (CM). We expect two different virtualization technologies to 
be employed: (1) paravirtualization (e.g., Xen [BDFH03]), which gives slivers access to low-level 
hardware resources, and (2) container-based virtualization (e.g., Vserver [VSERVER]), which 
gives slivers access to a virtualized system call interface. 

While PECs resemble computational clusters, they will serve many different purposes in GENI. 
In general, they may fill any role for which commodity computers are used today: they may act 
as clients, individual servers, server farms, or peers in a peer-to-peer network. 
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The capacity of PECs will differ significantly from site to site. At the low-end, a PEC will 
include 8-12 processors, and hence, be indistinguishable from a Programmable Edge Node 
(Section 3.3.1). At the high-end, a PEC might include 512-1024 processors, thereby supporting 
scalable services. In this latter case, a given slice can be allocated multiple VMs on a single PEC, 
as opposed to the standard practice of limiting a slice to a single VM/sliver per component. 

3.1.2   Tail Circuits & Access Networks 

The edge sites that host GENI components will largely correspond to research organizations 
participating in GENI. These components will be connected to the GENI backbone (Section 3.2) 
by dedicated tail circuits, and at the same time, they will be connected to the Internet by the 
host’s existing commodity connectivity. 

The successful realization of this design will require a significant level of planning and 
cooperation among the hosting organizations.  Specifically, there will be a need for close and 
ongoing coordination among campus information technology organizations, regional networks, 
the network research community, and the GENI Project Office.  The degree of coordination in 
this instance calls for a significant degree of advanced planning and the development of good 
working relationships and communications channels among all the players. 

The timing of GENI deployment is fortuitous as GENI will be in a position to leverage two 
recent developments in available infrastructure. First, many research universities have recently 
made, or are currently making, significant investments in new on-campus data centers to 
support both centralized requirements and the growing Cyberinfrastructure needs of 
computational science groups.  New models for co-location of non-centrally managed servers 
(e.g., GENI components) are emerging around these facilities.   Second, the combination of 
growing research and education community bandwidth requirements and the availability of 
optical fiber assets has led to the creation of regional optical networks (RONs) around the country.  
In most cases, these RONs are facilities based with the management of the optical networking 
elements—including circuit provisioning—under the control of a higher education entity.  For 
the GENI tail circuit capability, the existence of the RONs make it possible to envision multiple 
circuits (up to a bandwidth of 10-Gbps and higher) between the GENI backbone and the GENI 
sites. 

The following focuses on two aspects of edge sites: (1) where components are placed within the 
hosting organization’s network, and (2) the tail circuit technology by which the components are 
connected to the backbone. The description introduces a new network element—a GENI 
Gateway (GGW)—which is a device that connects the resident component(s) to both the GENI 
tail circuit and to the hosting site’s existing network. This GGW is not programmable (and is not 
a stand-alone component of GENI), but rather, it is managed as part of the adjacent 
component(s). Specifically, the GGW implements the network-related functions normally 
supported by the OS running on each component (i.e., functions 6-8 in Section 2.4.4), but by 
placing the GGW at a choke point within the site, it does so on behalf of a set of components. 
The GGW can also be engineered to disconnect a failing or misbehaving component from the 
network. See [GDD-06-11] for more information about the GGW.  
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Campus Co-location Models 

Each GENI site will be co-located within the campus network infrastructure of some hosting 
organization (e.g., a University or industrial research lab).  While a GENI site can attach to a 
campus infrastructure at a variety of locations, we have identified three specific campus co-
location models:  

• Peering Model: Components are located on shared physical infrastructure, and considered 
directly connected to the GENI backbone as well as a peer of the campus networks (i.e., the 
GGW is outside both the border gateway and firewall);  

• DMZ Model: Components are located outside the campus firewall but within the campus 
border router or gateways, on a boundary network between the campus and the Internet 
(i.e., the GGW is between the border router and firewall); and 

• Embedded Model: Components are embedded within the campus network itself, such 
within a departmental network (i.e., the GGW is behind both the border router and 
firewall).  

The following discusses each model, in turn. 

First, in the peering (or direct connect) model, the GENI site is co-located on a campus, a local 
exchange point or a regional optical network.  The GENI site leverages the host’s network 
infrastructure, such as the fiber plant or Layer 2 network, but is otherwise separate from the 
campus network infrastructure.  This model is the only one that will permit an optical GENI tail 
circuit from the site to the GENI backbone.  As illustrated in Figure 3.1, the GENI tail circuit 
connects directly to the GGW, as does each GENI component.   

In this model, the GENI site is independent, and is thus a peer of the host network 
infrastructure.   The GENI site, through the GGW, establishes its own peering relationships, 
both with the campus itself as well as with the outside world.  The GGW can then connect to the 
campus network infrastructure allowing it to leverage the campus’s wide area, metropolitan 
area and local area infrastructure.  Traffic between components within the site does not traverse 
the internal campus network. 

 34 



Facility Design                                                                            March 9, 2007 

 

Figure 3.1: Peering Model for GENI site deployments. 

Second, many campus networks include a physical network infrastructure that is behind the 
campus external gateways and in front of any internal campus firewall, routers or gateways. 
This network infrastructure is commonly referred to as the campus DMZ network, and we can 
use this structure to support the DMZ model, as illustrated in Figure 3.2. 

In this model, the GGW is connected to the campus DMZ. The GENI site includes one or more 
components, connecting to the GGW. It is expected that the typical DMZ connection technology 
will be a dedicated Layer 2 technology, such as Ethernet.  However, other technologies, 
including shared best effort TCP/IP connectivity, may be used as well.  Regardless of the 
connection technology, the bandwidth allocated to connect the GGW must be sufficient to 
support the research requirements associated with the specific GENI site.  

The GENI tail circuit connects to the campus border router or gateway.  Therefore, the GENI 
site is dependent on campus resources for its external network connectivity. However, standard 
connection technologies, such as VLANs, MPLS, or IP tunnels can be used to provide 
independence from the campus routing policies, when needed.  
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Figure 3.2: DMZ Model for GENI site deployments. 

Third, for the embedded model, the GENI components reside within the campus network itself, 
behind both the campus firewall(s) and the campus border gateway. Figure 3.3 illustrates 
campus embedded model for a GENI site. As with the other models, the components would 
connect to the GGW, which then connects to the Campus Border Router.  The components are 
completely dependent on the campus infrastructure for all network connectivity, including 
general Internet as well as connectivity to the GENI backbone.  The GENI site would need to 
abide by the campus security and firewall policies. In some instances, the GENI site may be 
located within a department subject to additional departmental firewall or policy restrictions as 
well.  
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Figure 3.3: Embedded Model for GENI site deployments. 

Tail Circuits 

The connection between the GENI Backbone node and the GGW for a GENI site is referred to as 
the GENI tail circuit and can be provisioned in multiple ways. However, in all cases, it must be 
provisioned to support the services, characteristics and requirements for the GENI research 
projects hosted at the site. The GGW and its associated GENI site may have additional external 
or WAN network connections. These may include a commodity Internet connection, regional 
network connection as well as connections to the research and education networks. Typically 
these additional connections are all at Layer 3 (Network Layer) and are shared with the general 
campus community.  With roughly 200 sites connecting to 25 backbone nodes, opportunities for 
sites to leverage existing regional network infrastructure, in particular infrastructure associated 
with the Regional Optical Networks (RONs) for their GENI tail circuit exists and is strongly 
encouraged.  

Standard GENI tail circuit types are described below. They can best be described in terms of 
where they fit within the network stack, with Layer 1 (Physical), Layer 2 (Data Link) and Layer 
3 (Network) the most common types of connections.  For all three types, the tail circuit can 
either be dedicated to GENI or shared with the campus infrastructure as well as support any of 
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the campus co-location models described above. All three types of tail circuits can support a 
wide range of bandwidths.  

First, GENI tail circuit can be implemented at the physical level (Layer 1) ranging from dedicated 
dark fiber to “lit services” such as SONET. Specific Layer 1 tail circuit types include:  

• Dark fiber, dedicated dark fiber between the backbone and the GGW.  This is the most 
flexible, but also most expensive of all tail circuit options. It can be lit using technology 
specific to the GENI site and can be changed or upgraded to meet requirements as needed. 
Typically, tail circuit management would be provided by the GENI site administration itself. 
The minimum bandwidth for a dark fiber connection would be 1-Gbps, with a maximum 
bandwidth of multiple 10-Gbps lambdas.  

• Shared Dark Fiber, between the location of the backbone and the GGW. The fiber is lit and 
managed by a single entity, but specific channels, or entire wavelengths, can be dedicated to 
the GENI site and other projects.  While providing less flexibility than the dedicated dark 
fiber option, it is also less expensive, supports a broader range of layer 1 services and can, 
within system limits, be upgraded to support new services.  Available bandwidths will 
typically be in increments of 1-Gbps, 2.5-Gbps, or 10-Gbps assuming DWDM technology is 
used to light the dark fiber.   

• Leased service, such as SONET, point-to-point Ethernet or even DSL. The service is 
typically procured from a standard telecommunications provide, terminates directly into the 
location hosting the PCN and GGW and is dedicated to the GENI site.  A wide range of 
bandwidths exist using this technology, from 1Mb for DSL or other broadband technology 
up to multiple 10-Gbps SONET OC-192 service.  

Second, tail circuits can be provided at the data link layer (Layer 2).  The most common Layer 2 
connection would an Ethernet environment where the network connections are terminated on a 
shared Ethernet switch. Both shared and dedicated services are available using the 
configuration options associated with the technology. For example, a dedicated bandwidth 
VLAN can be provisioned between the backbone node and the GGW. Less common Layer 2 
technologies that could be used include Infiniband and Fiber Channel. As with Layer 1, the 
Layer 2 services can be purchased directly from a standard telecommunications provider or 
provisioned and purchased through the regional optical network in the area.  A wide range of 
bandwidths exist using Layer 2 technology, with 1-Gbps or 10-Gbps being the most common. 
However, sub-gigabit and multi-gigabit data rates are available when portioning the Layer 2 
infrastructure using VLANs or other similar technology.  

Third, tail circuits at the network layer (Layer 3) can be either a shared best effort routed IP 
service or a dedicated service using a specific Layer 3 service such as MPLS.  For the shared 
best-effort service, the overall amount of bandwidth available to the GENI site will depend on 
the shared campus connection type, typically ranging from 155-Mbps OC-3 to 10-Gbps 
Ethernet, as well as the average utilization of the link. When a dedicated service such as MPLS 
is used, a specific amount of bandwidth can be allocated to the GENI site.   

We conclude this discussion by noting that in many instances, a GENI site will be located 
within an area served by one of the Regional Optical Networks (RON). In most cases, RONs are 
network aggregation points with the responsibility for managing the optical networking 
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elements associated with the network infrastructure under their control.  Network management 
includes circuit provisioning, typically at the three network layers described above. In some 
instances, RONs have access to multiple pairs of fiber between the GENI backbone node and 
the GENI site. This often allows for site-managed optical network infrastructure between the 
GENI backbone node and the GENI site.  Therefore, for GENI tail circuits, the existence of the 
RONs make it possible to provision multiple circuits, each with bandwidth up to 10-
Gbpsbetween the GENI backbone nodes and the GENI sites and campuses. (This is not 
intended to preclude the use of even higher bandwidths in the future.) 

For example, the Quilt [QUILT] is a consortium of over twenty leading research and education 
networking organizations in the United States whose mission is to promote consistent, reliable, 
interoperable and efficient advanced networking services that extend to the broadest possible 
community, and to represent common interests in the development and delivery of advanced 
network services. Through an ongoing series of Fiber Workshops, the Quilt has been 
instrumental in identifying standards, policies, and practices for developing, implementing, 
managing and provisioning fiber based network services.  These activities can provide a 
mechanism for GENI sites, particularly those aggregating services through the RONs or 
leveraging RON resources, to define standards and practices for maintaining and managing 
GENI related services and resources. 

3.2   Backbone Network 
The GENI backbone consists of a collection of Programmable Core Nodes (PCNs) connected via an 
underlying fiber plant, with tail circuits to edge sites and connections to the legacy Internet at 
Internet eXchange Points (IXPs).  The backbone plays several important roles in GENI: 

• Connectivity between GENI edge sites: The backbone provides high-bandwidth, low-
latency connectivity between GENI edge sites for experiments with distributed services and 
wireless/sensor subnets.  The edge sites connect to the backbone over tail circuits that may 
have one of three types of link interfaces: packet switching over a constant-bit-rate or 
statistically-multiplexed connection, a time-division-multiplexed circuit (either optical or 
electrical), or a raw optical connection consisting of a whole wavelength. 

• Backbone network experiments: The backbone enables experimentation with novel 
routing, forwarding, signaling, and addressing schemes, running on the PCNs.  
Programmable hardware (such as network processors and FPGAs) and flexible optical 
components enable realistic experiments that operate at high speed. 

• Connectivity to Internet hosts: The backbone enables GENI experiments to communicate 
with hosts running in the legacy Internet, including end users and external services (such as 
Web sites).  Direct connections to IXPs at several PCN sites, coupled with gateway software, 
provide the necessary bandwidth and flexibility. 

Although some experiments may use the GENI backbone in just one of these three ways, we 
envision that many experiments will combine elements of all three.  For example, consider an 
experiment evaluating a new content-delivery service.  The servers storing and sending the 
content could run on the Programmable Edge Clusters.  These servers would use the GENI 
backbone to communicate with each other, and with end users connected via remote GENI sites 
or the legacy Internet.  The experiment may also evaluate a custom backbone design that 
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applies novel features such as multicast, quality of service, anycast, or caching, for better 
content delivery. 

The set of PCNs deployed across the GENI backbone will be managed as a single aggregate. 
This means these components will be remotely managed through a common O&M control point 
(Section 4.1), and slice embedding services will indirectly include backbone nodse through a 
shared slice coordinator (Section 4.2). In the latter case, the aggregate will be responsible for 
ensuring that backbone-wide paths are allocated in a meaningful and consistent way. 

3.2.1   Programmable Core Node (PCN) 

Each site in the GENI backbone consists of a Programmable Core Node (PCN) that terminates 
links from GENI edge sites, Internet Service Providers, and other GENI backbone locations.  
The main sub-systems inside a PCN are: 

• Packet Processing System (PPS): A collection of line cards, general-purpose processors, and 
programmable hardware (e.g., network processors and FPGAs) connected via a switch 
fabric.  The PPS supports both the socket and virtual link interface defined in Section 2.1.1. 

• Circuit Processing System (CPS): A combination of circuit-oriented elements, including a 
programmable framer that supports alternate framing and transport protocols; a fast circuit 
switch that enables the framer and PPS to access any of the wavelengths on the network; and 
a reconfigurable optical add/drop multiplexer (ROADM) that switches traffic at the wavelength 
level, enabling the GENI backbone to scale without requiring the bandwidth of the 
electronic components to match the total capacity of the network. The CPS supports the 
virtual wire interface defined in Section 2.1.1. 

Links can connect to the PCN at several levels, from packet-switched connections to the Packet 
Processing System to circuit-switched connections via the ROADM. In addition, an experiment 
running on a subset of the PCNs can easily “cut through” intermediate PCNs at a variety of 
levels.  For example, data packets may travel directly from one line card to another in the PPS, 
or a circuit may travel through the ROADM without any processing at the intermediate PCN. In 
the remainder of this subsection, we describe the PPS and the CPS, in turn. 

Packet Processing System (PPS) 

The Packet Processing System (PPS) leverages the canonical component to create a flexible, 
high-speed programmable device that supports multiple virtual routers (belonging to different 
slices) within a shared platform. The term virtual router is used here to mean any network 
element with multiple interfaces that forwards information through a network, while possibly 
processing it as it passes through. A virtual router can provide functionality similar to that of an 
IP router, a device that switches TDM circuits, or a firewall or media gateway. Another virtual 
router, in a different slice, might implement entirely different functionality, such as forwarding 
packets based on geographic coordinates or XML records, caching popular content, or 
performing source routing.  The functionality of a given virtual router depends on the 
experiment.  As such, the PPS has two main goals: (i) to provide the resources needed for 
researchers to build their own virtual routers that can operate at high speed and (ii) to ensure 
that virtual routers in different slices can run independently, free from unwanted interference.  
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A more complete discussion of the PPS, including a concrete reference design, is presented 
elsewhere [GDD-06-09].   

