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1   Introduction 
The GENI facility promises to enable research of a scale that has previously not been possible.  
Experiments will be run with a worldwide geographic span, with access to compute, storage 
and networking resources that are unmatched in any experimental infrastructure available 
today.  This is the source of its promise as a tool for enabling fundamentally new types of 
research in large-scale networks and distributed systems. 

At the same time, however, the resources it embodies would be a formidable attack platform in 
the wrong hands.  As a fully programmable substrate, a GENI slice can be configured to 
perform a wide range of undesirable actions against both Internet targets and other GENI 
resources.  Even worse to contemplate is an attacker commandeering GENI components outside 
the confines of a slice, i.e., with greater control over GENI components than a slice should be 
granted.  It is not difficult to envision numerous possible malfeasant uses of GENI; we need 
look no further than today’s so called “bot-nets” and the myriad applications they support.  Bot-
nets today are used to propagate malware, launch denial-of-service attacks, forward spam, and 
traffic illegal content, for example.  Without proper precautions, GENI will offer to ill-
intentioned users a programmable infrastructure not unlike bot-nets today⎯only much better 
provisioned and easier to use. 

PlanetLab, the testbed that has most directly influenced GENI, has already weathered such 
misuses, and so perhaps we should conclude that the methods used to deal with such misuses 
in PlanetLab are suitable for GENI.  However, we believe that four factors require that GENI 
incorporate more advanced defenses.   

• Because GENI will embody resources that far exceed those available in PlanetLab, the 
potential that GENI poses for a devastating attack against the Internet is far greater than that 
posed by PlanetLab.  Put simply, whereas PlanetLab is a pistol, GENI will be a canon.  As 
such, PlanetLab’s largely manual and reactive procedures for addressing misuse might be 
insufficient, due to the damage that GENI could inflict at the hands of an attacker before the 
attack is confined. 

• GENI will contain a highly diverse set of hardware resources, providing programmability 
across every layer of the network stack from outdoor sensor and wireless nodes to 
reconfigurable router and optic hardware.  What works in one context may not work as well 
in another.  Thus, we need to take a fresh look at vulnerabilities and proposed solutions. 

• If GENI realizes its full promise, then its sheer scale of usage could result in a stream of 
incidents and complaints that would outpace the human-intensive procedures used in 
PlanetLab to manage them.  This is a problem all-too-familiar to operators of large networks 
today, and could be magnified in GENI owing to the advanced types of research conducted 
on the facility.  We thus believe that it is prudent to integrate technological methods to stem 
this tide now, rather than to attempt to choke it off once the flood has begun. 

• As an infrastructure being constructed at the behest of the National Science Foundation and 
at considerable expense to the public, GENI will (and should) come under greater scrutiny 
from many quadrants than PlanetLab ever has.  The public relations consequences resulting 
from constructing, in the worst case, the world’s largest and most capable attack 
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infrastructure could be felt by the NSF and the computer science and engineering 
communities for years to come. 

Despite the above challenges, we believe that technical and operational solutions exist that can 
lead to an effective security architecture for GENI.  Our goal is not to eliminate the possibility of 
a successful attack – no computer system connected to a global network has ever reached that 
bar.  Rather, our goal is to use technical and operational means to prevent, detect, and manage 
attacks, so as to render the GENI system to be both safe and usable by its target community of 
experimental network and distributed systems researchers.  A further goal is to illustrate 
“security done right”: to show how security should be architected into globally distributed 
systems of networks and computers. 

A guiding principle is that we believe that GENI should be designed to operate in a “do no 
harm” posture.  This level of accountability is far beyond the capability of the Internet, and it 
implies several things.  First, an experiment should be given only the specific permissions that 
are needed for it to run, and are merited by its prior validation steps.  There is no need to allow 
every student running an experiment on GENI the ability to flood the Internet with unwanted 
packets; protecting the Internet and the public wireless spectrum from runaway experiments 
should be a requirement.  Rather, such privileges should be granted and enforced in a measured 
fashion as an experiment is incrementally validated and shown to do no harm.  Obviously, we 
mean “harm” in only the broadest sense.  As any researcher or even any company deploying a 
new Internet service is acutely aware, it is sometimes impossible to completely prevent all 
possible complaints, no matter how careful the validation.  The Internet today is a hodgepodge 
of unpublished and often unpredictable filter rules, so some issues with respect to the 
inadvertent consequences of experiments will come up from time to time, requiring the ability 
to trace the cause of the complaint back to the responsible experiment (and experimenter), so 
that the problem can be addressed.   

Again in contrast with the Internet, the facility as a whole should continue to function even 
while remedying most types of accidental or intentional misuse.  For example, we envision a 
“kill switch” that will enable an operator to quickly and completely suspend a misbehaving 
experiment or component, while allowing the rest of the system to proceed.  However, if GENI 
enters a period where activities of some components or slices cannot be adequately monitored 
or controlled to ensure their safety, then GENI should restrict those activities by other means to 
a point where safety can be assured.  For example, in the face of a denial-of-service attack on 
control channels to and from GENI Management Central⎯say, rendering certain components 
invisible to the control and monitoring infrastructure⎯GENI should retreat to a state that 
prevents those components from communicating with the Internet and, potentially, other 
critical GENI resources.  Taken to the limit, this implies that GENI should shut itself down in 
certain circumstances where “off” is the only state where safety can be assured.  Obviously the 
circumstances requiring this should be few, lest GENI's scale, widespread deployment, and 
visibility make GENI an inviting target for “denial of GENI” attacks.  

Another consequence of the above is that GENI itself should resist low-level compromise to the 
extent that the state-of-the-practice permits.  We anticipate that many GENI nodes will be 
connected to the legacy internet⎯e.g., the initial GENI management plane is expected to run 
over the legacy internet⎯and as such they will need to be defended from compromise as any 
internet-connected host must be.  It is not the goal of this document to cover such defenses in 

5



GENI Facility Security (DRAFT)   September 15, 2006 (v0.5) 

detail (instead, see [4] for a more complete discussion), but the regimen is familiar: use off-the-
shelf operating systems and system software and apply security updates promptly and 
completely across the entire system; provide only the minimum number of open ports, and 
those requiring authenticated access (of course, specific sandboxed experiments may open 
additional ports); actively monitor the system to detect and report intrusions (e.g., attempts to 
modify the boot file system); etc.  While we touch on these issues, our primary focus here is the 
uncommon challenges that the GENI facility introduces and the mechanisms that we 
recommend be developed to address those challenges.  

Following standard industry practice, we believe that the GENI operations and governance 
teams should practice advance “test runs” of their procedures to handle serious security 
breaches.   No technical solution will be 100% foolproof in preventing attacks, especially given 
the amount of pre-existing (and vulnerable) software that GENI needs to use in order to be cost-
effective.  We of course hope that GENI will help foster research that will lead to a more secure 
future Internet, but until that time, the cost of an attack is related to how quickly it can be 
addressed⎯something that can be optimized with advance planning and practice.  

