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1    Introduction 

The GENI backbone consists of a collection of Programmable Core Nodes (PCNs) connected via 
an underlying fiber plant, with tail circuits to edge sites.  In addition to the component 
manager, the PCN needs specialized software for three main purposes: 

• Capitalizing on high-speed packet forwarding: The PCN should provide application 
programming interfaces (APIs) to enable experiments to exploit the high-speed packet-
forwarding hardware described in “A proposed architecture for the GENI backbone 
platform” (GENI Design Document GDD-06-09). 

• Connecting experiments to the legacy Internet: Researchers using the PCN need 
software modules for interfacing with the legacy Internet, including network address 
translation (NAT), tunneling to IP-connected end hosts, and maintaining Border 
Gateway Protocol (BGP) sessions with neighboring domains. 

• Controlling the optical equipment within an experiment: To enable experiments to 
dynamically control the optical equipment, the PCN needs to include software that 
allows researchers to configure or signal the optical equipment, while maintaining 
isolation between slices. 

The current version of this document focuses on the first two items, deferring the discussion of 
the software for controlling the optical equipment till a future revision.  This document is part 
of a three-document series on the GENI software that obsoletes the earlier “Backbone Software 
Architecture” document (GDD-06-25).  Besides the current document, the other two documents 
describe (i) the hardware-specific software for the programmable router (e.g., the software that 
runs on the network processors and FPGA, as well as development tools for experimenters to 
program these devices) and (ii) the component manager and management aggregate for the 
Programmable Core Nodes.  Note: At the time of this writing, these other documents are under 
preparation; the material on hardware-specific software will likely appear in an update of GDD-06-09. 

Before describing the main functionality provided by the backbone software, we discuss the key 
principles that drive our thinking about these software components: 

• Lowering the barrier for creating experiments: Although researchers could conceivably 
write their own software from scratch, we envision that GENI should provide a number 
of software libraries to lower the barrier to constructing experiments. For example, 
researchers experimenting with a new control plane (e.g., a new routing or signaling 
protocol) may want to use a conventional IPv4 data plane for forwarding data packets. 
Rather than requiring researchers to write their own data-plane logic (e.g., to run on a 
network processor or FPGA), GENI should provide implementations of high-speed 
packet forwarding, with suitable APIs for experimenters to install forwarding state (e.g., 
forwarding-table entries and access-control lists), without programming the network 
processor or FPGA directly.  Similarly, we envision that some experiments would need 
to exchange reachability information with neighboring domains via the Border Gateway 
Protocol (BGP).  Rather than having each research team form relationships with Internet 
Service Providers (ISPs) to arrange their own BGP connectivity, we envision that the 
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GENI facility would arrange such connectivity and enable multiple experiments to share 
a single BGP session from the GENI substrate to each neighboring router. 

• Multiplexing access to logical resources that are not easily shared in time: Some 
resources, such as CPU and bandwidth, are easily shared by multiple slices by applying 
conventional scheduling techniques. However, some logical resources are not easily 
shared in time, requiring the GENI backbone to provide gateway software that serializes 
the access to the resource and enforces isolation across experiments. We envision that 
the gateway software could run on the programmable router and communicate with the 
slices that need to employ the gateway service. Thus far, we have identified two such 
logical resources: the BGP sessions with neighboring domains and the signaling or 
configuration interface to the dynamic optical switch. 

• Capitalizing on open-source software wherever possible: Much of the key software 
functionality required for the GENI backbone is already available, at least in part, in 
open-source software. Exploiting open-source software would lower the cost for 
developing and maintaining the GENI backbone software. For example, GENI can 
support communication with the legacy Internet by exploiting data-plane functionality 
in Click (e.g., packet forwarding and NAT), routing-protocol implementations in Xorp, 
Quagga, or OpenBGPd (e.g., for building the BGP gateway), tunneling using OpenVPN, 
and tcpdump for collecting IP packet traces. 

• Capitalizing on standard protocols and APIs wherever possible: Standards bodies, 
such as the IETF, have defined protocols and APIs that overlap substantially with some 
of the functionality needed in the GENI backbone.  Drawing on these standards, where 
possible, capitalizes on the substantial work involved in defining the functionality and 
increases the likelihood of alignment with commercial hardware and software 
development.  For example, ForCES (created by the IETF) defines an API for installing 
forwarding state, such as forwarding-table entries and access-control lists; similary, the 
psamp working group is defining standard support for packet sampling to collect traffic 
statistics.  In some cases, the GENI backbone may be able to rely on de facto standards, 
such as the forwarding element abstraction (FEA) used by the Click modular router or 
the Linux API for installing forwarding tables in the kernel, in much the same way. 

In the next two sections, we describe the software for capitalizing on the high-speed hardware 
for packet forwarding and connecting to the legacy Internet, respectively. 