The design of the PPS is distinctly different from the design of conventional routers and 
switches in that it must allow bandwidth to be allocated flexibly among multiple virtual routers 
and must provide third-party access to generic processing resources that can be allocated 
flexibly to different virtual routers.  The basic PPS requirements include: open hardware and 
software components, scalable performance, stability and reliability, ease of use, technology 
diversity and adaptability, flexible allocation of link bandwidth and compute resources to slices, 
and strong isolation between virtual routers.  For a more concrete discussion, we present a 
reference design of the PPS that attempts to meet these objectives, as shown in Figure 3.4.  
Wherever possible, we identify specific components and subsystems that could be used to 
implement various parts of the system, to illustrate that the PPS can be assembled largely from 
devices that have been (or are being) developed for commercial use.  While integrating these 
devices is not a trivial effort, very little new hardware must be developed, significantly 
reducing the risks associated with the PPS development.  The design has several key 
ingredients: 

 

 

Figure 3.4. Organization of PPS Reference Platform 

• Advanced Telecommunications Computing Architecture (ATCA): ATCA is a rapidly 
developing set of standards designed to facilitate the development of carrier-class 
communications and computing systems [PCMG] that defines standard physical 
components and some standard patterns for how to use those components to construct high 
performance systems. The standard governs key aspects of the boards that are used with the 
chassis, including physical size, connector type and placement and the use of certain of the 
connector signals. ATCA has attracted broad industry support and is expected to lead to the 
development of a range of interoperable subsystems that will allow more cost effective and 
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flexible development of new communication systems.  Figure 3.4 shows a single ATCA 
chassis plus a commercial blade server.   In the ATCA chassis, an Ethernet switch connects 
the Shelf Manager (that monitors the operation of the system and controls power and 
cooling), Line Cards (that terminate the external IO links), and Processing Engines (that 
provide generic processing resources for use by different virtual routers). 

• Network Processor (NP) and FPGA Blades: Programmable hardware can support 
experiments that need high speed packet processing.  We envision at least two ways these 
processing elements would be used.  First, multiple experiments may share a single NP or 
FPGA for conventional packet-handling functions (such as forwarding and filtering) where 
each experiment has its own share of memory for storing tables (e.g., forwarding tables and 
access-control lists), accessed through a standard software interface.  Second, an experiment 
may have its own dedicated blade for maximum flexibility and throughput, where the 
researchers can run their own software or logic on NP or FPGA.  The NP blades can be 
implemented using the Radisys ATCA 7010. These blades each contain two Intel IXP 2800 
network processors [RADISYS]. Each NP has sixteen internal processor cores for high 
throughput data processing, plus an Xscale processor (running Linux) for control. Each NP 
has three banks of RDRAM providing 750 MB of storage and four banks of QDR SRAM. The 
two NPs also share access to a dual-port TCAM that can be used for packet classification 
and other applications requiring associative lookup.  In addition, an FPGA-based, 
configurable logic blade can be used to implement hardware-based PEs. 

• Switch Blades: The switch blade enables communication between the other blades in the 
system, and plays a crucial role in providing isolation between virtual routers.  A suitable 
switch blade has been developed by Radisys (ATCA 2210). This blade includes a 20-port 10 
Gigabit Ethernet switch that provides one port to each of the 12 slots designated for PEs and 
LCs, plus two ports for connection to a redundant switch blade. It also provides four ports 
that can be connected either to the front panel, or the RTM connector. The 10 GE switch 
includes VLAN support, making it possible to constrain the routing of traffic from different 
virtual routers. This is useful for providing the traffic isolation needed to keep virtual 
routers from interfering with one another. The board also includes a 24-port 1 Gigabit 
Ethernet switch intended for carrying control traffic and a Control Processor that configures 
the two switch components through an on-board PCI interface.  

• Line Cards: The line cards provide the functionality needed to allow multiple virtual links 
to share the external physical links, including fine-grain resource allocation and 
(de)multiplexing of packets to/from the appropriate processing element and slice.  The LCs 
can be implemented either using an NP blade or a configurable logic blade. The LC can be 
configured to terminate IP and/or MPLS tunnels to facilitate reception of packets from 
remote sites that have no dedicated connections to the PPS. It must include a header-
mapping function to map arriving packets to a virtual router number, a virtual interface 
number, and a physical destination within the PPS. Packets are labeled with their virtual 
router number and virtual interface number by the LC and forwarded through the switch to 
the specified destination. Packets going to the switch are sent through queues with a 
configured maximum rate, in order to prevent switch congestion. On the egress side, 
packets are received from the switch, already labeled with their virtual router and meta-
interface numbers. The LC uses these to map the packets to the proper outgoing queue, 
which is configured to provide the appropriate encapsulation (if necessary). The egress-side 
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software also monitors the rate at which packets are received on each virtual interface, and 
raises an exception to the PPS control software, if the received rate exceeds the allowed rate 
for a given virtual interface; the PPS control software then decide what action to take, if any. 

• General-Purpose Processing Blades: The general-purpose processing blades behave very 
much like the processors in a canonical component. They host slices that do not need 
specialized hardware for the sake of performance; in addition, some experiments may use a 
general-purpose blade to run control plane software (such as routing and signaling 
protocols), and use the NP and FPGA blades only for data plane functions (such as packet 
forwarding).  To reduce overall system cost, the reference design uses a commercial blade 
server to host the general purpose Processing Elements (PEs), rather than using ATCA 
blades. An IBM Blade Center system is typical of the class of systems that can be used to 
provide general-purpose processing in the PPS. A suitable IBM Blade Center system would 
include 14 processor blades, each with two 3.6 Ghz Xeon processors with two on-board 80 
GB disks and up to 8 GB of memory. These are interconnected through redundant switch 
cards that plug into the rear side of the chassis and support redundant 1 Gbps Ethernet 
connections to each slot. Each switch card has six 1 Gbps up links that can be used to 
connect to the ATCA chassis. It is likely that switch cards with 10 Gbps up links will be 
available soon. 

Virtual router functionality will be implemented in PEs, thus the PPS requires software and 
interfaces to support both control and data plane virtual network components. A great strength 
of the hardware reference design lies in the minimal set of constraints placed on virtual router 
developers—the design philosophy provides resources to developers with few assumptions as 
to how those resources will be marshaled to implement innovative networks. To illustrate how 
the control and programming of the PCN will be staged, the PEs can be used in one of two 
modes. In raw mode, the entire PE blade is under the complete control of its user. Users may run 
their own operating system on a PE in raw mode and are fully responsible for its operation. 
There is no software to implement substrate functionality on a PE in raw mode, making it 
necessary for the system to use the switch fabric and LCs to ensure the necessary isolation. In 
cooked mode, a PE blade runs a standard GBP OS that provides substrate functionality and 
allows the blade to be shared by multiple virtual routers. In this mode, users may reserve a 
portion of the blade’s resources for their exclusive use, and the system will attempt to 
accommodate such requests by mapping virtual PEs to physical PEs where the needed 
resources are available.  

To further lower the barrier to experimentation, we plan to provide APIs for slices to install 
forwarding state in the (shared) NP and FPGA blades.  In particular, we envision that an 
experiment may employ one of these three APIs: 

• Forwarding and Control Element Separation (ForCES) standard: ForCES is an emerging 
IETF standard [RFC-3746] that consists of three key components: (i) a standard 
communication protocol between the control element (CE) and the forwarding element (FE), 
(ii) a standard and very simple operation code set for the CE to send control commands to 
the FE and, (iii) a standard numbering scheme for identifying data (or operand) at the FE 
which is very similar to the well known SNMP MIB numbering scheme.  Several ForCES 
implementations already exist in the commercial world. 

 43 



Facility Design                                                                            March 9, 2007 

• Forwarding Element Abstraction (FEA) in Click:  Many researchers building prototypes of 
networked systems use the Click modular router [KMJK00] as a building block.  Click 
installs forwarding state based on commands received via a control socket interface.  The 
forwarding element abstraction (FEA) used by Click is an appealing API for researchers to 
use in installing forwarding state in the NPs and FPGAs, due the familiarity of the API. 

• Kernel forwarding table (e.g., in Linux): An experiment running on the general-purpose 
processor may update the forwarding table in the underlying operating system, such as 
Linux.  In fact, some experiments may initially implement packet forwarding by having all 
data packets pass through the general-purpose processor for forwarding decisions, taking 
advantage of the dedicated NP and FPGA hardware at a later stage of deployment.  We 
envision providing a library that would transparently copy the kernel forwarding tables to 
the shared NP or FPGA blade. 

This software is described in more detail in [GDD-06-36]. 

Circuit Processing System (CPS) 

The Circuit Processing System (CPS) consists of a layered collection of elements, where 
researchers can access GENI at whatever layer provides the right level of abstraction for their 
work. The strategy is to provide a set of concurrent substrates, so that researchers can 
experiment with new architectures and protocols at one level without interfering with the 
stability of the system being used by researchers investigating designs at another level.  

Packet Processor

Programmable Framer

Fast Circuit Switch

Wavelength Selective Switch

Default Null

 

Figure 3.5: Layered design for the Circuit Processing System (CPS). 
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The design is depicted by the block diagram given in Figure 3.5, where the top-most layer 
(Packet Processor) corresponds to the PPS described above. The following briefly introduces the 
lower layers of the system. The design is described in more detail in [GDD-06-26]. 

• Wavelength Selective Switch (WSS): Data on one 10-Gbps wavelength can be switched to 
another wavelength, or delivered to the Fast Circuit Switch. Data carried on a wavelength is 
not interpreted in any way by the WSS. The WSS will connect to the FS via optical fiber. 
User research equipment can connect directly to the WSS (shown on the left hand side of 
Figure 3.5) using spare optical ports on the WSS. 

• Fast Circuit Switch (FCS): Circuits are time-division-multiplexed onto a 10-Gbps 
wavelength. The minimum granularity will be 1-Mbps, and the circuit switch should be 
capable of establishing a new circuit in less than 1ms. Initially, the FCS will be electronic. 
Over time, optical FCS’s are possible. Virtual circuits of any bandwidth with granularity of 
1-Mbps can be established. Individual circuits can be assembled from multiple basic slots 
within and across wavelengths. The FCS will connect to the WSS via optical fiber. User 
research equipment can connect directly to the FCS (shown on the left hand side of Figure 
3.5) using spare electrical ports on the FCS. 

• Programmable Framer (PF): The framer will frame packets inside circuits. SONET is one 
obvious choice for a default framing format. The framer should have a null framing format 
in cases where the packets themselves carry sufficient information for recovery at the 
destination. The PF will connect to the FCS via electrical links or short-reach optics. User 
research equipment can connect directly to the PF (shown on the left hand side of Figure 
3.5) using spare ports on the PF. 

This design can be realized using commercially available hardware, as sketched in Figure 3.6. A 
Fiber Switch (FS) interconnects raw fibers from network input to network output without any 
modification of wavelengths or data within the fibers. Fibers in the plant can be physically 
allocated to the primary GENI nodes, next generation GENI nodes scheduled for hitless 
rollover, and fibers used for fiber optical physical layer research. The FS provides complete 
isolation at all levels between the running GENI infrastructure and future GENI nodes and 
technologies. 
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Figure 3.6: Reference design for the Circuit Processing System (CPS). 

The Fiber Switch connects to a ROADM via four pairs of optical fiber (four ingress and four 
egress). The ROADM—which implements the WSS functionality—interconnects different 
wavelengths, adding/dropping some at this PCN, while converting others to a different 
wavelength and passing them along to the next node. The ROADM enables arbitrary topologies 
of wavelengths to be built for redundancy, and in some cases will be under the control of 
individual experiments. The ROADM also allows a wavelength to be added or dropped from a 
new non-GENI platform, perhaps one that is being tested for deployment in GENI. The 
ROADM will initially support up to four fibers, each carrying eight wavelengths.  

The Fast Circuit Switch (FCS) sits above the ROADM and terminates each optical wavelength. 
The ROADM connects to the FCS via four pairs of optical fibers, each carrying up to eight 
wavelengths. The FCS allows multiple TDM channels to be multiplexed onto a single 
wavelength, and so performs the equivalent job as the ROADM in the time domain. It is 
equivalent to the SONET cross-connect switches used to terminate TDM circuits today, exact 
that the FCS will allow different framing structures to be used in each TDM channel. By default, 
SONET will be used at the normal SDH hierarchy rates, down to a minimum of 1.5-Mbps. 
However, experiments can install new framing structures, or bypass it completely and 
terminate the circuit in the PPS line card.  The PPS will connect to the FCS using 32 10-Gbps 
channels, probably using short-reach 10-Gbps optics. 

3.2.2   National Fiber Facility 

Subjecting experimental network architectures to realistic traffic and network conditions is one 
of the main goals of the GENI facility.  Certainly, researchers may start evaluating their new 
architectures via controlled experiments with synthetic traffic, emulated network topologies, 
and artificial network events.  Yet, the purpose of the GENI facility is to allow them to gradually 
subject their architectures to increasing realism, such as carrying real user traffic, handling 

 46 



Facility Design                                                                            March 9, 2007 

unexpected network events, and operating at scale. This enables the experiments run in GENI 
to uncover unanticipated interactions that would not arise in controlled experiments in a 
simulator or testbed.  In fact, some GENI experiments may evolve into long-running 
deployment studies that offer new services to end users.  Running realistic experiments and 
attracting real users requires a facility that can offer the kind of performance the users would 
expect on the Internet. 

The desire for realism is major factor in the design and sizing of the GENI facility, though this 
goal must be tempered by the need to limit cost.  As an illustrative example, consider a straw-
man design that places all GENI components (such as backbone nodes, wireless/sensor subnets, 
and compute clusters) at a single location, with connections to end users and legacy services via 
dedicated tail circuits and upstream connections to the Internet.  In this model, artificial delay 
could be added to emulate the propagation delays in a realistic backbone network.  The appeal 
of this approach is the reduction in deployment and management costs by placing all of the 
equipment in a single location.  However, a centralized facility would have several serious 
shortcomings, including high latency (due to propagation delay to/from the central site), high 
backhaul costs (i.e., for the tail circuits), and poor robustness (e.g., where a single failure could 
disconnect the central site from the rest of the Internet).  These issues lead us to design a 
distributed facility.  To reduce propagation delay and backhaul cost, we envision having a 
distributed collection of PCNs with tail circuits to nearby GENI edge sites and upstream 
connections to the legacy Internet.   

In selecting a backbone topology for the facility, we look to the rules of thumb that drive the 
design of commercial Internet Service Provider backbones, and the large research and education 
networks like the National Lambda Rail (NLR) [NLR] and the Abilene Internet2 backbone 
[Internet2], including [GDD-06-27]: 

• Path diversity: Many experiments with new network architectures capitalize on the 
presence of multiple paths between a pair of sites; some architectures even need multiple 
link-disjoint or node-disjoint paths.  For example, some architectures perform load 
balancing by splitting traffic over multiple paths, whereas others switch from one path to 
another in response to congestion or equipment failures.  In addition, the ability of the GENI 
facility itself to survive node and link failures depends on the underlying diversity of the 
backbone network. 

• Underlying fiber paths: The existing fiber-optic map in the United States imposes limits on 
the specific backbone sites that can have a direct fiber-optic connection between them.  
Placing backbone nodes in the key cities where multiple fiber-optic connections are 
available is extremely important to reduce the cost and deployment time of GENI.  In 
addition, though it is possible to provide the illusion of dedicated links between any pair of 
backbone sites, providing links that match the underlying fiber map reduces cost and offers 
a more realistic deployment scenario. 

• Major interconnection points: Deploying GENI backbone elements at existing IXPs where 
other ISPs have their backbone sites would allow GENI to amortize the costs of space, 
power, and "hands and eyes" support.  Locating GENI backbone nodes at major exchange 
points would be useful for acquiring upstream connectivity to the legacy Internet; similarly, 
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having GENI backbone nodes at major aggregation points (such as the GigaPoPs) would 
facilitate efficient, low-cost connectivity to certain edge sites, such as university campuses. 

• Tail circuit cost: The tail circuits connect to edge sites that house compute clusters, 
wireless/sensor subnets, and end users. The cost of these tail circuits depends, in large part, 
on the length of the circuit and the presence of existing fiber.  Most major campus and 
enterprise sites already have tail circuits to the legacy Internet and perhaps also to 
research/education networks like the Abilene Internet2 backbone and the National Lambda 
Rail (NLR).  Many of the university campuses connect via 15-20 GigaPoPs that provide 
connectivity, making it attractive to locate GENI backbone sites at or near these locations. 

• Limiting propagation delay: Backbone networks typically have a sufficiently rich topology 
such that the end-to-end propagation delay between each pair of sites is small enough to 
support interactive applications, such as telephone calls and video conferencing.  This limits 
end-to-end paths to around 100 msec of delay.  Commercial ISPs typically try to limit the 
end-to-end propagation delay for each pair of backbone sites to some small multiplier (e.g., 
2x) of the “air miles” between the sites.  Otherwise, a competing ISP with a direct link 
between the same two locations could offer much lower latency.   