2   Threat Model 
There are three broad classes of attacks that must be addressed by the GENI security 
architecture and by its operational procedures.  First, attacks may be launched by outsiders on 
the GENI infrastructure, either as a denial-of-service attack, or simply to gain control of GENI 
resources.  Second, and related, we need to prevent and limit the impact of accidentally or 
maliciously misbehaving GENI experiments on the outside world; similarly, we must limit the 
impact of attackers posing as legitimate GENI experimenters.  Finally, we need a level of 
isolation between experiments, so that GENI cannot be surreptitiously used by one 
experimenter to disrupt another.    

We discuss these three types of attacks in this section by providing a list of specific threats that 
the GENI security architecture must address.  The threats are listed according to our estimate as 
to the relative frequency of that particular type of problem; for example, accidentally 
misbehaving experiments are likely to be a somewhat frequent occurrence on a platform 
designed to support experimental investigation, while determined attacks against the GENI 
software are relatively less likely, but more serious.  Fortunately, many of the same technical 
solutions can be applied to both root causes.  Note that the threats we list below are not 
intended to be completely mutually exclusive: systematic attacks against GENI may combine 
multiple elements, and thus the facility needs to be able to deal with all of these types of 
problems simultaneously.  We note as well that despite the Internet being explicitly designed to 
support experimentation and evolution in its protocols, the Internet’s architecture is poorly 
suited to deal with any of these types of problems. 

• Runaway experiments that cause unwanted Internet or RF traffic.  Experience with 
PlanetLab suggests that unintentional misbehaving experimental code will be a common 
occurrence on GENI.  We believe a process is needed to assign and enforce specific, minimal 
privileges appropriate to each experiment, e.g., so that a novice user’s mistake does not have 
global consequences.  Another requirement is a rapid “kill switch” to enable operations staff 
to quickly suspend a misbehaving experiment.  A companion document discusses external 
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RF monitoring to detect and stop experiments that inadvertently pollute the RF spectrum 
[33]. 

• Runaway experiments that disrupt the execution environment for other experiments within 
GENI, e.g., by exhausting disk space or file descriptors.  These issues can be handled by 
providing stronger isolation between experiments and by monitoring shared resources for 
unexpected usage patterns. 

• Experiments that escape their isolation boundaries and accidentally (or if an experiment is 
taken over by an attacker, maliciously disrupt) the networks of hosting organizations (e.g., 
see [29]).   The GENI facility must ensure that hosting organizations are not put at 
significant risk for contributing resources to GENI, and the GENI effort must take measures 
to convince hosting organizations that problems are rare and dealt with promptly.  

• Legitimate experiments that trigger true or false alarms in other parts of the Internet or 
wireless spectrum.  This requires the ability to trace the source of packets or signals back to 
the responsible party, so that the problem can be fixed and prevented from recurring.   

• Misuse of an experimental service by an end user.  For example, one example experimental 
service conceived for GENI is to run a virtual ISP supporting a novel internal architecture.  
Such an experimental ISP might be used by a malicious user to launder illegal packets.  We 
expect this set of concerns to be addressed by establishing GENI-wide standards for 
experiments offering packet delivery services (or their equivalent) to end users.  For 
example, GENI might require that an experimental ISP provide basic monitoring or tracing 
tools for legitimate law enforcement enquiries, and indeed we believe GENI should provide 
a baseline toolkit for use by experimenters in meeting this requirement.  A companion 
document describes experimenter support in more detail [2]. 

• Theft of an experimenter’s credentials to use GENI.  Unfortunately, it is well-known within 
the security community that users are often careless with the keys used for authentication, if 
only because key compromises are silent until it is too late.  Carefully calibrating privileges 
to match the experimenter’s sophistication is one avenue (e.g., users likely to be careless 
with their keys would be given more limited privileges); another is to use technical means 
described below (Section 5  ) to make it more difficult for attackers to gain access to user 
keys. 

• Corruption of the host operating system software running on the experimenter’s desktop 
machine.  Since end host corruptions are endemic on the Internet today, we need to make it 
easy for the GENI operations staff to revoke and replace end user keys and privileges after 
such break-ins.  Even so, this is perhaps the most likely avenue for malicious attacks against 
GENI. 

• Corruption of the systems software running on one or more components.  An attacker might 
gain temporary control over a node by first gaining access to a GENI account (e.g., by 
corrupting an experimenter’s host computer), and then launching an “experiment” that 
exploits a vulnerability in the node operating system software to gain control over the node.   
One important step is to actively manage all GENI hardware, e.g., to proactively keep all 
operating system software up to date with known security patches.  This means that any 
changes we make to host software be minimal, so that patches can be applied quickly.  
Another important step is that components should be configured with the minimal number 
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of open ports.  Yet another important step is to discover problems quickly, e.g., by 
providing for continuous monitoring of anomalous node behavior by GENI operations.  
(This is of course made more complicated by the fact that the experimental architectures and 
services running on top of GENI are by their very nature, anomalous!)  Yet another 
important step is to be able to fix the problem quickly once it is discovered.  The emergence 
of trusted computing hardware [28] and the integrity measurement architectures it supports 
(e.g., [30]) should provide a mechanism for GENI operations staff to reset every node in 
GENI to a known, good state.  

• Denial of service attacks against the GENI management infrastructure.  As we mentioned 
above, GENI should fail “off” to avoid providing an avenue for an attacker to take control, 
and then use denial of service to prevent the operations staff from taking countermeasures.  
Technically, this can be accomplished by requiring privileges to be frequently refreshed.  
Initially, we envision GENI management commands will be carried over the Internet for 
convenience (subjecting them to all the problems of Internet security and reliability); as 
GENI construction proceeds, however, it may be possible to move the GENI control plane to 
running over GENI itself, reducing the likelihood of such attacks (see Section 7  ). 

• Direct attacks against vulnerabilities in the GENI management software.  GENI is a complex 
distributed system, and therefore special care must be taken to avoid vulnerabilities in its 
implementation.  One step is the explicit modeling of trust relationships between GENI 
components as described below.  Another important step is to observe that the software 
development processes adopted for GENI software are critical to the security of the GENI 
facility.  It is well-known that poor software quality is the source of numerous types of 
serious security vulnerabilities in practice (e.g., buffer overflows and format-string 
vulnerabilities).  We believe it is imperative that GENI software development processes be 
adopted so as to eliminate, to the extent practicable, these types of vulnerabilities.  While 
specifying software development processes is outside the scope of this document, an 
example might be that all GENI-defined interfaces and protocols be adopted only after an 
open, public review of potential security vulnerabilities, that changes to interfaces be made 
only through a similar formal process, and that conformance tests be generated (ideally, 
automatically) from a formal specification of the interface.  Where practical all GENI 
software should be implemented to be type-safe, e.g., via tools such as CCured or languages 
such as Java.  Where type-safety is impractical, e.g., in modifications to an existing operating 
system implemented in C, standard practices such as software verification tools and test 
suites can be used to reduce the likelihood of vulnerabilities.  We also believe that serious 
consideration should be given to requiring that source code produced for GENI be made 
public, so as to allow for independent security analysis.  However, we do not believe it is a 
cost-efficient use of GENI resources to require every aspect of the management software to 
be robust to arbitrary malicious attacks by privileged insiders (so-called Byzantine attacks).  
Rather, we intend to rely on detection, confinement and resetting to a known good state to 
correct intrusions when they occur. 