2 Capitalizing on High-Speed Packet Forwarding 

The programmable router consists of a switching fabric that interconnects line cards and 
processing elements, including general-purpose processors and specialized hardware, such as 
network processors (NPs) and field programmable gate arrays (FPGAs).  Experiments can 
capitalize on the specialized hardware for high-speed packet processing.  Although some 
researchers may want to program an NP or FPGA in arbitrary ways, many experiments would 
use these devices to offload conventional packet-handling functions, such as 

• Packet forwarding by indexing a table based on some bits in the packet header (e.g., based 
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on a destination IP address or MAC address), 

• Access control by discarding packets that match rules based on some bits in the packet 
header (e.g., based on a destination address or the IP five-tuple of source address, 
destination address, source port number, destination port number, and protocol), and 

• Queuing and rate limiting based on a packet shaper that ensures an experiment does not 
send packets to a particular line card beyond the configured rate (e.g., based on a 
constant bit rate or, more generally, a leaky-bucket traffic shaper). 

Rather than dedicate a separate NP or FPGA to each experiment, we envision that many 
experiments can share a single NP or FPGA that implements these packet-handling functions. 
Sharing an NP and FPGA makes more efficient use of the resources and also obviates the need 
for the researchers to program the specialized hardware directly.  The shared NPs and FPGAs 
need not be limited to IPv4 or MAC-based forwarding.  Rather, they may support a more 
general forwarding model based on a configurable set of bits in the packet header, allowing 
different experiments to have different header formats and different address/label sizes for 
indexing the packet-handling state. 

When using a shared NP or FPGA, the researcher would write software, running (say) on a 
general-purpose processor, that installs packet-handling state (e.g., forwarding-table entries or 
access-control lists) in the shared NP or FPGA. The NPs and FPGAs will have a particular 
configuration interface for instantiating the state and ensuring that an experiment does not try 
to instantiate more state than expected.  This logic would run directly on the NPs and FPGAs.  
Although the researchers’ experimental software could directly generate the commands to the 
NPs and FPGAs, we envision providing a more familiar, higher-level API that hides these low-
level details (including variations across NPs and FPGAs in how packet-handling state is 
installed).  In particular, we envision that an experiment may employ one of these three APIs: 

• Forwarding Element Abstraction (FEA) in Click:  Many researchers building 
prototypes of networked systems use the Click modular router as a building block.  
Click installs forwarding state based on commands received via a control socket 
interface.  The forwarding element abstraction (FEA) used by Click is an appealing API 
for researchers to use in installing forwarding state in the NPs and FPGAs, due the 
familiarity of the API. 

• Forwarding and Control Element Separation (ForCES) standard: ForCES is an 
emerging IETF standard that consists of three key components: (i) a standard 
communication protocol between the control element (CE) and the forwarding element 
(FE), (ii) a standard and very simple operation code set for the CE to send control 
commands to the FE and, (iii) a standard numbering scheme for identifying data (or 
operand) at the FE which is very similar to the well known SNMP MIB numbering 
scheme.  Several ForCES implementations already exist in the commercial world. 

• Kernel forwarding table (e.g., in Linux): An experiment running on the general-
purpose processor may update the forwarding table in the underlying operating system, 
such as Linux.  In fact, some experiments may initially implement packet forwarding by 
having all data packets pass through the general-purpose processor for forwarding 
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decisions, taking advantage of the dedicated NP and FPGA hardware at a later stage of 
deployment. Allowing these experiments to capitalize on the dedicated packet-
forwarding hardware transparently would offer a substantial advantage to 
experimenters.  As such, we envision supporting updates to the kernel forwarding table 
as a standard API for using the shared NPs and FPGAs.  For example, a library could 
implement the main system calls for accessing the kernel forwarding tables, while 
transparently copying the table entries to an NP or FPGA.  Alternatively, periodic 
polling of the kernel forwarding tables would provide a way to mirror the forwarding 
state without modifying the system calls. 

In practice, these APIs may be more general than what the shared NP or FPGA could easily 
support.  As such, we envision defining a restricted subset of these APIs that accurately 
captures the capabilities of the NP and FPGA hardware.  (Note: we need to clearly identify these 
restrictions.)  Also, we note that any researcher that wants a different API always has the option 
of using the “raw” interface to the shared NP or FPGA, such as writing table entries directly 
into a ternary content addressable memory (TCAM). 

3 Connecting Experiments to the Legacy Internet 

Many experiments will need to interact with the legacy Internet in some way, such as tunneling 
to end hosts, receiving return traffic from external services, and maintaining BGP adjacencies 
with neighboring domains.  Note: We still need to reconcile these requirements with the services 
already envisioned by the Distributed Services Working Group. Also, we need to determine whether each 
PCN should run one instance of these services vs. run an instance per sliver. 