All of these issues point to having a backbone design that is similar to existing commercial ISPs, 
which have around 25 major sites spread throughout the country, to provide low latency, path 
diversity, a good match with the underlying fiber infrastructure, sufficient peering points with 
other providers, and economical tail circuits.   In addition, some GENI experiments may want 
the illusion of a less “backbone centric” kind of network architecture, with direct links between 
edge sites.  Although in practice the fiber map may not have direct connectivity between pairs 
of edge sites, a 25-node GENI backbone can easily support the embedding of virtual links that 
connect pairs of edge sites.  Having a rich topology that closely matches the fiber map, with 
short tail circuits to edge sites, would make that illusion as close to a reality as possible.  Given 
the current plan of having around 200 edge sites, each backbone site would terminate an 
average of eight tail circuits.  

One of the lessons learned from PlanetLab is that a useful platform for experimental research 
will attract lots of people who want to use it. This makes it difficult (and probably fatal to try) to 
estimate the number of experiments that will run simultaneously, and the amount of capacity 
they will need. It would be a disaster if GENI were built successfully, only to find that it then 
sinks under the weight of its own success and becomes overwhelmed by users and experiments, 
and is unable to react quickly enough to deploy new link and processing capacity.  

On the other hand, financial constraints dictate that we don’t overbuild the network. The trick 
will be to deploy enough capacity up-front in all components of the backbone network so as to 
allow experiments to start at reasonable cost; and architect the backbone network so as to allow 
(perhaps rapid) deployment of additional link, switching and processing capacity where 
needed. In other words, the architecture of the network should be somewhat decoupled from 
the particular data-rates of links and processing speeds of programmable elements. This 
suggests a phased approach in which a specific set of processing capacities and link rates are 
supported in each phase, with the set of processing capacities and link rates being expanded in 
each successive phase. For example, an early phase could support data-rates of 10 Gbps per 
wavelength, with each fiber carrying eight wavelengths. Over time, as needed, the facility can 
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be enhanced to support additional wavelengths, but won’t support link rates above 10 Gbps. 
Later phases could then support higher link rates, up to 40 Gbps or 100 Gbps, and would be 
backwardly compatible with links at 10 Gbps. It is too early to decide between 40 Gbps and 100 
Gbps as this should be dictated by the availability of commercial components. 

At this time, it is not yet known whether GENI will operate over an existing fiber infrastructure 
(e.g., National Lambda Rail [NLR] or Internet2 Abilene) or over a new dedicated infrastructure. 
But either way, the GENI equipment will connect directly to the long-haul optical fibers that 
connect two adjacent backbone nodes [GDD-06-26]. At the lowest level, the Fiber Switch (FS) 
will connect to the incoming fiber. Typical backbone nodes have a degree no greater than four; 
in other words, they connect to no more than four adjacent backbone nodes (but could connect 
with multiple fibers to each neighbor). Likewise, GENI backbone nodes will connect to up to 
four adjacent backbone nodes, with one or more fibers to each. Initially, we will use one fiber 
per link. This means that the Packet Processing System (PPS) will hold up to 32 10 Gbps 
linecards (4 full duplex fibers, each carrying up to 8 wavelengths), although they might not be 
fully populated until all the wavelengths are used. 

3.2.3   Internet Exchange Points 

The GENI backbone will have connections to Internet Service Providers (ISPs) to reach hosts in 
the legacy Internet, most likely at Internet eXchange Points (IXP) in the major metropolitan 
areas where today’s ISPs peer (e.g., Atlanta, Chicago, Denver, Los Angeles, New York, San 
Francisco, and Washington D.C.).  These connections will terminate directly at the backbone 
PCNs, either at the packet level via line cards that connect to the Packet Processing System 
(PPS), or at the circuit level to the Circuit Processing System (CPS), depending on the 
arrangement with the ISP. 

The IXP sits between experimental network architectures running within GENI, and the widely 
deployed Internet architecture. This means several “boundary” functions will need to be 
implemented at this point. This set includes the same traffic shaping, filtering, and auditing 
functionality implemented by the GGW that connects edge sites to the Internet (Section 3.1.2).  

It also includes software modules that allow experimental services running in GENI slices to 
interact meaningfully with the Internet. For example, the IXP stands at the right place to 
terminate tunnels through the Internet and either translate addresses into a GENI format, or 
establish a tunnel into a slice entry point. As another example, slices may need to interact with 
infrastructure protocols, such as the Domain Name System (DNS) [RFC-1034, RFC-1035] and 
the Border Gateway Protocol (BGP) [RFC-4271].  This requires software running at the IXP to 
act as a “virtual player” with which the Internet negotiates. Several of these functions, which 
generally allow GENI to interoperate with the legacy Internet, are described in Section 4.3.3. 
These functions are also described in greater detail in [GDD-06-36, GDD-06-31].  

3.3   Wireless Subnets 
The physical substrate includes a range of wireless networking capabilities, providing 
researchers with access to emerging radio technologies that are becoming increasingly 
important at the network’s edge [GDD-06-14]. As illustrated in Figure 3.7, specific technologies 
include an 802.11-based mesh network, an open API “4G” cellular/WiMax system, a cognitive 
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radio technology demonstrator, two large-scale sensor net deployments, and two emulation 
grids.  

 

Figure 3.7: A collection of wireless technologies are included in GENI’s physical substrate. 

The wireless subnets of GENI are built around two classes of components: Programmable Edge 
Nodes (PEN) that connect the subnet (edge site) to the GENI backbone (as well as to any 
commodity Internet service that might be available), and Programmable Wireless Nodes (PWN) 
that are deployed throughout the subnet. This section describes these two components and the 
various subnets in which they are deployed. 

3.3.1   Programmable Edge Node 

A Programmable Edge Node (PEN) connects a wireless subnet, including a set of 
Programmable Wireless Nodes (PWN) and client devices, to the larger GENI substrate, as 
shown in Figure 3.8. Because a PEN connects to both the backbone and a wireless subnet, slices 
instantiated on a PEN likely host experiments and services that span the wired/wireless 
domains. 
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Figure 3.8: Programmable Edge Node (PEN) in a wireless subnet deployment, 
connecting a set of Programmable Wireless Nodes (PWN) to the GENI backbone and the 

commodity Internet. 

The PEN is similar to the canonical component described in Section 2.4.4. It consists of a set of 
commodity processors, and runs virtualization software that allocates a VM to each slice 
instantiated on the node. A Component Manager establishes and controls these VMs according 
to the interface described in Section 2.2.3. A PEN includes network cards that connect it to both 
the GENI backbone and to the Programmable Wireless Nodes (PWNs) deployed throughout the 
site. It supports the Socket, Virtual Link, and Virtual Radio interfaces described in Section 2.1.1 
[GDD-06-17]. 

The PEN’s main job is to act as a mux/demux between the shared tail circuit connecting the site 
to the backbone and the many PWNs within the subnet. As such, its exact configuration 
depends on the environment in which it is deployed. For example, if each PWN in the subnet is 
able to act as source or sink of a 10 Mbps flow and there are 1,000 nodes in the subnet (and the 
PEN is connected to the backbone by a 10 Gbps tail circuit), the PEN needs to be configured 
with the same packet processing cards as the PCN described in Section 3.2.1. Sites with lesser 
tail circuits and fewer PWNs can be built from commodity processors and standard line cards. 
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3.3.2   Programmable Wireless Node 

Programmable Wireless Nodes (PWNs) form the core of the physical substrate for each wireless 
subnet. They are designed to support both single-hop and multi-hop experimentation. They are 
also designed to be flexible—able to be configured with any of a number of radio technologies, 
able to handle high-bandwidth technologies, and able to perform processing tasks associated 
with cognitive radios.  

Each PWN includes a set of one or more radio cards, depending on the subnet in which they are 
deployed. As described in subsequent subsections, these include both commercial transceivers 
(e.g. Cellular, WiFi or WiMax), software defined radios (SDR), and cognitive radios. The PWN 
supports the Virtual Radio Interface (Section 2.1.1), which defines the interface between a sliver 
running in the main processor and a given radio card. New types of radios may be introduced 
into existing PWNs, provided the new card supports this interface. Each PWN also supports the 
Socket interface. 

A given PWN can also be configured to support some number of sensor devices, including a 
Global Positioning System (GPS). GPS devices are of interest in mobile (vehicular) nodes used 
in field trials; they may also be useful in stationary nodes since they provide an accurate, 
synchronized time reference. 

Each PWN is either tethered or untethered. Tethered PWNs include a high-speed backhaul 
channel to the site’s Programmable Edge Node (PEN). This channel may be implemented using 
either wired technology (e.g., DSL and PON) or dedicated wireless channels (e.g., WiMax).  
Backhaul channel will be used primarily for management and control. In addition to the 
backhaul channel, tethered PWNs will also have wireless data channels (e.g., WiFi) that will be 
used mostly for multi-hop transport experiments. Untethered PWNs do not include a high-
speed backhaul channel; they communicate with the rest of GENI through their radio channel(s) 
only. In this case, both management/control and data channels are implemented using wide 
area Cellular/WiMax links. However, to leverage intermittent high-capacity connectivity 
channels, the untethered PWNs will also be equipped with WiFi/UWB interfaces that can be 
used when an otherwise mobile node (e.g., car or bus) is in a garage or otherwise near a hot-
spot. Untethered nodes are intended for experimentation in vehicles or in hand-held devices in 
the field.  

The proposed hardware baseline for a PWN is shown in Figure 3.9. It is organized around a PCI 
bus with a general-purpose processor, making it a degenerate (single processor) configuration 
of the cluster-based canonical component. Multiple radio cards of various types are plugged in 
to the PCI bus, along with sensors and GPS units. 
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Figure 3.9: Proposed PWN hardware with distinct backhaul control and data channels. 

Finally, as shown in Figure 3.9, a PWN can be configured with two backhaul channels: a data 
channel supporting GENI experiments (corresponding to the tethered case described above), 
and a control channel used to invoke slice operations and retrieve experimental statistics. This 
separation is especially important in those deployments that utilize low-bandwidth data 
backhaul channels. Note that even an untethered PWN can support a dedicated control channel, 
for example, using a low-speed cellular channel (e.g., GPRS, EVDO). Also note that in some 
cases, the control channel can be implemented in-band as a reserved sub-channel on the data 
channel. 

3.3.3   Subnet Deployments 

We now describe five wireless subnet deployments that are to be included in the GENI facility. 
In addition to these deployments, we also plan to produce wireless kits that allow others to 
deploy their own subnets, and connect them to GENI. These kits include the software and 
hardware that collectively define a set of PENs, PWNs, but specifically configured to operate in 
deployments similar to those described below. 

Each subnet is treated as a distinct aggregate, and hence, includes an aggregate manager that 
implements the O&M Control and Slice Coordination functionality described in Section 2.4.5. 
This aggregate manager is co-located with the subnet, and connected to the constituent 
components through a control channel. This control channel is implemented in one of two 
ways: (1) as a logical sub-channel of the backhaul data channel that connects the components to 
the rest of GENI, or (2) as a dedicated control channel using a separate backhaul link. 

Unique to the wireless subnets, the aggregate manager oversees the RF spectrum for the entire 
deployment. Essentially, the aggregate checks for compatible allocation of frequencies, power, 
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and so on, across nodes and slices in the subnet. This function is supported by an independent 
monitoring infrastructure that includes RF sniffers that measure ambient RF spectra. This data 
is used to reliably profile of RF activity during experimental activities, whether generated by the 
experiment itself or externally induced. 

802.11 Urban Mesh Network 

Mesh networks represent an important area of current research and technology development 
activity, and have the promise of providing lower-cost solutions for broadband access 
particularly in medium- and high-density urban areas (Figure 3.10).  While protocols for ad-hoc 
mesh networks have been maturing, the research community has limited field experience with 
large-scale systems and application development. Research topics to be addressed using the 
GENI system include ad-hoc network discovery and self-organization, integration of ad-hoc 
routing with core network routing, cross-layer protocol implementations, MAC layer 
enhancements for ad-hoc-supporting broadband media QoS, impact of mobility on ad-hoc 
network performance and real-world, location-aware application studies. 

 

 

 

 

Figure 3.10: 802.11 Urban Mesh Network Deployment. 

An 802.11 Urban Mesh Subnet allows experimentation with wireless mesh architectures, as well 
as with multi-hop radio networks and mobile ad hoc networks (MANETs). It also provides 
access to GENI-wide experiments and services from moving vehicles and other mobile devices 
[GDD-06-18]. 

A field deployment of urban mesh subnet in GENI would consist of ~1000 PWNs densely 
deployed in one or more urban areas or campus settings with coverage area ~10 Sq-Km. A 
typical PWN, housed in packaging suitable for urban environments, would be installed at ~8m 

 54 



Facility Design                                                                            March 9, 2007 

height using available lighting poles or other utilities, and would have electrical power and a 
wired or wireless (i.e., cellular) remote management interface.  Approximately 25% of the nodes 
would be designated as access points with wired interfaces (typically VDSL or fiber) to PENs, 
supporting experiments that want to send traffic between PWN and PEN without using multi-
hop RF. These channels can be ignored for experiments wishing to experiment with multi-hop 
RF technology. Also, this channel can double as the control channel, eliminating the need for a 
separate backhaul link. The urban deployment will also include support for ~100 vehicular 
mobile nodes associated with a suitable bus or taxi fleet operating in that environment.  End-
user mobile devices can also opt into the GENI urban mesh as described in Section 3.3.3.  Note 
that wireless control and management interfaces such as GPRS or EVD0 will be required at 
vehicular or mobile nodes, limiting the degree of programmability and remote data collection. 

Suburban Cellular/WiMax-WiFi Hybrid Network 

GENI will also include a wide-area suburban wireless network with open-access Cellular/ 
WiMax radios for wide-area coverage, along with short-range 802.11 radios for hotspot and 
hybrid service models (Figure 3.11).  This wireless scenario is of particular importance for the 
future Internet as cellular phone and data devices are expected to migrate from vertical protocol 
stacks such as GSM, CDMA and UMTS towards an open Internet protocol model.  Experimental 
research on future cellular networks and their integration into the Internet is currently restricted 
by the lack of open systems that can support new types of protocols and applications.  Research 
topics to be studied using the proposed experimental network include transport-layer protocols 
for cellular, mobility support in the future Internet, 3G/WLAN handover, multicasting and 
broadcasting, security in “4G” networks, information caching/media delivery, and location-
aware services. 

 

Figure 3.11: Suburban Cellular/WiMax-WiFi Hybrid Network Deployment. 

A wide-area Suburban Access Subnet allows experimentation with Cellular and WiMax/WiBro 
(802.16 d/e) network architectures, as well as with hybrid WiFi/WiMax and hybrid 
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WiFi/Cellular networks. It also provides access to GENI-wide experiments and services from 
moving vehicles and other mobile devices. 

A field deployment of a wide-area suburban wireless network includes a set of PWNs 
configured with open-access cellular/WiMax radios for wide-area coverage, and short-range 
802.11 radios for hotspot and hybrid service models.  Specifically, we expext approximately 10 
Cellular  (UMTS/CDMA) or WiMax-based nodes and 100  802.11-based nodes covering a 
suburban area of about 50 Sq-km. The Cellular/WiMax nodes will need to be mounted at 
heights of ~30m or higher on buildings or towers, while 802.11 nodes can be installed at ~8m on 
utility poles.  A deployment will also include 25-50 mobile nodes with UMTS/CDMA/WiMax 
mounted on mobile vehicles (e.g., buses or taxis) that move throughout an area covered with 
802.11 and/or UMTS/CDMA/802.16 radios.   

Each PWN is connected to the PEN by a high-speed backhaul channel (e.g., Ethernet), 
supporting experiments that want to send traffic between PWN and PEN without using multi-
hop RF. These channels can be ignored by experiments wishing to experiment with multi-hop 
RF technology. Also, this channel can double as the control channel, eliminating the need for a 
separate backhaul link. The Component Manger (CM) interface will use Cellular data (GPRS, 
EV-DO) channels for accessing the mobile components. 