Two additional issues that we do not yet consider in depth are the privacy of experimental 
data and the privacy of management policy.  Preventing unauthorized access to information 
stored in GENI can be accomplished using the flexible access control architecture described 
later in the document.  However, preventing all forms of information leakage while an 
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experiment is running is an open research challenge, and one for which we hope GENI will 
help facilitate the development of technical solution. 

3   Security Requirements 
This list of vulnerabilities suggests several requirements for GENI's security architecture: 

• Explicit Trust: Privileges in a distributed system should be managed explicitly and formally.  
Enforcing security in GENI is something of moving target, as the facility will be used during 
its construction, and progress from a single management entity to a more federated model.  
Thus we need a security model that can evolve along with GENI.  The access control 
approach we describe below (Section 4  ) is intended to provide the required flexibility, 
rather than hard-coding trust relationships.  One concrete benefit of this approach is late 
binding⎯that we can start with a PlanetLab-style aggregation and delegation of rights, and 
add federation later on, without needing to know exactly how trust will be managed in the 
federated system.  Without explicit trust, it is likely that trust will be unintentionally 
misplaced, leading to system-wide vulnerabilities that can be exploited by the wily attacker. 

• Least Privilege: The principle of least privilege is a tenet of computer security that requires 
each component of a system be given exactly the authority it needs to perform its tasks and 
no more.  Failures to implement this principle are ubiquitous, and we face the consequences 
frequently.  For example, most web servers do not need to be able to open connections to 
arbitrary addresses in order to perform their tasks.  Yet this is permitted, and exactly this 
ability has been used numerous times in the epidemic spread of worms.  While achieving 
least privilege in an absolute sense is arguably not feasible, it is our belief that the GENI 
facility should approach least privilege as far as is practicable.  Least privilege can secure the 
GENI facility from malicious software, accidental violations, or just simply resource 
exhaustions⎯in general, it can mitigate the risks caused by runaway experiments.  It is also 
equally useful in securing the experimenter's environment against attacks from other 
experiments or faulty system software. 

• Revocation: Despite our best efforts, it is inevitable that keys, slices, and systems will be 
compromised in GENI.  Thus a critical requirement for GENI is to be able to quickly revoke 
and replace keys, suspend all permissions (e.g., slices) derived from a compromised key, 
and (as in PlanetLab) reset each node to a known secure state. 

• Auditability: The possibility of compromise also requires us to be able to trace why a 
problem occurred so that it can be prevented from recurring.   As we describe below in 
Section 6.2, PlanetLab contains an initial implementation of some of the needed 
functionality: it logs every packet header sent by every slice running on PlanetLab.  Our 
intent is to go well beyond what PlanetLab provides;  we need to know which slice is 
responsible for each packet, but also we need to be able to determine the entire chain of 
responsibility (from central administrator to local administrator to local user) that gave the 
user a specific capability that was misused. 

• Scalability: With large-scale distributed systems, simple schemes such as using a small set of 
authentication servers and/or replicating information required by authentication and 
authorization tasks are not feasible.  For instance, it is now commonly accepted in the grid 
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computing community that the grid security infrastructure needs to move beyond the use of 
grid-wide unique IDs and a global table mechanism (GridMap) for replicating authorization 
data.  PlanetLab also is limited by its reliance on a global table mechanism.  We propose a 
specific more scalable authorization architecture below. 

• Autonomy: A key requirement for GENI is the ability to federate autonomous facilities.  A 
GENI site should be able to authenticate and authorize requests from users in other sites, 
support delegation of rights, and it should be able to do so without requiring centralized 
trust.  While it might be possible to extend the PlanetLab model in an ad hoc way to support 
autonomy, below we advocate a more principled approach. 

• Usability: The user must be explicitly modeled as part of the security architecture.  Any 
system that is hard to use will be evaded and ignored.  The implication is that we need to 
make it easy, rather than heavyweight as in PlanetLab, for users to create roles, restrict 
rights, etc.  We also need to make it easy for users to protect their private keys.  In essence, 
secure system and user behavior must happen by default. 

• Performance: As with usability, the performance overhead of providing security needs to be 
modest, or users will have an incentive to disable or evade the system.  In practice, this 
means managing security information (such as certificates delegating rights to a specific set 
of users) as cache-coherent, distributed state.  Caching means that lookups can be local and 
fast in the common case, without compromising system semantics.  

The rest of this document provides a partial list of technologies we propose to use in achieving 
these requirements.  We emphasize this is intended to be a partial list, focusing on those aspects 
of GENI that present uncommon challenges and that we recommend be addressed via new 
development.  Given this restricted focus, there are several notable but intentional omissions 
from this document: 

• GENI nodes’ operating systems and the isolation properties they enforce.  While this is 
fundamental to GENI facility security and numerous other aspects of GENI function, we 
expect that the initial GENI deployment will utilize the best available operating systems 
at that time, as it is outside the scope of GENI to construct new secure operating systems 
for the range of devices that GENI will incorporate. 

• Defense of GENI nodes from compromise via attacks from the legacy internet.   Those 
GENI nodes that are connected to the legacy internet⎯and we expect that at least at 
first, most or all will be for management purposes⎯will be at risk of compromise from 
the outside.  We expect this threat to be countered as it must be for any internet-
connected node (e.g., see [4]), i.e., with an appropriately configured firewall, elimination 
of unnecessary services, prompt application of patches to necessary services, traditional 
intrusion-detection, and so forth.  In fact, protecting a dedicated GENI node from 
compromise from the legacy internet might be simplified by its role: e.g., the node’s 
firewall can drop connections to ports not associated with experiments from all but 
recognized GENI Management Central computers.  Of course, experiments in slices may 
still be subject to compromise if they communicate with the legacy internet, but the 
protections we describe below will confine this threat just as they would for any 
wayward experiment. 
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A related way in which we restrict our focus for the remainder of this document is that we elide 
treatment of sensor networks and other special-purpose “edge” systems that present resource 
or connectivity constraints atypical of a general-purpose computing environment.  Due to the 
resource constraints of these systems, the security risks associated with them are primarily 
inward-facing⎯i.e., that these components will be disrupted in a way so as to hinder 
experiments on them or steal information from them⎯but their compromise poses relatively 
little direct threat to the systems to which they connect.  As with the rest of GENI, best practices 
should be applied to defend them (e.g., see [33] for a discussion), but since we focus our 
attention on new developments needed to meet the unique security threats posed by GENI, we 
do not cover those other elements here.  Nevertheless, several of the mechanisms proposed here 
could play a role in those edge systems, at least for those elements that offer adequate resources 
to execute them. 