3.1 Tunneling to End Hosts 

End hosts connected to the legacy Internet may opt in to an experiment running on a GENI 
backbone node.  As such, the GENI backbone node must provide a way to terminate a tunnel.  
We envision that the programmable router would run a server, such as OpenVPN, to terminate 
tunnels to these end hosts. Although the tunnel would be implemented using IP (for backwards 
compatibility), the packets sent over the tunnel, and delivered to the experiment on a virtual 
interface, may have any arbitrary format chosen by the experimenter.  

Note: We need to resolve whether the tunnel should traverse the Internet to reach PCN running the 
sliver, or whether the tunnel can partially traverse the GENI backbone itself, including PCNs that might 
not be part of the slice of interest.  If the tunnel is permitted to traverse GENI components, then the 
GENI backbone would need to provide a basic reachability service to direct the packets to the chosen 
sliver.  This may be realized by a thin, best-effort sliver (that is part of the experiment’s slice, though 
perhaps not visible to the experimenter) that serves only to direct the tunneled packets to the appropriate 
sliver that terminates the tunnel. 

3.2 Receiving Return Traffic from External Services 

The GENI backbone nodes will have connections to the Internet for reaching external services, 
such as Web sites.  These sites are not necessarily “opting in” to a GENI experiment.  In some 
cases, the external site may not know how to reach the IP address of the user that initiated the 
communication, e.g., because the user has a private IP address for his end of the tunnel to 
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GENI.  Even if the user has a public IP address, the experiment may not want the return traffic 
to reach the user via the legacy Internet.  Instead, the GENI backbone may need to ensure that 
return traffic from these sites goes through the GENI backbone and reaches the appropriate 
sliver.  Network address translation (NAT) at the GENI/Internet boundary can provide control 
over whether and where the return traffic reaches GENI.  We envision that conventional NAPT 
functionality, perhaps implemented in a network processor or FPGA for high speed, would 
suffice for this purpose. 

Note: This NAPT model assumes that the slice, or an end host connected to the slice, initiates the 
communication with the external server.  Some applications, like peer-to-peer file sharing, do not match 
this model, since the external host (not participating in GENI) may want to initiate communication.  
This is identical to the challenges today of supporting peer-to-peer communication across NATs and 
firewalls.  When this style of communication is necessary, the experiment may need public IP addresses of 
its own to enable external, legacy hosts to initiate communication. 

3.3 Maintaining BGP Adjacencies with Neighboring Domains 

Some experiments connected to the legacy Internet may need control over how they direct 
traffic to external hosts, and how legacy hosts reach them.  For example, a researcher evaluating 
a new routing protocol may need to exchange reachability information with neighboring 
domains (in the legacy Internet) via the Border Gateway Protocol (BGP).  These experiments 
may have their own IP address blocks (i.e., prefixes) to announce to the Internet, and may want 
to receive BGP announcements for externally-reachable prefixes.  However, a neighboring 
domain might not permit its routers to have separate BGP sessions with many slivers running 
in GENI, due to concerns about scalability or malfunctioning/misbehaving experiments.  In 
addition, multiple slivers cannot easily share a single BGP session through conventional 
multiplexing techniques, such as dividing access to the session over time. 

Instead, we envision that the programmable router would run a BGP gateway that has BGP 
sessions with neighboring domains, as well as separate BGP sessions to individual slices. The 
BGP gateway would combine the BGP update messages sent by the slivers (each with its own 
set of IP prefixes) into a single stream of messages to each neighboring router, and relay the 
neighbor’s update messages to each slice. The gateway ensures that an experiment that sends 
malformed messages or crashes frequently does not crash the real BGP sessions to the 
neighboring domain. The gateway can also filter the BGP update messages to ensure that a slice 
does not send announcements for address blocks it does not own or send update messages at an 
excessive rate. The gateway can also apply policies that provide a slice with a customized view 
of its BGP connectivity. For example, one slice might want to connect to domain A, while 
another experiment might want to connect to both domains A and B.  

Implementing a BGP gateway does not seem like a particularly difficult task.  The gateway 
functionality is very similar to a route server or route reflector, with some extra care needed to 
provide transparency to the experiments.  Ideally, the experiment would think it has dedicated 
BGP sessions to the neighboring domains, rather than passing messages back and forth through 
the gateway. Also, for performance and scalability reasons, only the BGP messages should 
travel through the gateway; regular data packets should travel directly from the experiment’s 
sliver to the link connecting to the neighboring domain.  We believe that the gateway function 
can be implemented using existing open-source routing software, such as Xorp, Quagga, or 



GENI Backbone Run-Time Software                             November 30, 2006 

 10 

OpenBGPd.  For example, the BGP gateway may run one BGP process for each external 
neighbor, with separate sessions to each of the participating experiments.  Careful configuration 
of the routing software and the underlying environment can give the experiments the illusion of 
direct BGP connectivity to the external neighbor. 