Cognitive Radio Access Network 

A cognitive radio (CR) network deployment is planned as an advanced technology 
demonstrator, with a focus on building adaptive, spectrum-efficient systems with emerging 
programmable radios (Figure 3.12) [GDD-06-20].  The emerging cognitive radio scenario is of 
current interest to both policy makers and technologists because of the potential for order-of-
magnitude gains in spectral efficiency and network performance. NSF and industry funded 
R&D projects aimed at developing cognitive radio platforms are currently in progress and are 
expected to lead to equipment that can be used for GENI in the 2008-09 timeframe. Research 
teams are interested in investigating radio spectrum architectures, hardware platform (SDR) 
integration, cognitive networking adaptation algorithms, mobile/wireless network control and 
management functions, developing new protocols supporting new network services, and are 
further interested in testing and evaluating their work in both simulated/emulated and realistic 
environments.  
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Figure 3.12: Deployment of Cognitive Radio Demonstrator Network 

In order to perform experimentation on architectures that inherently build upon larger network 
services, a CR field deployment will be integrated into and interoperate with the larger GENI 
facility. This deployment will span a suburban/medium-density coverage area ~50 Sq-Km with 
the objective of demonstrating and evaluating this technology as an alternative to available 
cellular and hybrid cellular/WLAN solutions.  Deploying this system also involves constructing 
a distributed spectrum measurement infrastructure along with centralized spectrum 
coordination resources (such as spectrum broker, spectrum server).   

As with all wireless subnet deployments, we will produce a CR Kit that can be deployed in 
other environments. For example, this will make it possible to augment the Urban Mesh 
installation described earlier in this section by including these kits as “plug in” upgrades to the 
PWNs installed in that setting. This will allow us to leverage an existing field for cognitive radio 
trials without the expense of obtaining permission from additional communities, adding new 
devices to pole tops, and so on. 

Spectrum policy is likely to be a real issue for field installations of cognitive radios, since much 
of the operation of such radios is under the control of experimental software. It would be 
desirable to obtain an experimental spectrum allocation from the FCC for cognitive radio field 
installations; additionally, the hardware should probably be designed so that compliance with 
important FCC policies can be readily ascertained no matter what software runs on the 
platform. 

Application-Specific Sensor Subnets 

GENI will include sensor networks capable of supporting research on both protocols and 
applications (Figure 3.13) [GDD-06-19]. Since the design of a sensor network tends to be 
application specific, GENI will provide experimental access to a small number of selected 
sensor net deployments that leverage the urban and suburban wireless infrastructures 
described earlier. There will also be a sensor deployment kit consisting of network proxies 
(from sensor radios to 802.11 or cellular), sensor modules and related platform software to 
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enable users to build additional sensor networks for specific research or application objectives.  
Research topics to be studied using experimental sensor net systems include general-purpose 
sensor network protocol stacks, data aggregation, power efficiency, scaling and hierarchies, 
information processing, platform hardware/software optimization, real-time, closed-loop 
sensor control applications, vehicular, smart space and other applications. 

 

Figure 3:13: Deployment Concept for Sensor Networks 

Sensor Subnets provide a means by which networks of sensors and actuators can be brought 
into the overall GENI facility. These devices are generally microcontrollers, often powered by 
batteries, and typically communicating over an RF channel. 

There will be four kinds of sensor subnet facilities connected to the GENI facility: 

• Local sensor subnets: These will consist of up to 100 nodes each, and will be designed with 
a particular application in mind. These subnets will be realized by making kits available to 
GENI edge sites that have a local sensor application they are willing to deploy. 

• Outdoor deployment: These will be deployed on a campus or metropolitan scale, and will 
consist of several sensor "sub"-networks, each designed with a particular application in 
mind. For example, specific sensor deployments in areas such as environmental monitoring, 
security, traffic control, vehicular safety or smart spaces.  Each such sensor net application is 
expected to involve up to 1000 sensors and 10’s of network gateways.  The low-tier sensor 
nodes interface with a gateway typically at distances ~10m or less, while gateways would in 
turn connect to either 802.11 or cellular nodes with commensurate coverage areas.   

• Indoor deployment: This deployment contains a large number of sensor nodes (roughly 
1000), and allows sensor network researchers to experiment at scale with a greater variety of 
traffic patterns and network configurations than possible with the deployed regional 
backbone, and in a repeatable and controlled manner. 

 58 



Facility Design                                                                            March 9, 2007 

• Existing sensor networks: There are several existing sensor networks that might be 
integrated into GENI via a “GENI sensor proxy”, which can be thought of as a standard 
proxy provided for sensor networks. 

Note that sensor nodes can be incorporated into GENI using the methods outlined in Section 
4.3.4: they may be fully-compliant GENI components (e.g., a PWN configured with a sensor 
card or Stargate devices that have been modified to support a Component Manager and slices); 
slice-supporting devices managed by an external CM using a private CM-device interface; or a 
“GENI unaware” motes (or equivalent) that connect to GENI via a GENI sensor proxy running 
on a GENI-compliant component. We expect all three types to be deployed in each subnet.  

Emulation Grids 

Emulation grids provide a means by which experiments with wireless subsystems can be run in 
a controlled, repeatable way. They complement the large-scale field deployments that support 
experimentation “in the wild.” The emulation grids are intended to be compatible with the field 
deployments, so that the same user experiments can run unchanged in both environment, or 
any mixture of the two. We envision two types of grid facilities: (1) GENI Wireless Simulation 
Clusters and (2) GENI Controlled Experimental Facility. 

The first, a wireless simulation cluster, provide a means by which wireless network simulations 
may be linked into the end-to-end GENI system. These simulations run exactly the same 
researcher code as a PWN, but provide simulated radio interconnectivity rather than actual 
radio channels between the nodes. By selecting the appropriate radio channel simulation 
software, researchers can simulate networks of PWNs, including ones configured with sensors 
and cognitive radio cards. 

A Simulation Cluster utilizes the same hardware as a Programmable Edge Cluster, sized to 
support a wireless network with up to 500 nodes (i.e., with 50-100 processors). It includes 
software to simulate radio channel behavior, along with instrumentation and data archiving. 
We expect simulations running on these clusters to be controlled by the same O&M Control as 
other GENI components. 

The second, a controlled experimental facility, consist of RF-shielded, anechoic rooms in which 
repeatable experiments can be performed with real, “over the air” radio signals. These rooms 
will be suitable for experimentation with Programmable Wireless Nodes, including those 
configured with cognitive radio cards and sensor devices. As for Simulation Clusters, the 
Controlled Experimentation Facilities will be compatible with field-deployed wireless subnets, 
allowing researchers to try move their experiments between the grid and field deployments, as 
necessary. 

3.4   Discussion 
Throughout this section, we describe a set of seemingly distinct components: Programmable 
Edge Clusters (PEC), Programmable Core Nodes (PCN), Programmable Edge Nodes (PEN), 
and Programmable Wireless Nodes (PWN). One might ask exactly what distinguishes one 
component from another. At their core, they share a common design: they are constructed from 
a set of general-purpose processors running virtualization software, the so-called canonical 
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component. Each is then specialized or configured for a particular purpose (e.g., the PEC scales 
to a large number of processors, the PEN and PWN include RF line cards, and the PCN is 
configured to drive high-speed link). 

However, these distinctions are not always so crisp, with hybrid configurations, or sets of 
components, a possibility at any given site. For example, a site might require a configuration 
that includes a large cluster of processors, outfitted with wireless cards to support a local 
wireless subnet, and configured with high-speed line cards to support a high-speed tail circuit 
to the backbone. The configuration might even include the Circuit Processing Subsystem of the 
PCN if the site is connected to the backbone by a dedicated fiber. At the same time, a small-scale 
PEC is essentially identical to a tethered PEN. 

4   User Services 
The physical substrate provides the raw material from which researchers construct experiments. 
A set of user services collectively knit these building blocks together into a coherent scientific 
instrument, leveraging the slice, component, and aggregate interfaces defined in Section 2. The 
goal of the services is to give researchers the means to create, manage, and harvest scientific 
measurements from experiments running in GENI. Simply stated, these services make GENI 
usable, lowering the barrier-to-entry for researchers to effectively take advantage of the unique 
capabilities of the physical substrate. None of these are part of the GMC, but instead, they are 
built on top of the interfaces defined by the GMC. 
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Figure 4.1: Operator and Researcher Portals interact with subnet aggregates (combined O&M 
Control and Slice Coordination functions) to provide a front-end to operators and researchers, 

respectively. Although not shown, the services encapsulated by each portal may also run in 
slices that span GENI’s components. 

This section describes these services, organized around two main user populations: operators 
and researchers. As introduced in Section 2, we use the term portal to denote the interface (front-
end) to the set of services tailored for a given user community. Figure 4.1 depicts the general 
relationship between the portals and the set of components and aggregates that make up the 
substrate. This section also described common sub-services upon which researchers and 
operators will depend, and outlines tools used to collect and analyze data. 

4.1   Operator Portal 
For GENI to adequately serve the research community at the envisioned scale, it must provide a 
stable and reliable platform for running experiments.  Problems with GENI hardware and 
software must be detected and resolved quickly to avoid impacting experiments in progress.  
Experiences with smaller-scale network testbeds, supercomputer research centers, and 
commercial communications networks, have demonstrated the importance of a comprehensive 
approach to network and system operations.  These experiences have also demonstrated the 
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need to design operations functions early in the overall design process rather than retrofitting 
operations functions into an existing system.  

The operator portal provides a front-end to this functionality, tailored for use by network 
operators. We assume that GENI will have a relatively small full-time operations staff, and as a 
consequence, the tools used to manage GENI must be able to detect and resolve most problems 
with minimal human intervention. That is, GENI operations must be automated to the greatest 
extent possible. 

To ensure complete coverage of the problem space, we classify the major GENI operations 
functions in terms of the FCAPS model developed by the International Telecommunications 
Union.  FCAPS is an acronym, where each letter represents a different management function: 

• Fault Management 

• Configuration Management 

• Accounting Management 

• Performance Management 

• Security Management 

While each FCAPS function captures one aspect of operational support for GENI, they often 
rely on information gathered by (and functionality implemented by) other parts of the system. 
The rest of this section considers each of these five functions, both describing the function and 
showing how it is integrated with some part of GENI’s design. To re-emphasize, the goal of the 
operator portal is to define a convenient interface (front-end) that the GENI operations staff can 
use to manage GENI—most of the “management systems” defined in this section are really 
“interfaces” to functionality implemented by components, aggregates, registries, resource 
monitors, user services, and so on. 

In addition to the FCAPS model, we further divide operations functions into online functions and 
offline functions.  Online functions directly interact with GENI components (e.g., restarting a 
faulty node) while offline functions are used to manage less critical operations tasks (e.g., 
tracking the repair of known bugs in GENI infrastructure).  The FCAPS operations functions are 
all online functions. 

4.1.1   Fault Management 

The Fault Management System detects problems with GENI hardware and software, and initiates 
the process of repairing these faults.  Not every fault that is detected must be acted upon.  
Experience building fault management systems for the communications industry has 
demonstrated the need to perform accurate root-cause analysis of failures.  For example, if many 
GENI slices are using a node and that node fails, the operations staff does not need to know that 
the slices have failed (symptoms of the problem), but instead should know that the node has 
failed and why it has failed (the root cause of the problem).   
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To perform accurate root-cause analysis, the GENI Fault Management System needs several 
kinds of information: (1) fault data from individual GENI nodes and links, (2) topology of all 
GENI nodes and links, and (3) rules that characterize when a GENI component may be faulty. 

Monitoring services running on each component will collect data about the health of that 
component; aggregate managers will coalesce this data on behalf of the subnets they manage. 
This data represents the primitive events used by the Fault Management System to perform 
root-cause analysis, and in many cases, it corresponds to data collected to discover available 
resources (Section 4.2.2) and on behalf of experiments (Section 4.4). Examples include 
information about hardware failures, processes performing unauthorized actions, and slices 
consuming too many resources.  To avoid excessive use of GENI resources, the GENI 
component and aggregate managers likely perform low-level analysis of the primitive events. 

Topology information is critical for understanding the relationships between various GENI 
components and how problems with one component affect the rest of GENI.  Understanding 
the relationship between components is essential for performing root-cause analysis.  The GENI 
topology data is maintained by the GENI Configuration Management System (Section 4.1.2) and 
made available to all GENI management systems. 

The Fault Management Rules describe the mapping between an observed set of faults with the 
root-cause problem requiring corrective action.  Experience with similar systems has shown that 
system failures often exhibit observable and repeatable behavior.  By codifying these behaviors 
as rules, it is possible to accurately identify problems.  For example, an occasional dropped 
packet in a communications network is not unusual.  When the number of dropped packets per 
unit time exceeds some threshold, however, there may be a more serious problem.  As 
experience is gained with GENI, we believe it will be possible to define a set of rules that can 
identify many kinds of failures automatically. 

Once the root cause of a problem has been identified, it must be repaired. Restarting failed 
software modules repairs most failures. Some problems, however, can only be repaired with a 
hard reset of the hardware. This requires the hardware monitor functionality described in 
Section 2.4.4. In the most extreme cases, human intervention is required.  The Fault 
Management System must therefore have the ability to alert a person that a problem exists and 
provide a mechanism for the person correcting the problem to notify the Fault Management 
System when the problem has been resolved.  If the problem is not resolved within a specified 
time interval, the Fault Management System must also have a mechanism to escalate the 
problem. 

Because GENI is a highly distributed system, many GENI resources will not be under the direct 
physical control of the GENI Operations Staff.  Consequently, the GENI Fault Management 
System must be able to contact administrators at remote sites when a problem is occurring at 
their site.  The Accounting Management System (Section 4.1.3) keeps track of the people and 
institutions associated with GENI resources, so this data can also be used by the Fault 
Management System to notify the appropriate people of problems at their site. 

Examples of fault management systems in use today that might be considered starting points 
for the GENI Fault Management System include the NAGIOS open source network and system 
monitoring application, HP OpenView, and Micromuse (now part of IBM) NetCool. 
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4.1.2   Configuration Management 

The Configuration Management System facilitates the orderly introduction of new nodes, links, 
and sensors into GENI and tracks where hardware components are located, what versions of 
software they’re running, which patches have been installed, and whether they’re in a valid 
configuration. 

The Configuration Management System leverages the component registry described in Section 
2.4.2. When a new GENI component is physically connected to the rest of GENI, it announces 
itself (and its capabilities) in this registry, resulting in an inventory and topology database. This 
database (registry) keeps track of all pertinent details associated with every GENI component, 
which can be used by the Fault Management System (Section 4.1.1) to perform root-cause fault 
analysis, as well as by the Accounting Management System (Section 4.1.3) to map GENI 
resources to the person or organization responsible for maintaining them. 

The Configuration Management System provisions, configures, and validates new components. 
This is also done in a decentralized way, involving the aggregate managers (AM) running 
throughout GENI (Section 2.4.5). Each such AM is responsible for validating and configuring 
the components in the subnet it manages. This process involves an interaction between the AM 
and individual component, initiated for example, by the boot program running on each 
component. 

Examples of configuration management systems in use today that might be considered starting 
points for the GENI Configuration Management System include the PlanetLab management 
authority, Telcordia Granite Inventory Manager, Amdocs Cramer Inventory, and MetaSolv 
(recently acquired by Oracle) Inventory Management software. 

4.1.3   Accounting Management 

The Accounting Management System is used to map GENI users to real people and institutions, 
and to control access to GENI resources.  In doing so, the Accounting Management System can 
ensure that only authorized users and experiments are permitted to consume GENI resources, 
and express policies about how many resources they may consume.  If an experiment causes 
problems for other users, the Accounting Management System can help the GENI Operations 
Staff determine the person responsible for the faulty experiment and their institution. 

Accounting in GENI is managed hierarchically: a hierarchy of slice authorities take 
responsibility for the behavior of slices and the users that create and use them, and a hierarchy 
of management authorities are responsible for the correct operation of components. This 
information is recorded in the component and slice registries, respectively (Section 2.4.2). The 
Accounting Management System will simply provide an interface through which resource 
allocation policies can be set. These policies will be set by the GENI Science Council, and 
defined in terms of both aggregates of components and slices. 

Examples of accounting management systems in use today that might be considered starting 
points for the GENI Accounting Management System include accounting management tools 
used in PlanetLab and Emulab, and the Grid Account Management Architecture (GAMA) 
developed at the San Diego Supercomputer Center. 
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4.1.4   Performance Management 

The Performance Management System supports fine-grained tracking of resource usage.  The data 
collected by this system is accessible to the GENI Operations Staff, but it is also made available 
to experimental services that adapt their behavior in response to current network conditions. In 
many cases, this is the same data collected to discover available resources (Section 4.2.2) and on 
behalf of experiments (Section 4.4). 