4   Access Control 
The core of our proposed security architecture for GENI is a pervasive and unified access-
control infrastructure.  In security parlance, access control refers to means to reach a yes-no 
decision as to whether a requested access should be granted.  The decision is reached by a 
resource monitor, based on evidence as to whether the requested access conforms to security 
policy.  The goal of the architecture we propose is to provide a unified and yet flexible 
mechanism for resource monitors to reach these decisions. 

Access control is often intimately tied to authentication, and so a side-effect of the architecture 
we propose is the provisioning and operation of a distributed Public Key Infrastructure (PKI) 
and Certificate Authority to allow strong identities for facility users.  Although PKIs are hard to 
bootstrap, we note that GENI has a natural advantage that we believe can pave the way 
towards more widespread use of PKIs: every site has a local administrator who can establish 
and vouch for the credentials for each specific GENI user and physical device.  Authentication 
is required for both the network facility itself, to grant access to applications and services and 
provide a basis for resource isolation, but also for applications and users. A flexible and 
accessible public-key or other authentication service, along with the software and resources to 
manage it, will bootstrap both GENI itself, and the development of applications on top of it.  
This service must include the development of libraries to allow a variety of applications to use 
the service and the development of guidelines for how and when applications should use the 
service. 

4.1   Background 
One way of understanding our approach to access control is by analogy to the access control 
framework already found in Java.  Java implements a security manager that can be invoked from 
any point in a Java program, with an action that has been requested and a security policy that 
must be checked in order for that access to be permitted.  The security manager implements a 
systematic procedure for determining whether the access complies with the provided policy; if 
not, it raises a security exception.  Our goal in this document is to set out the requirements for 
the analog of a security manager for GENI, i.e., a systematic procedure for determining whether 
a particular access is consistent with a particular policy, without specifying for what accesses 
such checks will be performed or what the policies should be.  Just as the security manager is 
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equally useful in Java for both system-level access checks and checks by applications that were 
not anticipated when the security manager was built, we would like the access control 
framework that we describe here to be useful to both protect the GENI instrument and to enable 
applications built over that instrument to protect themselves.   

That said, as we will see, the analogy to the Java security manager ends there; the mechanism 
we advocate here has little else in common with Java’s security manager. An authorization 
service for GENI needs to address the large, distributed nature of the target platform, and the 
need for designing a flexible system that can express a rich set of security policies.   

In terms of existing technologies that address some of requirements described above,  GENI's 
predecessors in both the distributed systems community (PlanetLab) and the Grid community 
(Globus) have primitive security architectures (key-based access control lists) that address 
authentication more than authorization.  These systems simply distribute the public keys of 
users, use the keys to authenticate requests, and give execution privileges to authenticated 
users; there is little to no differentiation regarding the privileges of authenticated users, nor is 
there any mechanism for users to execute programs with restricted rights, to grant subsets of 
their rights to other users, or to authenticate previously unknown users.  Public-key 
infrastructures such as X.509 [18] provide some of what is needed⎯they allow local sites to 
authenticate users even if the necessary keys are not available locally⎯but they are limited by 
the lack of support for local authorization policies.   

4.2   Access-control systems and logics 
Any system that implements access control does so through some type of program logic.  
Usually this involves checking whether the requesting party is on an access control list, but it 
might additionally involve checking whether that party is a member of a group, for example.  In 
distributed systems, access-control decisions often must be based on policies (e.g., expressing 
delegations of authority, group memberships, and so forth) of different principals in the system.  
It is typical for these policies to be encoded in digitally signed credentials that must be 
assembled and presented to the resource monitor for evaluation.  Numerous such systems and 
standards have been developed in the research community (e.g., [36][10][11][14][9][19][8]). 

Since the early 90s, efforts to gain assurance in decentralized access-control systems involved 
modeling access-control policy and the system enforcement in a formal logic (e.g., 
[1][17][19][21]), so that claims about it could be made precise and verified.  More recently, 
formal logics have been explored as a means to implement the access-control decision procedure 
(e.g., [1][35]), and have been used in such a capacity in a handful of research systems (e.g., [6]).  
This increases assurance further by minimizing the gap between the logic (about which results 
are proved) and the system implementation. 

While detailing an access-control logic is outside the scope of this document, it is worthwhile to 
summarize how such a logic is used.  In such a system, formulas of the logic are instantiated 
from digitally signed credentials.  An example of such a credential might be a traditional 
certificate issued by a certification authority, but more generally the credentials can utilize 
richer constructs in the logic, such as groups or roles.  The inference rules of the logic are then 
applied to these formulas to construct a proof of a required access-control policy.  The required 
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access-control policy can be different per resource being accessed, and its formal statement will 
typically involve a nonce identifier so that the resulting proof cannot be replayed. 

4.3   Authorization Architecture 
We now provide a high-level view of our proposed system architecture and how the different 
components work together to provide authorized access. 

Principals, including users, administrators, and machines, can generate requests or make 
assertions regarding privileges associated with other principals.  Objects are resources, such as 
CPUs, files, and network devices, which are to be guarded against unauthorized access.  Each 
object is associated with it a resource monitor that checks whether or not to grant access to the 
object. 

We decompose the act of gaining access to a resource into two distinct steps: constructing a 
proof (typically, a set of certificates) that the access complies with access-control policy, and 
checking that the proof is valid. 

The task of constructing the proof could be accomplished by any of the following means.  In the 
simplest case, the proof could be obtained using the very mechanism that was used for finding 
the resource.  For instance, if the principal became aware of the resource through a resource 
allocator (such as Emulab's assign), a resource discovery tool (such as SWORD [27]), or a 
resource broker (such as SHARP [15]), the same underlying tool could be extended to generate 
the necessary certificates and provide it to the principal.  In the more general case, one could 
use a general-purpose theorem prover that would perform distributed queries to discover a set 
of credentials that would constitute the proof for authorized access (e.g., [23][5]).  However, as 
the certificates are stored in distributed repositories, the certificate discovery process might 
require multiple remote accesses, potentially causing performance bottlenecks.  A middle-
ground that is less general but potentially more efficient would be to have an application-
specific rule base for discovering the credentials and assembling the proof; the rule base would 
then embody a set of application-specific heuristics for finding the desired set of certificates. 

The task of checking the validity of the proof is performed by the resource monitor, a task 
which places the resource monitor at the very heart of the authorization service.  When 
provided with a security policy, expressed as a formula of the logic, and a claimed proof 
(including digitally signed credentials) that a request satisfies this security policy, the resource 
monitor would verify the digital signatures on all certificates to ensure their validity and then 
verify that the claimed proof using them is indeed a valid proof of the security policy. 