There is significant overlap between the Performance Management System and the Fault 
Management System described in Section 4.1.1. While the Fault Management System’s primary 
function is to detect when GENI resources fail completely, the Performance Management 
System looks at the utilization of various GENI resources to determine when they are 
overloaded or trending toward becoming overloaded.  

In addition to component and aggregate oriented data, the Performance Management System 
also monitors the resources consumed by each slice to determine when a slice is operating 
outside of its resource profile.  Ideally, automated “anomaly detection software” can be used to 
flag the early stages, giving researchers an opportunity to correct their experiments before it is 
necessary to escalate. Ultimately, misbehaving slices will need to be suspended or terminated. 

When building the Performance Management System, commercial the same network-
monitoring tools available for fault management could be used as the starting point.  
Additionally, the CoMon system built used in PlanetLab also has much of the functionality 
necessary for a Performance Management System. 

4.1.5   Security Management 

The Security Management System logs all security-related events in an auditable trail, thereby 
allowing the GENI Operations Staff to determine when GENI is being attacked, or an 
experiment it hosts is violating the GENI Acceptable Use Policy. Given the scale and level of 
programmability of GENI, and its potential for being used to attack other users and networks, 
it's critical that potentially bad behavior be detected and stopped as quickly as possible. The 
Security Management System primarily leverages the audit trail generated by the resource 
monitors that enforce access on GENI components, but also works closely with the Fault 
Management System (Section 4.1.1) and the Performance Management System (Section 4.1.4) to 
detect security-related problems and alert GENI Operations Staff before serious damage is 
done. 

Sometimes a security alert or Acceptable Use Policy violation is not the result of a malicious 
attack, but rather the result of a buggy experiment, or merely a user trying to create a slice 
without supplying tickets granting rights to the required resources.  Making security-related 
data for a specific experiment or slice available to the appropriate researcher may help them 
determine why their experiment did not run correctly. The traffic auditing system running on 
each component (Section 2.4.4) is able to map packet signatures back to the responsible slice, 
which the slice registry is then able to map into human users, including both researchers and 
the PIs that have vouched for them. 
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The Security Management System must also monitor the ongoing setup and configuration of 
user rights in the Accounting Management System (Section 4.1.3).  Repeated failed attempts to 
create new users, change the user's privileges, or associate users with pre-existing slices may 
indicate a potential security violation.  When these problems are detected, the GENI Operations 
Staff should be alerted. 

Tools like intrusion detection systems, policy-based network management systems, and logging 
and auditing mechanisms available in modern operating systems can also serve as building 
blocks of the Security Management System.  Components can leverage these facilities in 
conjunction with the GENI-specific resource monitor enforcement functions, as well as send 
low-level security events to audit and alerting software dedicated to analyzing the large 
number of security events and presenting higher-level interfaces. The Operations Staff 
notification mechanisms built into the Fault Management System should also be reused here. 

4.1.6   Offline Management Functions 

As stated at the beginning of this section, the FCAPS functions required for operations support 
are on-line functions.  They directly manipulate and collect data from the GENI infrastructure to 
keep it running smoothly.  In addition to these on-line functions, GENI should also provide 
offline tools to aid the Operations Staff in doing their job. 

The most important offline function for GENI in the short-term is problem tracking.  When GENI 
is fully operational, a large user base will rely on it to conduct their research.  This user base will 
undoubtedly discover problems with GENI and have suggestions for improving GENI.  Users 
may also have questions of the form “Why is this traffic affecting my experiment?” 
Consequently, the GENI Operations Staff must have a mechanism for tracking GENI bugs, user 
questions, maintenance requests, and other problems.   

Once the problems and questions are logged, there will likely be more requests for changes to 
be made to GENI than resources to make them.  The GENI Science Council must be able to view 
these requests and prioritize the relative importance of them to the research community.  After 
the change requests have been prioritized, the GENI Operations Staff can use the problem 
tracking system to log when the changes have been made and use standard source-code 
configuration management tools to make sure that new GENI software releases are built 
correctly. 

Tracking problems with software is by no means unique to GENI.  Many tools already exist that 
can be readily applied to GENI.  Examples of such tools include Best Practical Solutions LLP 
Request Tracker (RT), Bugzilla, and the IBM/Rational ClearQuest tool suite.  RT and Bugzilla 
are both open-source tools and ClearQuest is a commercial product. 

To facilitate collaboration, cooperation, and communication amongst the various members of 
the GENI research community, offline tools that allow researchers to exchange “best practices”, 
share code, and discuss experiments should be provided.  These tools should also allow GENI 
Operations Staff to communicate with GENI users to report outages, upgrades, user meetings, 
etc.  By also providing a discussion forum for GENI users to ask and answer each others’ 
questions, the support burden on the GENI Operations Staff can be reduced.  Conventional 
websites, email, and Wiki technology can be used to build this functionality.  The discussion 
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forums should be modeled after the kinds of support forums provided by many computer-
technology manufacturers on their websites. 

4.2   Researcher Portal 
A researcher portal allows researchers and developers to acquire GENI resources, specify their 
service requirements, and manage their running experiments.  An easy-to-use yet 
comprehensive researcher portal is critical to GENI’s success. This portal is really a front-end to 
a set of services that collectively give researchers the ability to create and steer their 
experiments. We group these services into three levels. At the bottom-most level, resource 
allocation defines how component resources are shared (acquired, scheduled, and released) 
among a set of experiments. On top of this foundation, slice embedding governs the process of 
instantiating a researcher’s slice on some set of components. Finally, at the upper-most level, an 
experimenter workbench provides a set of tools for researchers to create, configure, and control 
their experiments. We expect most researchers will interact with GENI through the workbench, 
but the lower-level services are also available, both to foster innovation at higher levels and to 
support advanced users that wish to directly access GENI. 

This section describes these three levels from the bottom-up. A more detailed description can be 
found elsewhere [GDD-06-24]. 

4.2.1   Resource Allocation 

Resource allocation is key to any shared computing and communication infrastructure. In the 
case of GENI, the underlying facility will potentially be shared by thousands of simultaneous 
users. While there will be significant resources available system-wide, GENI will suffer from a 
``tragedy of the commons”—whereby the system loses value for all participants—if all users are 
allowed to greedily consume as many resources as possible. One or more brokerage services 
address this problem. 

Existing shared testbeds either perform strict space sharing, where individual jobs control a 
subset of nodes through completion (e.g., Emulab and DETER), or best effort scheduling, where 
individual jobs receive resources inversely proportional to the number of currently competing 
jobs (e.g., PlanetLab).  However, to achieve both high system utilization and to allow at least 
some applications to run with dedicated resources, some fraction of GENI’s resources will be 
subject to admission control at a fine granularity; i.e., dedicated access to portions of multiple 
machine’s CPU, memory, network, and storage resources.  The global GENI resource allocation 
mechanism will interface with individual Component Managers to effect appropriate resource 
isolation.  By default, most slices will run in best-effort mode (perhaps with some priority 
relative to other slices) to ensure a high-level of resource utilization and to reduce the barrier-to-
entry for running experiments on GENI. The amount of resources that can be reserved by an 
application, the relative priority of best-effort applications, and the proportion of global 
resources subject to admission control are all matters of policy. 

An important task of resource allocation is to encourage efficient resource usage, that is, to 
ensure that users acquire only as much resources as they truly need, and for only the period of 
time that they really need them. This second point is particularly important. The duration of a 
particular resource binding should be coarse-grained to reduce the overhead associated with 
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performing resource allocation (i.e., we wish to avoid requiring an application to renew its 
resource privileges every few seconds). On the other hand, we believe that resource re-
negotiation must take place more frequently for experiments as they acquire increasing 
amounts of resources.  For instance, a slice with dedicated use of a substantial fraction of global 
GENI resources may be required to renew its resource privileges every few minutes (to allow 
the system to be agile to changing resource demands), while a best-effort slice running with low 
priority may only be required to re-negotiate on the granularity of days or even weeks.  In 
general, GENI’s resource allocation mechanism should be general enough to support a variety 
of policies for the duration of resource bindings, but guaranteed resource allocations must 
always be time-limited. 

The resources allocated to individual slices will often be for shorter durations than the lifetime 
of those slices.  Thus, many GENI slices should be prepared for dynamically changing levels of 
available resources independent of whether they are running with resource guarantees or in 
best-effort mode.  To allow experiments to cope with a constantly changing resource landscape, 
the resource allocation mechanism will support callbacks to the slice (or designated agents of 
the slice) to inform it of current or upcoming resource availability changes. 

GENI’s resource allocation mechanism is agnostic to specific policies. The underlying principle 
is that individual component owners maintain local autonomy over their local resources. While 
many components will be owned by and under the control of GENI itself, this principle aims to 
encourage other organizations to contribute resources, with the assurance that they will 
maintain some control over how their components are used. This control begins with individual 
Component Managers, which decide to grant tickets giving control over a subset of locally 
available resources to one or more Resource Brokers, using the interfaces described in Section 
2.2.2. Initially, there will be a single logical Resource Broker, which we describe in this section. 
We expect that as GENI evolves, other Resource Brokers will be developed. Some may 
specialize in certain types of resources, while some may use new marketplace or economic 
models to determine the value of resources.  

In exchange for granting tickets to a Resource Broker, each participating organization receives a 
broker-signed capability granting access to some portion of global system resources.  While the 
resources granted by the Component Manager are specific (e.g., individual machines for some 
period of time), the resources received in return are abstract. We call them tokens. The value of 
these tokens strongly depends upon the specific resource allocation policy that GENI wishes to 
enforce. 

Tokens are cryptographically signed statements of privilege over some portion of global GENI 
resources.  They may be specific, for instance, dedicated access to a wireless frequency for some 
period of time as determined by the GENI Science Board, or more general, for instance shared 
access to computation, storage, and bandwidth across the entire GENI substrate.  The encoding 
and interpretation of tokens is left to the requirements of the GENI Science Board and the 
particular implementation of Resource Brokers.  Relative to the tickets described earlier, tokens 
are a broker-level concept and present a higher-level abstraction of resource privilege.  Users 
and organizations present tokens (describing global system resource privileges) and a 
description of their compute requirements to Resource Brokers.  The brokers then in turn grant 
tickets for specific resources to individual users. Said another way, a token can be viewed as an 
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under-bound or under-specified form of a ticket, where a brokerage service binds a token to 
concrete resources by converting it into a ticket that can be used to acquire specific resources. 

Once an organization has offered resources to a Resource Broker and the Resource Broker has 
returned one or more tokens, the organization can subdivide those tokens among its users. In 
general, users can receive tokens from a Resource Broker, another user, or the GENI Science 
Board. The latter allocates tokens according to merit-based evaluations of experiments. Users 
and organization may subdivide tokens for their own use (e.g., dividing a token of value 100 
into 100 separate tokens each of value 1 to enable proportional-share access to 100 separate 
nodes) or to share with other users or other organizations. Whether such token pooling is 
allowed is a question of policy.  For instance, it is easy for GENI to disallow the use of any 
tokens that have been transferred from one user to another, because the software verifying the 
validity of a given token verifies the entire chain of transfers. 

4.2.2   Slice Embedding 

In contrast to the component-level resource allocation mechanism that is sufficient to allocate 
single or a small number of related/co-located resources, the slice embedding service enables 
users to issue commands to find a collection of system-wide GENI resources that match some 
criteria, such as constraints on network capacity or processor load.  Results of such queries can 
be used to inform the placement of individual slivers that make up a slice, a critical step before 
an experiment is deployed.  Thus, the slice embedding service sits on top of the more 
foundational resource allocation mechanism and, in turn, exports a service that allows the user 
or an experimenter’s workbench to initiate system-wide experiments. 

As with other GENI services, we expect that, as GENI evolves, multiple slice embedding 
services will emerge. GENI will start by providing a generic embedding service, suitable to the 
needs of most users. However, specialized domains may call for specialized embedding services 
that take into account unique features and needs. A complex slice that utilizes resources of 
many different types may submit sub-sets of its request to several specialized embedding 
services. 

At the most basic level, slice embedding comprises the following three steps: 

1. Resource discovery: Requires monitoring the state of substrate components using sensors 
and other measurement processes. The monitored state characteristics include processor 
loads, memory usage, network performance data between pairs of components, and so on. 
One important issue is the frequency that various sensors gather the required performance 
data.  To the extent possible, the information should be collected by a single logical entity 
(rather than repeatedly re-measured by multiple entities) and made available to a variety of 
applications and services that may benefit from it, such as multiple resource discovery 
services and adaptive applications. Resource discovery likely leverages the monitoring 
capabilities involved in both fault diagnosis (Section 4.1) and instrumentation and data 
analysis (Section 4.4). 

2. Query processing (matching): This step matches researchers' requests with the available 
resources and selects some set of components to host the slice.  This task is by far the most 
complex step in slice embedding.  Its design depends on a number of considerations relating 
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to researcher criteria. These include node-oriented constraints (e.g., desired physical 
location, processor speeds and storage capacity, and type of network connectivity), as well 
as inter-node constraints (e.g., network topology and combinations of network 
technologies). 

3. Slice-wide resource allocation: This step involves assigning the resources that match the 
user query to the appropriate slice.  As multiple resources are typically required for an 
individual slice, the slice embedding service needs to invoke the appropriate resource 
allocation methods on individual components. If the resource allocation step fails, the 
matching step has to be re-invoked.  In addition, this step can be repeated periodically to 
acquire additional resources (or new resources for a particular period of time) for a slice that 
has already been embedded on some set of components.  

Constraints 

The slice embedding service has to respect two potentially conflicting concerns.  On one hand, 
decentralization of the service eases the integration of new types of resources, as each aggregate 
of components (e.g., a subnet) knows best about its resources and how to allocate them.  On the 
other hand, a fully decentralized solution increases communication and implementation 
complexity as it needs to perform coordination among many distributed components.  

It is also worth noting that if resources are to be used in best effort mode, as opposed to 
exclusive access achieved by reservations, then the embedding problem is easier.  In the case of 
reservations, individual operations may fail requiring reservation operations to be reinitiated.  
Alternately, if hard reservations are required, the lower-level resource allocation mechanisms 
could export a form of two-phase commit operation; the resource allocation mechanism could 
support a tentative reservation primitive, which could be invoked first as soon as the slice 
embedding service has identified a set of target components, followed by a hard reservation 
operation invoked once the slice embedding service has contacted all of the target components. 

Slice embedding is also complicated by inter-node constraints. Resources matching node-
specific constraints, such as CPU capabilities, are easier to identify.  Once the user desires inter-
node constraints slice embedding becomes difficult. For instance, the user may specify inter-
node latency requirements expressed using upper/lower bounds, and similar constraints on 
bandwidth and loss-rates. The most general form of such constraints is an actual topology with 
desired connectivity requirements. These types of constraints are difficult to satisfy in the 
general case, with the topology embedding degenerating into an NP-complete problem.  Such 
inter-node constraints are computationally hard to realize even within the context of a single 
subnet resource allocation system. Thus, slice embedding services that handle large slices with 
inter-node constraints will have to rely heavily on heuristics. 

Finally, inter-node constraints that express requirements across node types are also more 
difficult to satisfy than homogeneous constraints. For example, the experimenter could request 
resources at two different sites with x wired nodes and y wireless nodes per site.  These 
constraints are hard to realize if resource allocation is performed by different subnets.  A partial 
solution computed by the wired subnet might not lead to a complete solution if the wireless 
subnet cannot find an appropriate set of wireless nodes co-located with the partial solution. 
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Approach 

Our approach is guided by the following principle: The slice embedding service should support 
the simplest forms of allocation in its initial rollout, but should provide enough flexibility to 
allow users to hand-pick their resources, if necessary, by running specialized matching code. To 
accomplish this, each aggregate exports an embedding interface with the following features: 

• A resource discovery method that can be queried to find the resources available within the 
aggregate. 

• A query matching method that returns the set of resources that match user queries, but does 
not allocate them to the user.   

• A query matching and resource allocation method that does both matching and resource 
allocation in a single step. 

• A resource allocation method that allocates a set of resources explicitly named by the user. 

Given such an interface, the embedding service operates as follows. 

• Policy enforcement: If allocation policies are stored only at a single researcher portal, then 
all queries have to be routed through it.  In particular, if allocation policies are stored at each 
aggregate and if the aggregate account for them while performing resource allocations 
within its domain, then one can eliminate the need for a single point of entry.  Also, note 
that the task of stitching results from different aggregates is not a privileged operation: it 
does not have to be performed by the portal, but can instead be orchestrated by a slice 
embedding service running on any node in the system.  This also allows for multiple slice 
embedding services in the long run. 

• Slice stitching: Resource allocation across aggregates is performed in the following manner: 

− Slice embedding service breaks a request into different pieces based on the aggregates 
that can perform the resource allocation requests. 

− It picks the most difficult to satisfy request (using some heuristic) and routes the request 
to the appropriate aggregate. 

− It attempts to extend the result by iteratively contacting other aggregates. 

− In most simple cases, especially if only best-effort allocations are required for resource 
allocation in the subsequent aggregates, extending the results should be easy to 
accomplish.  For instance, if a wireless frequency has to be reserved and then a best-
effort allocation has to be made on a wired node at the same site, it should be easy to 
accomplish. 

− If such a stitching fails, then the slice embedding service simply throws an exception and 
the burden falls on the user to explicitly choose the resources that are appropriate. 

− The aggregates can perform allocation of resources explicitly named in a request 
initiated by the user. 
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− If such an operation fails, the user can either retry with a different choice, or accept 
partial success. 

4.2.3   Experimenter Workbench 

For GENI to enable experimental network and distributed systems research, it must be 
accessible to the broadest set of researchers, including those with a single PI working on a 
project with a single graduate student in a school with little prior institutional experience in 
building distributed systems.  Such users should find it feasible to map their experiment onto 
GENI in a straightforward and predictable fashion, and to manage the results they collect in a 
way that accelerates the discovery process. Desired attributes of the experiment management 
toolkit include: 

• Support gradual refinement: We believe that a primary requirement for ease of facility use 
is a smooth implementation path from simulation to deployment, with a single, integrated 
toolset.   

• Flexible programming environment: The workbench should export experimentation 
functionality in various forms to support the requirements of a variety of users. A beginner 
might desire a single monolithic tool to address all aspects of experimentation, such as 
resource discovery, experiment setup, experiment monitoring, and the gathering of results.  
But with additional experience, the programmer might desire greater flexibility and not be 
constrained by tools that prescribe a specific sequence of operations in setting up.  It should 
support the use of existing tools to automate all aspects of the experiment. 

• Sophisticated fault handling:  It is likely that experiments will face a variety of failures on a 
frequent basis.  The experiment support toolkit should enable the gradual “hardening” of 
distributed services by first allowing service execution in controlled settings, where faults 
can be deterministically and gradually administered and programs can be spared from 
having to face the full brunt of faults. 

• Instrumentation, data collection and archiving: The workbench should provide convenient 
interfaces for users to manage instrumentation and data collection (Section 4.4). These tools 
should also enable published work to reference the relevant data collected, resources used, 
and code executed as part of an experiment. It should also enable other researchers to repeat 
experiments and compare against published results. 

• Multi-experiment workflow: Users will not conduct just a single experiment, but many. 
The workbench will need to support workflows over groups of related experiments, as well 
as tools to help researchers navigate through a history of experimental results. 
Encapsulation—packaging the specifications, code, and configuration parameters that 
define an experiment—and sophisticated search facility are important tools in this process. 

Some of these requirements have been translated into workbench efforts on smaller testbeds in 
the past. For example, the DETER testbed has a security workbench that provides a set of tools 
that experimenters can draw upon to automate a series of repeatable tests using existing 
software and analysis tools [DETER]. It also provides methodological guidance that aids the 
experimenter to design security related experiments and supports both a graphical user 
interface and a perl-based scripting language to allow even a novice user to rapidly experiment 
with different configurations. Similarly, the Emulab experiment management system provides 
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support for realistic, large-scale, replayable networking research [ESL07]. It implements a 
scientific workflow-based experimentation model that allows people to move forward and 
backward through their experimentation processes. Integrated tools in the workbench enable 
researchers to manage their activities (both planned and unplanned), software artifacts, data, 
and analyses.  

Given the above requirements and the past workbench development experience, we make the 
following observations about the overall design for experiment support and how it might be 
broken down into quantized components and introduced over time. 

• Develop and implement an API for experiment instantiation and system-wide job control 
using some parallel execution mechanism.  Develop a shell program to allow interactive 
invocation of the tasks provided by the API.  Demonstrate that a new user can quickly and 
easily deploy experiments on Emulab, PlanetLab and GENI using the shell. 

• Develop support for using the API with scripting languages, such as Python and Perl.   

• Develop more advanced support for parallel process management, including 
suspend/resume/kill, and automated I/O management.  Also develop support for issuing 
system-wide commands in asynchronous mode, querying the status of previously issued 
asynchronous operations, and to synchronize subsequent operations with those initiated 
earlier.   

• Provide support for simple forms of node selection, e.g., based on processor load or memory 
availability.  The goal is to provide the abstraction of "run this experiment on some set of 
nodes." Also, for experimenters that require specific topologies, provide 
algorithms/heuristics that facilitate mapping user requirements to available topologies.  

• Develop support for global synchronization:  Following along the lines of Plush, the toolkit 
should provide various forms of synchronization primitives for use during program 
execution.  Synchronization primitives should span the entire range from traditional 
barriers to weak partial barriers and point-to-point synchronization. 

• Develop support for permanent services.  Develop mechanisms for continuous monitoring 
of program state and reporting faults to the user.  Develop support for deploying 
experiments on heterogeneous GENI resources.  This would include support for specifying 
network configuration, controlling (or injecting) network events, exporting information 
regarding network conditions, and providing more control over resource allocation for a 
diversity of resources.  The goal is to provide the abstractions of "keep this service running" 
for service developers and "run this experiment on a matching set of nodes/topologies" to 
network experimenters desiring a specific system configuration. 

• Interface the experiment support toolkit with other services described in this document, 
such as performance monitoring and data archiving.  

• Develop support for fault-tolerant execution:  In particular, develop support for commonly 
used design patterns such as transactional operations, two-phase commits, or operations 
with “executed exactly once” semantics.   
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• Develop intrusive and non-intrusive techniques for monitoring program state, detecting 
abnormal behavior, and debugging support such as single-stepping.   

• Address scalability issues so that the control infrastructure can scale to hundreds and 
thousands of nodes without developing hotspots.  Control signals, monitoring, and data 
gathering needs to be performed over an overlay tree or a mesh to achieve scalability. 

• Address network reliability issues by having the monitoring and control infrastructure use a 
resilient communication layer that routes control messages around network faults and hides 
transient connectivity problems (as in MIT-RON). 

Additionally, we plan to consider developing workbench tools that provide ontology-based 
guidance to novice experimenters when defining experiments, tools for program and protocol 
analysis, experiment validation and verification.. 

4.3   Common Sub-Services 
This section outlines a shared set of building block services that contribute to making GENI 
easy to use. In some cases, these services provide a set of common abstractions upon which 
experimenters can build rather than forcing them to reinvent from scratch.  In other cases, 
abstracting these services into separate modules will also make the facility itself easier to 
construct, by avoiding duplication.  We focus on three separate areas: basic communication 
services, basic file storage services, and access to the legacy Internet. 

4.3.1   Communication Services 

A set of communication services provides common abstractions upon which higher level 
functionality can be built. Generally speaking, these services support typical communication 
patterns used to distribute data to, collect data from, or to control GENI systems.  

The first is a bulk transfer service that can be used, for example, to load experiment code onto a 
distributed set of components. Such services typically break large files into chunks, distribute 
those chunks across a distributed set of caches, and deliver the chunks in parallel to client 
machines. The combination of caching and parallel transfers allow such services to scale in 
terms of the number of clients that can be simultaneously serviced. Without such a service, the 
server hosting the large file can be easily overloaded by too many client requests. Example bulk 
transfer services include CoBlitz [PP06], Bullet [KRAV03], and SplitStream [CDKN03]. 

The second is an event dissemination service that efficiently delivers small messages (events) to a 
widely distributed set of consumer machines. An event system can be used for distributed 
control and co-ordination across the slivers in a slice. Event services are often designed around 
a publish-subscribe (pub-sub) paradigm, in which clients register to receive a subset of the 
events published by some source. Such systems sometimes leverage multicast trees [CRZ00] or 
distributed hash tables [RGKK05] to direct the dissemination, and must be able to scale to 
thousands of subscribers. Example event dissemination services include Corona [RPS06]. 

A third service is an information plane that provides topology, failure, and load information for 
the underlying network. Applications and higher-level services, such as slice embedding 
services, often use this information to adapt to current network conditions. Such systems collect 
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data from sensors distributed throughout the network—this data includes network probes, 
traffic statistics, and local node status—aggregates this data for analysis, and publishes the 
results to a set of consumers. Example information planes include ScriptRoute [SWA04], 
PlanetSeer [ZZPP04] and iPlane [MIPD06]. 

4.3.2   Storage Services 

GENI requires several forms of storage to facilitate both management and experimentation.  
Experimenters will need local storage on the components they use (e.g., to store results, logs, or 
the data their experiments operate on); they will benefit from convenient remote access to those 
storage resources, to debug their experiments and examine results; and they will need high-
performance storage resources for the data that their experiments operate on (e.g., cached web 
pages, network measurement data, and so on).  At the same time, the management of GENI will 
require significant quantities of reliable storage for audit trails, resource use accounting, and 
tracking GENI resources such as equipment and network connectivity.   

To support these usage scenarios, GENI will provide a suite of storage services with varying 
interfaces, including: (1) direct access by experimenters running code on an individual 
component;  (2) access through databases for more convenient access to structured data storage; 
and (3) convenient remote access for experiment and system management. Specifically: 

Researchers expect a convenient file system on each component that can be used to read and 
write the data accessed by their slice, service, or networked application.  In addition, many 
experiments will benefit from a more structured, database-like access mechanism to, for 
example, store and query data from experiments.  To this end, GENI will provide both a local 
file system and an SQL database. 

Both researchers and operators need to remotely access data stored on GENI components.  
Researchers must distribute code, gather analysis results, and may need to interactively access 
data while developing and debugging networking software.  Operators need remote access to 
analyze problems, failures, and monitor the performance of the system.  To support these 
needs, GENI will provide a convenient mechanism for remote data access.  This access has two 
aspects. The first is a remote file system-like access mechanism that provides easy, human-
friendly remote access, perhaps at the cost of some performance.  The second is a high-
performance data interface that can be a building block for the development of other services. 

Researchers designing experimental services that must store and access large data sets require a 
high-performance clustered file system for use within a single, geographically co-located 
collection of components. GENI will include such a cluster-based file service. These high-
performance file systems may also be reused as sources or sinks for traffic exercising or testing 
new network architectures. 

Researchers that want to experiment with new storage services, as well as leverage advanced 
functionality offered by other experimental services require special consideration. This includes 
access to a block-level storage interface, so that any new storage service need not presume a 
full-featured file system, and a robust loopback file system interface that allows researchers to 
build on (be composed with) each others’ services. GENI will provide both. 
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These storage services are all well understood, so the main engineering effort involves 
integrating existing off-the-shelf solutions with the GENI resource accounting and authorization 
model. 

One of the main challenges in providing these services is dealing with the threat of disk failures. 
In this context, it is helpful to make a clear distinction between hard-state and soft-state data.  
Hard-state data must be durable, perhaps through replication and archiving.  Soft-state data can 
be reclaimed at anytime, perhaps, if possible, after warning the owner of the data.  We envision 
that GENI will enable hard-state and soft-state services, but GENI itself will provide at a low 
level only “best-effort” durability. 

Best-effort storage is defined by three characteristics:  First, GENI will allocate long-term storage 
to projects when necessary, and not reclaim the storage until that time has expired.  Second, the 
GENI operations staff must create and follow guidelines about the frequency of intentional 
storage erasures (e.g., due to upgrades or routine maintenance).   Finally, services must use 
replication or other strategies to ensure that they can survive accidents or erasures within these 
parameters. 

Hard-state services are more challenging to develop and maintain than soft-state services. We 
do not assume that the GENI facility will be directly responsible for archiving and replicating 
hard-state data.  Instead, we assume that GENI allocates disk storage to a service for a long time 
period with the promise not to reclaim that storage. This should be suitable for most 
experimental slice needs. Alternately, the service may use the assigned storage to provide 
durable hard-state data.  (If such a service becomes popular, the GENI operations staff may 
choose to take on the responsibility of running the service.) 

4.3.3   Legacy Internet Services 

A goal of GENI is to foster the use of experimental services by end users. Connecting the GENI 
substrate to the commodity Internet at both edge sites (Section 3.1.2) and Internet eXchange 
Points (Section 3.2.3) is only part of the story. The rest of the story is to provide the “software 
glue” that allows the commodity Internet and GENI experiments to interoperate. 

Since end users today rely on a suite of applications—services and information sources 
provided on top of the Internet—we believe a key step is to make it easy for these legacy 
applications and services to take advantage of new functionality provided by new architectures 
on GENI.  The term “legacy applications” refers to existing applications such as web browsers, 
databases, chat clients, remote file access applications, and so on.  Similarly, the term “legacy 
service” refers to existing services that are invoked by legacy applications through a standard 
interface. Examples of such services include DNS, email, and IP packet delivery. 

Our main goal is to develop “compatibility frameworks” that allow the researchers to easily 
extend the functionality of existing services or deploy new functionality altogether without 
worrying about supporting legacy applications. Such frameworks will significantly lower the 
development cost and ensure meaningful comparisons between different implementations of 
the same functionality/service. Furthermore, these frameworks will lower the barrier of 
acceptance of new functionality by real-world end-users, and allow the researchers to evaluate 
their designs in the presence of real applications and real users. 
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Today's examples of such frameworks are Click [KMJK00], which allows developers to easily 
modify and add data-path functionality (such as better buffer management, packet scheduling, 
and packet inspection), and XORP [HKGH05], which allows developers to experiment with 
new routing protocols. Specifically, we propose to build as part of GENI: 

1. Virtualized BGP:  This would allow multiple experimental architectures to coexist, while 
simultaneously interoperating with the rest of the legacy Internet. 

2. Virtualized Data Plane:  In the common case, experimental architectures will need fast 
packet processing and forwarding implemented on various GENI hardware bases. 

3. Virtualized HTTP:  We expect that many experiments will attempt to define HTTP 
compatible interfaces to their services, to make it easy for users to subscribe.  

4. Virtualized DNS:  A similar argument applies to experiments that redefine DNS; at least 
three such experiments are running on PlanetLab at the present time, and we expect much 
more interest in this given GENI's increased scope. 

5. Distributed Dynamic NAT:  A connection setup packet leaving GENI destined for the 
legacy Internet will need to be manipulated to allow return packets to be delivered back to 
the originating slice; combined with the virtualized BGP specified elsewhere, the return 
packets may be delivered to any of a number of different entry points in GENI, but must be 
forwarded to the slice regardless of the entry point. 

4.3.4   Client Devices / Opt-In 

In addition to various components deployed throughout the GENI substrate, we allow for a 
wide range of client devices—desktop workstations, PDAs, laptops, cell phones, sensor motes, 
and so on—that can participate in GENI. Such devices are integrated into GENI in one of four 
ways. 

First, they may be full-fledged GENI components, differing from the components described 
elsewhere in this document only in that they are contributed by someone for the sake of 
participating in some experimental service on GENI (i.e., they federate with the set of 
components described in this document). Such systems run their own Component Manager and 
instantiate slivers on behalf of researchers. 

Second, rather than co-locate a Component Manager on each component, a client device might 
leverage an implementation that decouples the CM and the device, with the CM implemented 
on a separate control computer. In many such cases, it may be appropriate for a single 
Component Manager to support and manage more than one component. 

In this scenario, a single Component Manager, implemented on a general-purpose computer, 
implements and exports (registers) a separate Component interface for two or more devices.  
The result is that each device is visible to the system as a separate component, and can be 
configured and allocated independently by users and higher-level services. However, the 
hardware and operating system of the device does not need to support a CM, and does not need 
to directly concern itself with registering or managing the component. The form of the 
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connection between the CM and the individual devices it manages is private to the CM and its 
managed devices. 

Third, a client device can be treated as an “unmanaged’’ GENI component. This means the 
device is under control of some user—e.g., running whatever OS and applications the device 
would run independent of GENI—but that the device exports the CM interface, and hence, is 
willing to create slivers on behalf of GENI users. The device owner would be free to decide 
what slices she is willing and not willing to host, independent whatever policies govern the rest 
of the GENI facility. 

Fourth, a client device may be completely independent of GENI, but configured to “opt into” an 
experiment running on GENI. That is to say, the device does not run a CM or support slices that 
can be configured to support various experiments, but rather, an application running on the 
device can be configured to send or receive data via an experimental service running on one or 
more GENI components. There are at least three ways users can opt into a GENI slice/service: 

1. existing applications can be directly configured to forward traffic through a GENI slice (e.g., 
a web browser configured to use a proxy running in GENI); 

2. the host operating system can run a generic proxy (gateway module) that forwards traffic 
through a GENI slice on behalf of unaware legacy applications [JKKL06, FLM06]; or 

3. a native GENI application can be installed to explicitly to take advantage of some capability 
provided by an experimental service running in GENI.  