The resource monitor thus embodies significant design decisions, not the least of which is with 
respect to what logic the resource monitor verifies the proof.  There appears to be a tradeoff 
between the expressiveness of this logic and the ease of generating proofs of access.  For 
example, if we were to adopt the proposal of Appel and Felten [3] that advocates the use of 
higher-order logic, we would be favoring extensibility over efficiency of proof generation.  This 
logic allows the expression of policies using higher-order predicates and quantifications, and so 
is powerful enough to encode many different authentication frameworks (such as Taos [36], 
SPKI/SDSI [14], and X.509 [18]).  However, with such generality, the process of automatically 
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generating the appropriate proof becomes undecidable in the general case [3], and moreover, it 
is difficult to prove certain security properties of the framework.  A careful study of the 
tradeoffs is still needed before deciding on the appropriate formal logic. 

Within the above framework, we plan to employ a rich set of certificates or declarations to 
implement various forms of authorizations.  Following previous research efforts (e.g., 
[36][11][14]), we envisage the use of following abstractions: 

• Identity certificates that bind principals to keys.  These certificates are useful for 
authenticating principals. 

• Authorization certificates that attest to privileges associated with principals.  When 
combined with the identity certificates, these certificates enable authorized access. 

• Delegation certificates that pass on privileges (or a subset of privileges) from one principal 
to another.  As part of the delegation certificate, the delegator can state whether the 
delegatee can further delegate the privileges to yet another principal in the system. 

• Group membership certificates that allow an authorizing agent to group together principals 
and manage their privileges in a scalable and efficient manner. 

• Roles that allow a principal to voluntarily restrict its privileges, thereby limiting the dangers 
posed by security violations. 

• Revocation of previously issued certificates, as no authorization service would be complete 
without mechanisms for revoking privileges associated with misbehaving principals or 
compromised keys. 

While it is beyond the scope of this document to define the full set of actions or resources for 
which authority should be checked in GENI, we believe the above framework is flexible enough 
to be used in the following contexts: 

• The service should enable fine-grained controls on resource usage of user-level experiments.  
It should enable the execution of user-level programs in sandboxed contexts that enforce 
least privilege. 

• The authorization service should support the access checks performed during system 
administrative tasks for creating, removing, or modifying information regarding sites and 
nodes.  It should also support the process of granting, revoking, or checking roles, and 
authorize site-management tasks such as rebooting nodes or setting bandwidth limits. 

• The service should also be useful for implementing user tasks pertaining to updating user 
information, initiating and controlling experiments, including operations such as adding or 
removing virtual machines from an experiment. 

There are a number of important technical questions that remain open in the design, including: 

• What form of logic should be used in the authorization service in order to be able to handle 
the types of actions we plan to run on GENI?  Should more restrictive logic forms be used in 
order to enable efficient proof generation or simplicity? 
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• What tradeoffs exist between generality, flexibility, performance, and assurance?  Can we 
express various security policies without loss of efficiency?  Do we need mechanisms for 
caching the results of certificate discovery queries and authorization checks? 

• A related question concerns the granularity in which access rights are to be expressed.  Fine-
grained access rights allow a system to implement the principle of least privilege, but 
potentially at the cost of increased overhead.  We might need some form of dynamic 
bundling of rights and/or indirection to enforce the principle of least privilege without 
sacrificing performance. 

• What secondary mechanisms are required to limit the damage caused by security 
compromises?  For instance, revocations could be implemented using Certificate Revocation 
Lists, one-time certificates, and/or short validity intervals.  Which of these mechanisms is 
appropriate for different usage patterns? 

4.4   An Example 
To illustrate the use of the decentralized access-control framework that we propose, in this 
section we sketch an example of one way in which it might be used in GENI.  (We avoid use of 
logical formalism to the extent possible, however.)  This example is based on a similar one 
found in Lampson [21].  Consider a computer that an organization, say CMU, wishes to 
contribute for use by GENI experimenters, but only in a limited fashion.  For example, CMU 
desires that GENI experiments be permitted to execute on this computer but not to open 
connections to legacy Internet hosts; rather, slivers are permitted only to connect to other GENI 
hosts.  The following steps might be taken to enforce this policy, while permitting experiments 
to take advantage of this node.  Below, when we say that public key pubkey “delegates 
authority” to an entity (e.g., another public key), we mean that the corresponding private key is 
used to digitally sign a message delegating authority to that entity.   

1. The computer, denoted node, is initialized with a hardware private key with verification 
key nodeKey, which is used to sign a statement delegating authority to a private key 
controlled by CMU (with corresponding public key cmuKey).   

2. The computer is installed with the GENI operating system.  A resource monitor in the 
operating system that intervenes in connection requests is configured to require the each 
connection request be accompanied by proof that nodeKey says connect(…).  Here, 
says is a logical constructor typical of access-control logics (e.g., see [21]); intuitively this 
statement indicates that the connection request is compliant with policy attributable to 
nodeKey. 

3. The cmuKey is used to delegate authority to the GENI management system, to authorize 
connections from node to only GENI addresses (and not legacy Internet addresses).  In this 
delegation, GENI is named by its public key geniKey. 

4. GENI delegates authority to a principal investigator (PI) to create a sliver on node.  The 
rights passed to this investigator, named by piKey, include creating a sliver that connects 
from node to GENI addresses.  This delegation is encoded in a digital credential signed by 
geniKey. 
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5. The PI (via piKey) delegates this authority to a group, piKey.students, of graduate 
students who are developing the experiment.  In addition, piKey creates a credential for 
each such student, named by his public key studentKey, giving that student the authority 
of the piKey.students group. 

6. Upon deploying a sliver to node, a graduate student uses studentKey to delegate to that 
sliver (sliverKey) the authority to connect to GENI nodes.   

7. In order to open a connection to a GENI node, the sliver must assemble a proof that 
nodeKey says connect(…).  How it does so depends on the logic being used, but 
intuitively it will need to utilize the credentials described above, i.e., that formed in Step 1 
that delegates authority from nodeKey to cmuKey; in Step 3 to delegate authority from 
cmuKey to geniKey; in Step 4 to delegate authority from geniKey to piKey; in Step 5 to 
delegate authority from piKey to piKey.students and to grant the authority of 
piKey.students to studentKey; and in Step 6 to delegate authority from studentKey 
to sliverKey.  As such, when sliverKey says connect(…), it can be inferred (via this 
substantial chain of reasoning) that nodeKey says connect(…). 

Of course, since humans do not relate to others using keys, the above delegations might instead 
be to named persons, e.g., the professor’s name instead of piKey.   The relationship between 
that name and the key piKey is a classic “certification authority” problem that can be solved 
using a GENI certification authority or via some other means of registration.  While we do not 
think it necessary to fully specify this here, we comment that this type of certification can be 
encompassed with an adequately rich logic, i.e., so that the certification credentials are 
expressed in the same logical language as the other credentials in the system.  

Another extension of the above example that we anticipate being used in GENI is including 
integrity measurement (e.g., [30]) of the node platform in the proof process, i.e., so that a valid 
proof of nodeKey says connect(…) can be constructed only if node is executing the 
approved GENI operating system, for example.  We have elided this from the example above, 
however, for simplicity. 

Several subtleties in authorization are already evident in the above example, even at its high 
level of informality.  For example, the compromise of the private key corresponding to 
geniKey might enable a sliver to use node to connect to non-GENI addresses, even though this 
key was delegated only the right to connect to GENI addresses.  This could occur, in particular, 
if geniKey is used to define what addresses are addresses of GENI components (i.e., by digitally 
signing those addresses).  In this case, the compromise of the corresponding private key would 
enable the adversary to redefine GENI addresses, to potentially include all addresses.  This 
threat suggests, for example, that GENI might want to have different keys for delegating 
authority and defining the addresses owned by GENI. 

4.5   Discussion 
We now address potential concerns regarding the proposed design. 
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Is an advanced authorization service really needed for GENI? Authorization is potentially 
deeply embedded in every GENI interface.  If the authorization framework is left unspecified, 
every potential application might develop its own ad-hoc mechanism, violating basic software 
engineering principles and potentially resulting in rigid interfaces with limited functionality 
that will be very difficult to change later on.  The risks of rigidity and ossification could be 
avoided by developing and eventually agreeing on the API for an authorization service. 

Is the proposed authorization scheme more complicated than it should be? We believe that the 
proposed authorization service is relatively straightforward to implement and easy to use for 
various application scenarios.  Note that one of our key design decisions is to separate the proof 
verifier from the proof generator.  Only the proof verifier needs to be part of the resource 
monitor, thereby making the trusted computing base small and easy to implement.  The proof 
generator is also simple for typical usage settings, with the proof generation mechanism just 
making the authorization chain more explicit.  In a certain sense, one could view our proposed 
scheme as a methodology with ``checkable preconditions'' regarding who is authorized to 
perform which operations.  By making the authorizing certificates explicit, the principle of least 
privilege could be enforced. 

We also believe that the generality of our proposed mechanism is essential given that the trust 
relationships between GENI entities is likely to evolve over time.  We need an authorization 
framework for GENI that can be used to support both very simple policies (a la PlanetLab) and 
vastly more complex ones that could arise later.  Similarly, it need not immediately be used to 
control access to all resources on day one, but the potential is there to refine the security policies 
over time. 

5   Protecting Private Keys 
An access-control architecture is only as secure as the private keys that contribute statements to 
it.  Other private keys might play a similarly important role for GENI, e.g., as the means to 
decrypt sensitive data that is collected and stored on untrusted (from the user’s perspective) 
GENI nodes. 

For this reason, we believe it important to provide facilities that help a GENI user or 
administrator protect her long-term private key (or any other private key for which the use 
should be contingent on consent of a user) from misuse if it is disclosed to an adversary.  There 
is a spectrum of protections that might be considered as described below, in order from least 
secure to most secure: 

• Password encryption of the private key has the obvious advantage of being familiar to 
the majority of would-be GENI users.  However, it places an undue burden on users to 
choose passwords that will resist an offline dictionary attack.  For example, if the private 
key is stored in encrypted form on the desktop machine of the user, then it is vulnerable 
to an attacker who gains access to the key file⎯e.g., from a machine backup or due to 
misconfigured access controls on the host⎯and then breaks the password via an offline 
dictionary attack.  In addition, a key that succumbs to such an attack can be used by the 
adversary indefinitely, at least until the components that trust the corresponding public 
key (e.g., to verify signatures or create encryptions) cease doing so. 
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• A password-enabled private key can be made more secure by sharing control over the 
use of the private key with a GENI component; we will call this component a capture-
protection server (CPS) and a private key that it protects a capture-protected key (CPK).  The 
CPS limits the use of a CPK to only the owner of that key⎯i.e., the user who can supply 
the password or PIN for that CPK⎯and optionally provides the means by which the key 
can be disabled (temporarily or permanently) even for the legitimate user or someone 
who can impersonate that user.  While disabled, the CPK cannot be used to perform 
cryptographic operations.   Proposals to implement such a CPS go back at least to 
Yaksha [16], and build from cryptographic techniques to share control over the use of a 
cryptographic key between two parties (c.f., [13][12][26][24]).  Modern proposals (e.g., 
[24]) highlight simple management properties (e.g., the CPS does not require 
initialization per user) and better minimize trust in the CPS.  In particular, the CPS need 
not be in the trusted computing base for secrecy of the CPK: as long as the CPK itself 
remains undisclosed, the compromise of the CPS does not enable misuse of the key.   

This approach retains the familiar interface of a password-protected private key, but 
without relying on the user to select a password that could withstand an offline 
dictionary attack (e.g., a 4-digit PIN would suffice, just as for an ATM).  Moreover, this 
approach better protects the key file in the case of its inadvertent disclosure, in the sense 
that the key file is useless to the attacker unless he can impersonate the user to the CPS. 
That is, once obtaining the key file, the attacker would be forced to conduct his 
dictionary attack online (where it can be detected and stopped by the CPS) versus offline 
as with a simple password-encrypted key file.  This solution remains susceptible, 
however, to an attack that both captures the key file and the user’s password/PIN⎯at 
least until the CPS is notified and disables the key. 

There need not be only one CPS for all of GENI.  GENI Central can provide a default 
CPS, though it should be possible to change the CPS used for a private key, e.g., to a CPS 
newly set up by an institution to protect its users’ keys.  This is in keeping with the tenet 
that ultimately the only authority GENI Central has is that which institutions place in it.  
Modern proposals support such functionality, as well [25]. 

• Storing the private key solely on a hardware token (e.g., smartcard) can make it 
significantly less likely that an adversary will gain access to a private key.  This solution 
is appropriate for keys whose compromise could have far-reaching consequences (e.g., 
the keys of GENI administrators).  Methods of disabling (as in the CPS description 
above) a key protected via a hardware token are also possible.  Of course, there are a 
variety of hardware tokens to choose from, including some that are tamper-resistant.   

While ideally the third option would be welcomed by all GENI users, we expect that this is 
unlikely.  In particular, most GENI users will use the system only sporadically and so might be 
unwilling to carry a hardware token regularly.   This, in turn, might increase the frequency of 
occasions when the researcher needs the token but either forgot to carry it or misplaced it.   
Hence, for the sake of usability, we do not anticipate requiring all users to utilize hardware 
tokens.  Rather, we suggest supporting hardware tokens for those willing to use them (and 
requiring them for some classes of users, such as GENI administrators) and supporting one or 
more CPS, run by GENI Central or by institutions, for other users.   Moreover, the authorization 
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infrastructure outlined in Section 4   can tune authorizations depending on the manner in which 
the key to which authority is delegated is protected. 