The extent to which legacy (GENI-unware) applications can be redirected to use GENI, versus 
new GENI-aware applications have to be written, is a matter of researcher ingenuity. 

Finally, note that while this discussion focuses on what has to happen on the client device to opt 
into GENI, researchers that want to build experimental services that take advantage of this 
workload will have to program their slices to handle this traffic. Said another way, the “ingress” 
sliver will effectively act as a proxy between the slice and the external world. In some case, this 
proxy code will be generic enough for use by many different slices. For example, there may be a 
generic “GENI sensor proxy” that shuffles data between an “external” sensor mote and a GENI-
wide sensor experiment (Section 3.3.3). This proxy (again, running in a sliver on a GENI 
component) might aggregate data from multiple motes, and translate between header formats 
used in GENI versus a non-GENI sensor network. The goal is to enable the “external” devices to 
share data with GENI slices without changing the way they transport data in the sensor 
network itself. 

4.4   Instrumentation & Data Repository 
As a research instrument, being able to collect, archive, and analyze measurements of 
experimental services and architectures is central to GENI’s mission. To this end, this section 
describes the GENI Instrumentation and Measurement System (GIMS). A more thorough 
discussion can be found in [GDD-06-12]. 
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Requirements 

The primary objective of the GIMS is to support a broad spectrum of empirical network 
research. The general requirements include: 

• Ubiquitous deployment;  

• No (or at least measurable) impact on experiments;  

• Extensibility (i.e., the ability to add new instrumentation and/or new measurement 
synthesis capability);  

• High availability (at least as available as GENI systems on which experiments are 
conducted); 

• Large capacity (i.e., the ability to support a diverse set of simultaneous activities from a 
large number of experiments); 

• The ability to measure detailed activity with high accuracy and precision from physical 
layer through application layer (includes the ability to calibrate measurements);  

• The ability to specify required measurements for an experiment in a slice (using either 
standard measurement types from a library or defining user specific measurements) and 
then having these measurements initialized in the infrastructure when an experiment is 
activated;  

• Access control (i.e., the ability to specify what data is available from a particular device or 
collection of devices, to whom, and for how long); 

• A secure central repository in which collected data can be anonymized and made available 
to researchers; and 

• A “data analysis warehouse” where tools for visualizing, interpreting and reporting 
measurement data can be developed and made openly available. These tools will be 
available separately, as well as integrated within the GENI experimenter’s workbench 
(Section 4.2.3). 

Approach 

GENI is designed to support disruptive research across all layers of the traditional protocol 
stack.  The implication of this objective on the measurement capability is that both known data 
primitives (e.g., 802.3 Ethernet packets or BGP updates or queue occupancy or the routing table 
on a node) and yet-to-be-conceived data primitives need to be measured.  There are likely to be 
a number of possible approaches for developing a specification for GIMS with these capabilities. 

The GIMS takes a resource centric approach.  It begins by specifying a general framework for 
describing GENI resources, which includes their basic data types and how the resources/data 
types will be accessed.  An important aspect of this framework is to be as comprehensive as 
possible in definition of the basic data types, so as to accommodate higher level primitives that 
are yet to be determined.  At the same time, the methods the GIMS defines for accessing data 
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types should be common (to the extent possible) to all resources.  That is, there should be a 
standard but extensible way for (authorized) gathering of data types in the infrastructure.  

Our resource-centric approach begins by defining two abstract resources, links and nodes and 
one special case resource, time sensors.  From these we organize the GIMS specification around 
three general concepts, (1) instrumentation, (2) measurement synthesis and (3) analysis and 
archiving, with access control policies applied to each.   Items (1) and (2) are the mechanisms for 
realizing instances in the resource framework, and can be thought of as a hierarchy with 
instrumentation at the lowest level, referring to the physical taps in GENI systems (e.g., on links 
or within programmable components); synthesis refers to transformations of the signals 
provided by the taps into meaningful data (e.g., providing layer 2 framing or flow export, or 
high level aggregates such as routing configuration information); and analysis and archival at 
the highest level refers to data evaluation and storage in a common repository for future use. 
These three components form the intrinsic measurement capability of the infrastructure, which 
is complemented by additional features and capabilities that will accommodate experimental 
research on instrumentation and measurement (i.e., deploying and testing new measurement 
systems and protocols in GENI). 

Tradeoffs 

Like many other aspects of GENI, the scope, capabilities and rollout of the measurement 
systems will depend on a variety of factors, including available budget, user requirements, 
management requirements, security requirements, and availability of hardware/software for 
the purpose of measurement, among other factors.  An important design issue that must be 
considered is how/where measurement capabilities will be realized in the facility.  This issue 
can be boiled down to the question of whether to deploy special-purpose measurement 
hardware or to enhance the general-purpose programmable hardware being developed for 
GENI to support required measurements. 

It can be argued that special-purpose measurement systems (e.g., Endace DAG cards) offer 
several advantages.  They are designed and built to operate at line rate, and many such systems 
are available for very high-speed (e.g., 10Gbps) links today.  In this sense, they almost certainly 
offer a price/performance advantage over the general-purpose systems.  By virtue of the fact 
that the specialized systems are “external”, they do not pose the risk of introducing a load on 
the general-purpose systems being used in experiments.  Special-purpose systems are also 
deployed and in use today, which means that there is already community knowledge on how to 
use them and an existing analysis tool suite for data they collect.  Recreating high-speed 
measurement capability that exists today on commercial products will be a non-trivial 
enterprise that may not make sense in the short or medium term.  Finally, some special purpose 
measurement systems have some ability to be programmed, which may enable them to fit more 
directly into GENI. 

Enhancing the programmable general-purpose GENI systems with the required measurement 
capability has the distinct advantage of making measurement truly intrinsic to the 
infrastructure.  This approach is a “cleaner” solution from a design, deployment and 
management perspective, and a better fit with the overall GENI mission.  The risk, however, is 
that it may be determined that it is infeasible to support certain kinds of required measurements 
on the general-purpose hardware (e.g., the hardware/OS cannot do what is required), or that 
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certain common types of measurements consistently cause degraded performance on the 
general-purpose systems. 

We expect the deployed solution will be a hybrid between the two different approaches.  The 
advantages of special-purpose systems would seem to dominate (cost-performance, existing 
solution) especially in the short and medium term. However, it is anticipated the actual 
realization will evolve as methods for incorporating measurement capability into general-
purpose systems are developed, implemented and deployed.  The remainder of this section 
reflects a design that includes both special-purpose measurement systems and measurement 
built into general-purpose GENI components. 

4.4.1   Instrumentation 

The resource description framework (as described more fully in [GDD-06-12]) establishes the 
basis for describing the instrumentation deployed in the infrastructure. Instrumentation will be 
realized in three types of sensors: (1) link sensors, (2) node sensors, and (3) time sensors. The 
purpose of the sensors is to provide the basic signals that can be synthesized into a variety of 
specific, well-formed data that will available as measurements to experiments running in the 
infrastructure. 

Link Sensors 

Link sensors are deployed on all (or some portion) of the physical links in the infrastructure and 
enable signals transmitted on those links to be extracted. At this level, no assumptions are made 
as to what the signals mean—interpreting signals is part of the synthesis activity. Signals on the 
links can be either light or electrical impulses. In the case of fiber/light signals, the standard 
method for tapping a link is to install a passive 50/50 Y-splitter that makes a duplicate of the 
light signal on the primary path available on a secondary path that will terminate at a collection 
system (described below). Standard optical Test Access Port devices and others are also 
commonly used to mirror light signals. These devices typically do some kind of standard layer 2 
framing such as 802.3 (i.e., some basic synthesis), which will make them applicable to a fairly 
broad range of measurement activities, especially in the short term. However, in the most 
general sense of the architecture, these taps are not ideal for GIMS unless they are 
programmable and enabled flexibility in how framing is defined. 

In the case of signals on copper/electrical links, there are several standard methods for 
instrumentation. The first is to use the basic port mirroring capability available on many types 
of network nodes. This approach requires the network node to copy all signals on a given port 
to a monitoring port. For high-speed links, resource demands in this configuration can be 
considerable—to the extent that they could alter the performance or behavior of the network 
node. A second method is the "bump in the road" approach, which refers to physically breaking 
the link between two nodes through a mirroring device similar to the test access port devices 
mentioned above. In the case of copper/electrical links, this is likely to be the best approach in 
the short term although, in terms of off-the-shelf solutions, it suffers from the same problems of 
imposing a fixed type of layer 2 framing on basic signals. 

Link sensors for wireless environments have different characteristics than wireline link sensors 
but basicly, the capabilities in many respects are similar [GDD-06-15].  There is a need to 
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monitor the physical environment with respect to the signals being transmitted between 
multiple nodes simultaneously.  This means that separate RF sensing devices with (perhaps) 
higher quality antennas will have to be deployed in order to gather a complete picture of 
transmission and interference patterns in a given environment.  

Node Sensors 

Node sensors are deployed on all nodes interconnected by links in GENI. The essence of node 
sensors is that they provide basic utilization, state and configuration information about 
components and/or subsystems in a node. There are two canonical examples of node sensors. 
The first is the /proc file system that is available in Linux. Proc is a real time, pseudo file system 
that provides configuration information and measurements of both underlying hardware 
components and the processes that are running on the hardware. Examples include CPU speed, 
cache size, CPU utilization, memory utilization, packets sent, packets received, etc.  The second 
example is the Simple Network Management Protocol (SNMP) Management Information Base 
(MIB) primitives provided by switches, routers, and other networking hardware. In both cases, 
the available data is limited by what is provided by the underlying hardware.   

Time Sensors 

Time sensors are deployed on all GENI node locations. Time sensors provide a high fidelity, 
synchronized time source for all GENI nodes that can be used for a variety of purposes. In the 
GIMS context, time sensors will be used as the basis for applying high precision timestamps to 
measurements. 

The problem of distributed time synchronization has been studied for many years. The 
Network Time Protocol (NTP) offers the ability to generate timestamps that are synchronized 
on the order of milliseconds based on using a small number of highly accurate time sources 
(such as Cesium clocks). The risk with NTP is that it does not provide sufficient precision for a 
significant set of GENI experiments. In this case, higher fidelity time sources, such as those 
provided by a GPS, which enable timestamp accuracy on the order of micro-seconds will be 
required. GPS receivers can be installed in simple PC hosts that can be rack-mounted in GENI 
locations. These systems can then provide Pulse per Second (PPS) signals and other data (such 
as latitude and longitude) to any device in the location. The risk of GPS is that it typically 
requires an external antenna which can be difficult to deploy in some locations. In this case, 
software clocks [PV02] or CDMA-based GPS systems will be sufficient.  

Other Issues 

There is no specific data buffering or storage requirement for any of the three types of sensors. 
Ideally, sensors simply provide raw signals, and buffering/short term storage is part of the 
synthesis component described below. However, it is likely that certain solutions will include 
some amount of local synthesis and buffering. In this case the synthesis component will have to 
query the sensor using a well-defined protocol (e.g., Simple Common Sensor Interface for 
PlanetLab [RPKW03]). 
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4.4.2   Data Synthesis 

The second element of the GIMS is the set of systems that collect and synthesize the signals 
provided by the sensors into meaningful data. Collection and synthesis systems will be 
physically connected to the sensors available in all GENI locations. While they are referred to in 
this section as “collection and synthesis systems” and their function is logically distinct from the 
sensors described above, their physical instantiation may be a single system or multiple systems 
with both sensor and synthesis capability. In the logically separate context, synthesis systems 
will require specific direction from users in order to interpret the arriving signals appropriately. 
An example of this context, which would be provided during the creation of a GENI 
experiment, is that light signals from a fiber link (a GENI resource/component available for 
inclusion in a slice) during a specified period of time, are Ethernet packets. In this case the first 
aspect of measurement synthesis that is required is layer 2 Ethernet framing. 

It is expected that the ability to frame and capture packets will be one of the most important 
network measurement features in the infrastructure (although GIMS is by no means limited to 
interpreting signals as packet). There are two examples of collection/synthesis systems that are 
commonly used today that provide this functionality. The first is a standard PC running the 
standard tcpdump utility. These systems rely on standard network interface cards to provide 
framing. The second are Endace DAG daughter cards installed in a standard PC which generate 
packet traces using layer 1 signals gathered directly from a network link [DAG]. In each case, 
the systems can be configured to gather full header/payload traces (or some subset there of), 
and the host PC can be used to buffer a certain volume of this data before it must be streamed to 
a larger repository. 

The synthesis function can also be more complex. For example, an experiment may require 
flow-export measurements for specified packet streams. In this case, layer 2 framing along with 
maintaining appropriate flow records of the observed traffic are required. Another example is 
merging measurements (including time stamps) from several locations in a coordinated fashion. 
There is also the possibility of even greater levels of measurement synthesis complexity. For 
example using collection systems for streaming queries or statistical anomaly detection. In each 
case, a transformation function (realized as a program) from the basic link signals must be 
provided by the user or selected from a library of functions that have already been developed. 
In each of these cases, the requirements of the collection/synthesis nodes is that are 
programmable thereby allowing users to define exactly what they want to extract from the low 
level sensors. 

From the perspective of node sensors, collection systems require additional capabilities. In 
particular, a data gathering protocol will be required to request transfer of the MIB variables 
from the node sensors. This data gathering protocol must be light weight, extensible in terms of 
the kinds of things that can be requested, and include mechanisms for enforcing appropriate, 
per experiment, access control policies. The most obvious example of an existing protocol in this 
space is SNMP, although it's well documented deficiencies may preclude it from use in GIMS. 
Another possibility is the Simple Common Sensor Interface for PlanetLab that has a data query 
protocol based on HTTP. 

The availability of resources (e.g., CPU, disk, memory) on the collection and synthesis systems 
will obviously limit the extent of these activities. In some cases, this may cause certain 
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experiments to be conducted at times when overall demand is sufficiently low. Regardless of 
their capacity, collection and synthesis systems are not meant to be anything other than short-
term repositories for collected data. Therefore, collection systems must have a direct connection 
with the archival data repository via a secure, transaction oriented protocol. This protocol will 
be used to move potentially large amounts of data off of the collection systems and into the 
repository. 

4.4.3   Data Archive and Analysis 

The third element of the GIMS is the archival repository into which measurements from the 
collection systems are stored and then made available for analysis. An example of an existing 
repository similar to what is envisioned for GENI is CRAWDAD, which is a portal for storing 
and sharing wireless measurements [CRAWDAD].  The GIMS archive will have two primary 
sub-systems. The first is the repository itself, which resides on high capacity storage systems 
that will be located in several GENI sites. The second is a data catalog that indexes the data in 
the repository. The objectives for the archive are, (1) to provide a secure, reliable repository to 
GENI users for measurements taken in their experiments, and (2) to provide a standard 
interface for data extraction so that users can visualize and evaluate their data at their own sites. 
Both of these sub-systems leverage the experimenter workbench described in Section 4.2.3. 

The archival system will interface with the collection and synthesis systems through a data 
transfer protocol such as the Simple Common Sensor Interface for PlanetLab. This data transfer 
protocol must be the same as the data transfer protocol used between sensors and 
collection/synthesis systems for consistency and to enable the possibility of direct streaming 
into the archival system. 

The archive itself will be distributed across several GENI sites. This enables the archive to be 
resilient to site-specific failures and will spread the network load for both sensor-to-archive 
transfers and archive-to-user transfers. A data management system will be used to store and 
retrieve the measurement data on these systems. An example of a large-scale network data 
management system that has been used for some time is AT&T's Daytona system. Daytona is a 
file-oriented archive system that provides a SQL-like interface [DAYTONA].   

Like the measurements themselves, users creating experiments will have to specify the details 
of how their data will be archived. This will include the type of data being stored, and the size 
and lifetime of the storage space required. It may certainly be the case that an individual 
experiment does not need to use the archive, e.g., an application log. Access privileges will also 
have to be specified via policy (this can include access to anonymized data see [GDD-06-12] and 
[GDD-06-40] for details])—since data can range from projects in which data is considered 
private to data that is openly available and permanently archived (e.g., in the case of studies of 
GENI-wide activity).  