6   Audit Trails and Intrusion Detection  
As we discussed earlier, auditing is an essential part of our proposed security architecture for 
GENI.  Auditing complements authorization (e.g., if authorization is explicit, you can more 
tightly verify the audit trail).   

Fortunately, auditing in this environment is simplified by the lack of sharing between virtual 
machines running on any node in GENI. As a result, without a compromise of the virtual 
machine and its containment system, users can only read and modify files within their own 
virtual file systems. This simplifies the need to track what happens within a virtual 
machine⎯as long as the process of logging into the virtual machine checks the authorizations 
(and perhaps logs them), the question of what happens solely within the virtual machine is not 
a concern outside the node. 

This approach naturally implies that the more important aspect of auditing is what is externally 
visible from the node. Any traffic that is sent to or received by the node is a possible source of 
problems, regardless of who generates the traffic. The network is also one point of shared 
visibility in GENI. It is unlikely that every site participating in GENI will be able to allocate 
enough IP addresses such that every virtual machine has its own IP address. As a result, the IP 
address space and the port space will have to be shared on GENI, leading to the main reason for 
network-related auditing: determining what project is responsible for actions that raise alarms. 

6.1   Intrusion Detection 
“Alarms” can arise from various sources.  In PlanetLab today, these “alarms” are most often 
complaints from network operators on the Internet, who object to traffic being received from 
PlanetLab machines (perhaps due to the alarms from their own intrusion detection systems).  
Relying on alarms from network operators elsewhere should not be the preferred method of 
intrusion detection in GENI, however.  Some activities might not be detected or understood 
quickly, and so it is incumbent upon the designers of GENI to build the facility in such a way 
that GENI monitors itself for trouble-causing behavior. 

Ideally, it would be possible to specify for GENI what kinds of network traffic or other activities 
should be detected as dangerous.  Specifying and detecting such undesirable behaviors is the 
domain of signature-based intrusion detection (or sometimes misuse detection).  Though widely 
used in practice today, this approach provides neither completeness, nor accuracy.  As to the 
latter, PlanetLab experiments are notorious for raising false alarms with signature-based 
network intrusion detectors, due to the widely varying behaviors that PlanetLab experiments 
exhibit.  We expect that the even wider variety of networking research enabled by GENI will 
only exacerbate this problem. 

For the same reason, learning-based anomaly detection systems⎯in which “normal” behavior is 
modeled using machine learning algorithms, and these models are then used to detect 
departures from “normal” behavior⎯are also unlikely to be broadly applicable in GENI.  
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Individual experiments will likely be too varied to enable the construction of a model of 
normalcy that is applicable to all of them (while still being useful for limiting unintended 
behaviors).  Moreover, individual experiments may be too transient to establish a reliable 
baseline of “normal” behavior specific to that experiment, and even if such a baseline were 
established, it would likely include behavior that was not intended by the experimenters, owing 
to the immaturity of the experiment.  As such, we anticipate that neither signature-based 
network intrusion detection nor learning-based network anomaly detection will be used 
extensively for monitoring network traffic in GENI. 

In place of these methods, we anticipate requiring each PI to declare aspects of her experiment’s 
network behavior in advance, so that this behavior can be examined and approved as 
reasonable, and so that the experiment can be monitored for compliance with that declaration.  
Intrusion detection based on specifications of intended behavior (versus specifications of bad 
behavior) is the domain of specification-based intrusion detection, e.g., [20][32].  Though not widely 
used in practice, we believe this approach is more suitable for GENI due to its customization of 
the specification to each individual experiment; this should provide for fewer, more accurate 
alarms.  In addition, while not every alarm indicates an intrusion, it indicates a behavior that 
the experimenters apparently did not anticipate; as such, they learn something from the alarm, 
as well.  Finally, specification-based intrusion detection complements the authorization 
framework discussed in Section 4  , in that a specification can both monitor the enforcement of 
access-control policy and limit behaviors that must be permitted but that should not be 
overused. 

In the initial version of GENI, we anticipate that the specifications requested from 
experimenters will be coarse and focused on enabling GENI to contain the behavior of runaway 
experiments, e.g.: maximum bandwidth consumption; address ranges and ports to which 
connections might be opened from the experiment’s slice; whether communication to and from 
the legacy Internet is required by the experiment; and the amount of storage that its output will 
consume.  (Of course, GENI will then need to include monitors to detect violations of these 
specifications.)  We envision that experience with GENI will drive support for richer and more 
fine-grained specifications in subsequent versions, if necessary. 

While we believe that specification-based intrusion detection is well-suited for use in GENI, 
specifying behaviors of one’s experiment is not an activity to which most researchers are 
accustomed, e.g., in the context of experiments on PlanetLab.  There are several aspects of this 
mechanism that will impact its acceptance among the research community, including the ease 
with which the requested specifications can be divined from experiments and expressed, and 
the consequences of alarms.  Alarms will presumably need to have consequences to the 
experiment or experimenter, but at the same time, experimenters will need to be dissuaded 
from providing specifications so weak as to be meaningless.  As such, we would argue that 
these specifications need to be an input to the process by which experiments are approved to 
run on GENI. 

Finally, while we expect network behavior to be monitored primarily via specification-based 
intrusion detectors, other types of behaviors may be more suitable for monitoring via more 
traditional approaches.  For example, unexpected modification of files can be detected using the 
well-known Tripwire tool or a variety of existing rootkit detectors.   More generally, we 
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recommend that audit trails be generated from a variety of vantage points and, when those 
vantage points are accessed via complex authorization relationships (e.g., chains of delegation, 
shared authority), that the proofs of compliance with access-control policy be recorded so that 
responsible parties can be discerned when problems are detected. 

6.2   An Example Audit Trail Generator: PlanetFlow 
Costs and requirements of an auditing system for GENI are difficult to predict, but some insight 
can be gleaned from the auditing system used in PlanetLab. This system, known as PlanetFlow, 
logs the packet headers of all packets sent and received by each node in the system. Packets are 
collected into flows, using the standard 5-tuple of <source IP, source port, destination IP, 
destination port, protocol>. These tuples are augmented with start and end times, total number 
of packets, total number of bytes, and the slice responsible for the traffic. In the case of UDP 
traffic, which lacks any easy determination of sessions, all UDP traffic from a single slice to the 
same destination port and address are considered part of the same session. It should be noted 
that this level of auditing does not keep track of the precise timing of each packet, other than the 
first and last packets within a session. In practice, this level of detail has not been needed in 
handling any complaint on PlanetLab.  We should note that the GENI facility architecture 
group is studying ways to capture more detailed data, but for a different purpose⎯to serve the 
needs of those researchers studying how GENI is being used.  Typically, this will require more 
intensive traffic monitoring, but for briefer periods. We refer the reader to the GENI 
Instrumentation and Measurement Systems Specification Document for more detail. 