The archival system will also include a separate but related component, which is a data index 
for all data in the archive (such as the Internet Measurement Data Catalog from CAIDA 
[DATCAT]). This index enables users to find data in the archive. It will also act as a portal 
pointing to data sets collected in GENI that reside on remote sites.  Furthermore, the data 
catalog will form the foundation for developing visualization and analysis tools that can be 
made available for general use by the community. 
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Glossary 
In the following, italics indicate a reference to another alphabetically listed headword.  Each 
reference is only italicized once per entry. Headwords themselves are boldface and followed by 
a colon.  Abbreviations are not italicized and all appear as headwords that expand the 
abbreviation. 

Access Network: Site network connecting a PEN to a set of PWCs or PECs.  This is usually a 
LAN dedicated to GENI, though it may be multiplexed with or virtualized from a more 
conventional campus or enterprise network. 

Accounting management Service:  User service that validates users to ensure that only 
authorized access is permitted. 

Active Sliver: A sliver that supports user-installed code. 

Aggregate: A group of components, where a given component can belong to zero, one, or more 
aggregates. Aggregates can be hierarchical, meaning that an aggregate can contain either 
components or other aggregates. Aggregates provide a way for users, developers, or 
administrators to view a collection of GENI nodes together with some software-defined 
behavior as a single identifiable unit.  Generally aggregates export at least a component 
interface – i.e., they can be addressed as a component – though aggregates may export other 
interfaces as well. 

Authorization Logic: A logic in which formulas represent credentials that define access-control 
policy, and with which one can express proofs that that a request satisfies access-control policy.  
Such a proof would typically be accompanied by credentials; formulas of the logic are 
instantiated form credentials to serve as premises of the proof. 

Backbone Network: Nationwide network consisting of a set of PCNs connected by an 
underlying national fiber facility. 

Brokerage Service: An alternative name for a resource broker. 

Bulk Transfer Service:  a communication service optimized for transferring large files.  GENI 
uses this service to instantiate slices. 

Canonical Aggregate: A reference implementation of the aggregate abstraction that can be 
specialized for various elements of the physical substrate.  The canonical aggregate implements a 
Node Control Aggregate and a Slice Coordination Aggregate. 

Canonical Component: A reference implementation of the component abstraction that can be 
specialized for various elements of the physical substrate. 

Capture protection: A technique for rendering cryptographic keys more difficult to misuse if 
captured by an adversary.  A capture-protected key can be used only with the consent of a 
remote server; the remote server typically gives this consent only if it can authenticate the 
person attempting to use the key. 
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Circuit Processing System (CPS): A combination of circuit-oriented elements that provides the 
virtual wire interface  to the GENI backbone. 

Client Devices: Devices that run applications giving end users access to experimental services.  
These are commonly, but not exclusively, wireless devices. 

Cluster File System:  A file system that aggregates storage nodes located on a high-
performance, reliable local-area network. 

Component: Building block object of GENI, corresponding to a physical device in the substrate. 
A component consists of collection of resources. Such physical resources belong to precisely one 
component. Each component runs a component manager that implements a well-defined interface 
for the component.  In addition to describing physical devices, components may be defined that 
represent logical devices as well. 

Component Manager: The entity responsible for allocating resources at a component.  It exports a 
standard interface defined in the GENI architecture document.  That interface is also exported 
by aggregates.  Though it is intuitive to think of the component manager residing on the 
component it manages, this is not necessarily the case. 

Component Registry: A registry that maps between a component name, e.g. 
geni.us.princeton.component and a GENI Global Identifier. Components and aggregates share a 
name space, so a component registry maps aggregate names to GGIDs as well. 

Configuration Management Service: User service that coordinates other user services when new 
resources become available in GENI. 

Cognitive Radio Subnet: A wireless subnet that uses cognitive radio nodes to carry traffic.  
Cognitive radios are experimental wide-spectrum software-based radios. 

CPS: Circuit Processing System 

Credential: A digitally signed statement that encodes access-control policy. 

Data Push Service: A storage service that pushes data (e.g., computer programs) efficiently to 
many receiving nodes by, for example, serving the data cooperatively. 

Emulation Grid: A wireless network designed to test wireless protocol implementations under 
controlled conditions.  These either run the wireless protocol implementations using simulated 
radio links or in a strictly controlled radio environment. 

Event Dissemination Service: a communication service optimized for the reliable and timely 
delivery of small messages, e.g., events and control operations. 

Experiment: A slice primarily used to test a hypothesis about some aspect of a GENI user's 
research.  Experiments tend to be shorter-lived than services and less accessible from the world 
outside GENI, but there are no hard requirements on those attributes.  In addition to slice 
embedding, experiments may take advantage of the experiment control plane that performs 
experiment instantiation. 
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Experiment Control Plane: A toolkit and GENI service that manages the deployment and 
execution of user programs used in experiments.  It supports system-wide job control, 
synchronization of control operations, control message dissemination, and fault detection and 
recovery. 

Experiment Instantiation: The task of customizing slice nodes to prepare them to execute a 
particular experiment.  This typically includes copying over user executables, setting up 
necessary software packages, and starting system services. 

Experimental Services: Services exported by experiments especially those that are exported to 
users outside GENI through an IXP.  These are logically similar to user services, but are usually 
shorter-lived and targeted to non-GENI users. 

Experimenter's Workbench: A toolkit that simplifies embedding an experiment into GENI and 
collecting results.  It can be accessed through the researcher portal. 

Execution Environment: The environment a component provides for user interaction.  This can 
range from an operating system and virtualized services on a workstation to a network 
management interface to routing tables or measurement equipment. 

Fault Management Service: a GENI service for monitoring the execution of user experiments, 
identifying abnormal conditions, invoking appropriate user-specified handlers to handle faults, 
and potentially allocating new resources to enable continued execution of the experiment. 

FCAPS Management Framework: An International telecommunications Union framework for 
organizing management functions into fault management, Configuration management, 
accounting management, performance management, and security management. 

GENI Gateway (GGW): A device that connects a GENI access network to the Internet. Includes 
one or more of the following functions: routing (to GENI backbone and/or the legacy Internet) 
traffic shaping, packet filtering, and packet auditing. A GGW is not a component that can be 
sliced, and it is not required if these functions can be provided by the connected component 
itself. 

GENI Global Identifier (GGID): Unambiguous, certified unique identifiers assigned to GENI 
objects.  Specifically these are assigned to users, components, and slices. A GGID consists of an 
X.509 certificate that binds a UUID to a public key. 

GENI Management Core (GMC): The framework for describing and implementing the 
fundamental GENI constructs that make up the GENI substrate.  This includes the actors and 
objects in the GENI system as well as the interfaces between them and name spaces for 
describing them.  It is intended as a small set of fixed abstractions around which GENI as a 
whole can evolve and expand, situated between the physical substrate  and the user services. 

GENI Management Core Implementation (GMCI): An implementation of the messaging and 
services that make up the GMC. An important aspect of the GMCI is its ability to allow different 
implementations and versions of non-core user services to be easily added to the system as 
appropriate. 
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GENI Site: A geographic location connected to the GENI backbone that supports one or more 
components. 

GGID:  GENI Global Identifier 

GGW: GENI Gateway 

GMC: GENI Management Core 

GMCI: GENI Management Core Implementation 

Hard-state Storage Service: A service that requires that the storage system stores data durably 
through node reboots, failures, and system upgrades. 

Information Plane: A service that provides topology, failure, and load information about the 
underlying network. Used by other services that want to adapt to current network conditions. 

Internet Exchange Point (IXP): Device that connects GENI to the commodity Internet.  This 
allows GENI services to be accessed by Internet users via user opt-in.  The somewhat 
counterintuitive abbreviation (IXP rather than IEP) is commonly used in Internet circles. 

IXP: Internet Exchange Point 

MA: Management Authority 

Management Authority (MA):  The real-world entity responsible for managing a set of GENI 
components.  Management Authorities operate as an operations and management controller for a set 
of components that share an owner or administrator.  This allows administrators to set subnet-
wide or installation-wide policies or configurations.  Additionally the MA may be directly 
involved in slicing components under its control, including participating in the resource 
discovery, allocation, and configuration of components it controls.  The operations and 
management tasks are carried out by a Node Control Aggregate and allocation tasks are carried 
out by a Slice Coordination Aggregate.  These aggregates are the implementations of the polices 
created by the authority.  The aggregates are GMC aggregates, the authority is a human being 
or set of humans. 

National Fiber Facility: The shared fiber backbone that interconnects PCNs in GENI.  Though 
not necessarily constructed of optical fiber, this network is high capacity and broadly connected. 

Node Control Aggregate: An aggregate that implements the operations and management control 
policies decided upon by the Management Authority responsible for the components that 
comprise the aggregate.  A node control aggregate it the GMC aggregate that configures 
individual components in ways not bound to an individual slice, e.g., the aggregate configures 
the operating system or power controllers of the components. 

O&M Control: Operations and Management Control. 

Operator Portal: User service that provides an integrated interface to the FCAPS-based user 
services responsible for providing operator information. 

 88 



Facility Design                                                                            March 9, 2007 

Operations and Management Control (O&M Control): The mechanism an owner uses to 
configure, operate, and manage components under the owner's control.  This function is usually 
encapsulated as a GENI Node Control Aggregate. 

Packet Processing System (PPS): A flexible, high speed programmable device capable of 
operating on packets.  The PPS supports one or more virtual routers, and exports the virtual link 
interface. 

PCN: Programmable Core Node. 

PEC: Programmable Edge Cluster. 

PEN: Programmable Edge Node. 

Performance Management System: User service that tracks resource usage to provide data for 
operations and user performance evaluation. 

Physical Substrate: The physical facilities into which slices are embedded, including routers, 
processors, links, and other support hardware. 

Portal: An interface constructed from composition of services.  It appears to users as a full service, 
but the implementation is a composition of existing services.  

PPS:  Packet processing System 

Problem Tracking System: A system that collects GENI problems and trouble reports from 
users and administrators.  The GENI operations staff will use the Problem Tracking System to 
prioritize requests for repairing problems or adding new features to GENI, and to track the 
progress of these changes. 

Programmable Wireless Node (PWN): GENI component available throughout wireless access 
networks. 

Programmable Core Node (PCN): GENI component available throughout the backbone network. 
Typically configured to support high-speed links (e.g., using FPGAs) and including 
programmable elements at the framing layer. 

Programmable Edge Cluster (PEC): GENI component available throughout wired access 
networks. 

Programmable Edge Node (PEN): GENI component available at edge sites, connecting the local 
access network to the GENI backbone network. 

PWN: Programmable Wireless Node. 

Reconfigurable optical add/drop multiplexer (ROADM): A circuit processing system component 
that can efficiently and dynamically switch wavelength division multiplexed circuits. 
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Regional Optical Network (RON): A medium or large scale optical network, often 
administered for or by a set of educational institutions. 

Researcher Portal: Portal that consolidates access to the user services intended for use by 
researchers.  These services include slice embedding and an experimenter's workbench. 

Resource: Abstractions of the sliceable features of a component that are allocated by a component 
manager and described by an rspec.  Resources are  divided into computation, communication, 
measurement, and storage. 

Resource Broker: A user service that assists in slice embedding by collecting and administering 
component and aggregate resources. Also called a brokerage service. 

Resource Monitor: Conceptual entity that performs access control to component resources.  It 
compares certified requests from users against security policies originated by a management 
authority and grants only those requests that conform to the policy.  The resource monitor may 
be implemented directly in a component manager or may be a distinct element. 

Resource Specification (RSpec): Represents all GENI resources that can be bound to a sliver 
within GENI.  An rspec describes both the resources available, advertised or allocated at a 
component and the  relationships between those resources, and perhaps other resources in 
GENI. 

ROADM:  Reconfigurable Optical Add/Drop Multiplexer 

RON: Regional Optical Network 

Rspec: Resource Specification  

SA: Slice Authority. 

Secure Control Plane: a communication service that offers authentication and high availability, 
to configure and control GENI itself.  It uses only GENI resources, not the commodity internet 
to configure GENI. 

Security Policy Manager: Tool used by a representative of the management authorityto create, 
manage, and distribute security policies.  These policies are used by resource monitors to control 
component access. 

Segment Storage Service: a storage service that allows clients to read or write files to fixed-size 
or bounded-length chunks ("segments") that are named in a flat manner.  Such a service may be 
used directly by clients, but will more commonly be used as the building block for more 
complex services such as a cluster file system. 

Sensor: A device that produces a stream of data about its local environment.  Sensors can be 
physical (e.g., temperature, audio sampling) or virtual (e.g., reporting CPU and memory load).  
GENI includes both, using virtual sensors to monitor its own internal behavior. 
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Service: A slice that provides some functionality to other running slices.  The GMC name service 
and resource discovery service are examples of GMC services.  Services tend to be longer lived 
than slices used for experiments. 

Slice: A distributed, named collection of slivers which collectively provide the execution context 
for an experiment, service, or network architecture. A slice typically includes no more than one 
sliver per component, but this is not a requirement. 

Slice Authority (SA): Entity responsible for the behavior of some set of slices. Participates in the 
slice naming hierarchy. 

Slice Coordination Aggregate: An aggregate that implements the policies decided upon by the 
Management Authority responsible for the components that comprise the aggregate that pertain 
to how slices are embedded in the aggregates components.  For example, this aggregate may 
advertise resources or schedule their use.  The aggregate may also start or stop slices in a 
coordinated fashion across a group of components it controls. 

Slice Embedding: The user service that  identifies and allocates a set of resources a user needs to 
run a service or experiment.  Experiments often make use of the experiment control plane to 
perform experiment instantiation after embedding is complete. 

Slice Registry:  A registry that maps between a slice name, e.g.,  geni.princeton.codeen.slice, 
and a GENI Global Identifier. 

Sliver: A set of resources multiplexed between all slivers sharing a component. For example, over 
a PC server node, a sliver would be a virtual machine with associated resource container. An 
active sliver is a resource container that supports user-installed code. Such code is said to run in 
an execution environment provided by the sliver. Active slivers might be in “running” or 
“suspended” states; in the latter the sliver exists and with resources bound to it, but is 
prevented from executing any code. 

Socket Interface: Sliver interface to the underlying network services that approximates the 
POSIX socket interface used by many network environments.  Slivers can access the network 
through IP, UDP, or TCP stacks and can make use of common Internet protocols such as ARP 
and DNS. 

Soft-state Storage Service: A service that needs to store data but doesn't care if the data is 
durably stored, either because the data is not important or because it can be reconstructed 
easily. 

Specification-based Intrusion Detection: In security, a method for detecting intrusions by 
comparing observed behavior to a specification of proper behavior.  This is distinct from 
signature-based intrusion detection, where observed behavior is compared to specifications of 
improper behavior, and anomaly detection, where observed behavior is compared to a typically 
learned model of normal behavior. 
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Storage Node: Any node in GENI that can store data, but more commonly used to refer to a 
node that has substantial storage resources. The node may a computer with one or more hard 
disks attached or a specialized node such as a network-attached storage device. 

Storage Service: A user service that stores data for clients. The service may provide one of 
several interfaces for clients to access storage:  a file system, a database, a segment store, or any 
other interface that makes storage available to clients. 

Tail Circuit: Connects PENs and PECs to PCNs in the backbone network.  

Ticket: Signed data structure issued by a component or aggregate that guarantees the availability 
of a given set of resources.  The ticket may have time or other constraints.  Tickets are redeemed 
to create slivers. 

Ticket Agent: Application to manage and administer tickets possessed by a user.  The ticket 
agent facilitates selection and combination of tickets to create a slice. 

User:  A researcher or operator who interacts with GENI. 

User Opt-in: software running on user nodes, such as PC's, PDA's, and cell phones, to allow 
normal users to select which part of their network traffic is to be directed to/from GENI slices. 

User Services: user visible support services that make the facility accessible to researchers.  
Examples include storage service and slice embedding. 

Virtual Link Interface: Sliver interface to the underlying networking services that allows 
software in the sliver to access the virtual links between components.  Links may be 
reconfigured, though the topology remains fixed.  The link may be point-to-point or a 
multipoint link, simulating a local area network. 

Virtual Radio Interface: A sliver interface to the underlying networking services that allows the 
sliver to control the use of radio spectrum and other virtual radio frequency parameters. 

Virtual Router: A virtual packet processor running in a sliver on a packet processing system. 

Virtual Wire Interface: A sliver interface to the underlying networking services that allows the 
sliver to reconfigure circuit-based services, such as provisioning and framing.  This allows 
configuration of multiplexed electrical links or optical switches. 

Virtualized BGP: A service for coordinating read/write access to BGP announcements to/from 
GENI from/to the rest of the Internet. 

Virtualized DNS: A service for coordinating DNS responses to allow virtualized services 
running on GENI to be accessible, by name, to the outside Internet. 

Wide-area File System: A file system that aggregates storage nodes located across a wide-area 
network. 
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