In terms of resource consumption, PlanetFlow’s logging generates on the order of 2 Kbps (after 
compression) for every 1 Mbps of PlanetLab traffic.  We believe this amount of overhead is 
acceptable, particularly since only traffic from GENI to the outside Internet needs to be tracked, 
and since complaints usually arrive promptly, there is no need to permanently store the logs.  
The processing overhead is similar: on average, PlanetFlow consumes 2.5% of each node’s CPU 
on PlanetLab.  We note this code is not heavily optimized. The main collector uses netlink 
sockets to capture packet information, which is then aggregated into flows by a user-level C 
program before being inserted into a MySQL database. Performance of this system has not been 
an issue for PlanetLab, and even if it were to scale linearly with bandwidth, it would not be a 
first-order barrier for GENI. There are some known sources of improvement possible: 

• Have a kernel module aggregate packets into flows, which would reduce most of the data 
transfer and context switches to the user-space program. Especially for large data flows over 
high-bandwidth connections, this step would greatly eliminate the data volume between the 
components. 

• Replace MySQL with a custom database specialized for the task at hand. Though the 
insertion process in MySQL has been known to be the major cycle consumer within 
PlanetFlow, it has not been worth replacing at this point because the overall resource profile 
of PlanetFlow has been low enough to be ignored. However, a more specialized database 
could reduce much of the overhead 

• Switch from an eager architecture to a lazy one. Right now, all data is processed as soon as it 
is made available, even though the vast majority of it will never be queried. If a lazy 
approach were used instead, this data could be logged to disk immediately after the 
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aggregation step (or even without aggregation, if disk space is not an issue), with no other 
indexing or processing. Queries would take longer since the data would then have to be 
processed, but given that most data is never examined, the tradeoff can reduce PlanetFlow’s 
profile tremendously. 

Of course, the auditing system for GENI may require additional data beyond the current tuples. 
For example, it may be desired to have more than just a simple tuple for each session, with the 
options ranging from timestamping every packet sent/received to keeping more information 
from the IP/TCP headers, or even logging part/all of the packet. These extra options require 
more processing and storage, but can also provide a more complete view of activity from the 
node to other nodes. Conversely, it may also be desirable to filter information, such as all of the 
traffic between GENI nodes, or some subset of the traffic that matches other specified rules. 
Once these choices have been made, the processing and storage requirements can be calculated, 
and an appropriate prototype can be tested. While we expect that most of these choices should 
not cause too much extra CPU consumption, even at higher speed, any choice that requires 
higher storage may find itself competing for disk bandwidth or seeks with other applications. In 
these cases, the standard node configuration may opt to have a dedicated disk per cluster for 
storing the audit log. 

7   Open Issues 
Several open technical issues discussed in the previous sections must be addressed prior to an 
initial deployment of GENI.  Moreover, looking at subsequent refinements of GENI beyond the 
initial deployment, we see opportunities to address other issues that we have not attempted to 
address yet (and that we do not expect to be addressed in its initial version).  As this document 
is revised, such issues will be added to this section.  Below is a partial list of open issues: 

• In some instantiation of GENI (though probably not at initial deployment), it might be 
advisable to move the control plane of GENI away from IP infrastructure and toward 
one that offers better resilience to denial-of-service attacks.  As discussed in Section 
Error! Reference source not found., at present we accept the possibility of denial-of-
service attacks against the GENI control plane and, in response, GENI will be designed 
to retreat to a safe state when its safe operation cannot be assured.  Moving the GENI 
control plane to a more robust protocol suite should better minimize the circumstances 
in which such a retreat will occur, thus increasing the effective availability of GENI.  
That said, we avoid making a recommendation for a DoS-resilient control plane at this 
point in time, for multiple reasons.  First, the design of DoS defenses is among the most 
actively pursued research topics in the network security community today, and it is 
characterized by a plethora of techniques and manners of defeating DoS.   As such, we 
hope that one of the successes of the initial deployment of GENI is the testing and 
validation of various candidates for a more robust GENI control plane.  (It is notable that 
such validation has been lacking to date, owing in large part to the lack of a facility like 
GENI.)  Second, this control plane may itself utilize a protocol suite that is distinctly 
different from IP, and so the DoS defenses must work in concert with this protocol suite.   
This, too, is a topic to be worked out via competition on the GENI facility. 
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• The extent to which operational data in the GENI facility should be public information is 
yet to be determined.  In the context of this document, one example of such operational 
data is access control policy and the authority that various parties possess.  Retaining 
privacy of this information in the context of decentralized access-control systems such as 
that in Section 4   has been a topic of some study (e.g., [37][34][35]), though we believe 
that further study is needed to ascertain the circumstances in which such privacy 
policies would impose on the efficiency or even the possibility of completing access 
proofs in a system like GENI. 

• More generally, the numerous operational practices and procedures needed to maintain 
the security of a facility like GENI (and to protect the Internet from GENI) also remain to 
be defined.  These should obviously include industry best practices, e.g., keeping GENI 
nodes up-to-date with the latest patches; periodic “fire drills” to maintain a state of 
readiness for the operational staff to respond to large-scale events; and procedures for 
handling alarms and for propagating those alarms to others.  Additional procedures 
need to be put in place, however, that are unique to GENI, not the least of which is some 
procedure for evaluating experiments (and accompanying requests for new permissions) 
as to whether they are acceptably safe.  This is particularly true for experiments that 
involve malware, as security researchers may well want to conduct such experiments on 
GENI.  The protection mechanisms described in this document, together with adequate 
intra-node isolation (e.g., via secure virtual machine monitors) not described here, could 
offer a basis for constraining such experiments to render them acceptably safe.  But the 
means for making this decision and configuring the slice accordingly remains to be 
specified.  

8   Conclusion 
This document has described the requirements for security of the initial deployment of the 
GENI facility, and surveys the technologies that we believe should be developed to address 
those requirements that are specific to the GENI facility.   These technologies include a 
pervasive access-control infrastructure for regulating access to GENI and experimental 
resources alike, and for enforcing an approximation of least-privilege access rights (Section 4  ); 
mechanisms for protecting the private keys that underlie this access-control infrastructure 
(Section 5  ); and the use of (primarily, specification-based) intrusion detection to monitor for 
experiments that perform outside the bounds that their experimenters expect and that have 
been approved (Section 6  ).    Each of these technologies, if adopted for GENI, will need to be 
constructed for the GENI facility; we are unaware of commercial implementations of these 
components that would be adequate for adoption in GENI in their present forms.  We believe 
they offer numerous benefits toward addressing the unique security requirements of the GENI 
facility.  Combined with operational best practices, we believe that these technologies can 
render the GENI system to be both safe and usable by its target community of experimental 
network and distributed systems researchers, illustrating the benefits of architecting security 
from the beginning into a globally distributed system of networks and computers. 
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