
 1

GENI Facility Security
GDD-06-23

GENI: Global Environment
for Network Innovations
Distributed Services Working Group

September 15, 2006

Status: Draft work in progress (Version 0.5)

This draft is a rapidly evolving work in progress, being made public in order to solicit feedback;
comments are welcome and should be directed to the authors: tom@cs.washington.edu and
reiter@cs.cmu.edu . Due to the active editing process, some portions of the document may be
logically inconsistent with related documents being produced by other GENI working groups.

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

Authors:

Thomas Anderson, University of Washington

Michael K. Reiter, Carnegie Mellon University

We would like to thank the GENI Distributed Services Working Group members, Guru
Parulkar, Wade Trappe, and Alan Karp for helpful comments that contributed to this
document.

2

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

Table of Contents

1 Introduction... 4

2 Threat Model ... 6

3 Security Requirements ... 9

4 Access Control... 11

4.1 Background ... 11
4.2 Access-control systems and logics ... 12
4.3 Authorization Architecture... 13
4.4 An Example... 15
4.5 Discussion.. 16

5 Protecting Private Keys.. 17

6 Audit Trails and Intrusion Detection... 19

6.1 Intrusion Detection... 19
6.2 An Example Audit Trail Generator: PlanetFlow ... 21

7 Open Issues.. 22

8 Conclusion ... 23

References ... 24

3

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

1 Introduction
The GENI facility promises to enable research of a scale that has previously not been possible.
Experiments will be run with a worldwide geographic span, with access to compute, storage
and networking resources that are unmatched in any experimental infrastructure available
today. This is the source of its promise as a tool for enabling fundamentally new types of
research in large-scale networks and distributed systems.

At the same time, however, the resources it embodies would be a formidable attack platform in
the wrong hands. As a fully programmable substrate, a GENI slice can be configured to
perform a wide range of undesirable actions against both Internet targets and other GENI
resources. Even worse to contemplate is an attacker commandeering GENI components outside
the confines of a slice, i.e., with greater control over GENI components than a slice should be
granted. It is not difficult to envision numerous possible malfeasant uses of GENI; we need
look no further than today’s so called “bot-nets” and the myriad applications they support. Bot-
nets today are used to propagate malware, launch denial-of-service attacks, forward spam, and
traffic illegal content, for example. Without proper precautions, GENI will offer to ill-
intentioned users a programmable infrastructure not unlike bot-nets today⎯only much better
provisioned and easier to use.

PlanetLab, the testbed that has most directly influenced GENI, has already weathered such
misuses, and so perhaps we should conclude that the methods used to deal with such misuses
in PlanetLab are suitable for GENI. However, we believe that four factors require that GENI
incorporate more advanced defenses.

• Because GENI will embody resources that far exceed those available in PlanetLab, the
potential that GENI poses for a devastating attack against the Internet is far greater than that
posed by PlanetLab. Put simply, whereas PlanetLab is a pistol, GENI will be a canon. As
such, PlanetLab’s largely manual and reactive procedures for addressing misuse might be
insufficient, due to the damage that GENI could inflict at the hands of an attacker before the
attack is confined.

• GENI will contain a highly diverse set of hardware resources, providing programmability
across every layer of the network stack from outdoor sensor and wireless nodes to
reconfigurable router and optic hardware. What works in one context may not work as well
in another. Thus, we need to take a fresh look at vulnerabilities and proposed solutions.

• If GENI realizes its full promise, then its sheer scale of usage could result in a stream of
incidents and complaints that would outpace the human-intensive procedures used in
PlanetLab to manage them. This is a problem all-too-familiar to operators of large networks
today, and could be magnified in GENI owing to the advanced types of research conducted
on the facility. We thus believe that it is prudent to integrate technological methods to stem
this tide now, rather than to attempt to choke it off once the flood has begun.

• As an infrastructure being constructed at the behest of the National Science Foundation and
at considerable expense to the public, GENI will (and should) come under greater scrutiny
from many quadrants than PlanetLab ever has. The public relations consequences resulting
from constructing, in the worst case, the world’s largest and most capable attack

4

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

infrastructure could be felt by the NSF and the computer science and engineering
communities for years to come.

Despite the above challenges, we believe that technical and operational solutions exist that can
lead to an effective security architecture for GENI. Our goal is not to eliminate the possibility of
a successful attack – no computer system connected to a global network has ever reached that
bar. Rather, our goal is to use technical and operational means to prevent, detect, and manage
attacks, so as to render the GENI system to be both safe and usable by its target community of
experimental network and distributed systems researchers. A further goal is to illustrate
“security done right”: to show how security should be architected into globally distributed
systems of networks and computers.

A guiding principle is that we believe that GENI should be designed to operate in a “do no
harm” posture. This level of accountability is far beyond the capability of the Internet, and it
implies several things. First, an experiment should be given only the specific permissions that
are needed for it to run, and are merited by its prior validation steps. There is no need to allow
every student running an experiment on GENI the ability to flood the Internet with unwanted
packets; protecting the Internet and the public wireless spectrum from runaway experiments
should be a requirement. Rather, such privileges should be granted and enforced in a measured
fashion as an experiment is incrementally validated and shown to do no harm. Obviously, we
mean “harm” in only the broadest sense. As any researcher or even any company deploying a
new Internet service is acutely aware, it is sometimes impossible to completely prevent all
possible complaints, no matter how careful the validation. The Internet today is a hodgepodge
of unpublished and often unpredictable filter rules, so some issues with respect to the
inadvertent consequences of experiments will come up from time to time, requiring the ability
to trace the cause of the complaint back to the responsible experiment (and experimenter), so
that the problem can be addressed.

Again in contrast with the Internet, the facility as a whole should continue to function even
while remedying most types of accidental or intentional misuse. For example, we envision a
“kill switch” that will enable an operator to quickly and completely suspend a misbehaving
experiment or component, while allowing the rest of the system to proceed. However, if GENI
enters a period where activities of some components or slices cannot be adequately monitored
or controlled to ensure their safety, then GENI should restrict those activities by other means to
a point where safety can be assured. For example, in the face of a denial-of-service attack on
control channels to and from GENI Management Central⎯say, rendering certain components
invisible to the control and monitoring infrastructure⎯GENI should retreat to a state that
prevents those components from communicating with the Internet and, potentially, other
critical GENI resources. Taken to the limit, this implies that GENI should shut itself down in
certain circumstances where “off” is the only state where safety can be assured. Obviously the
circumstances requiring this should be few, lest GENI's scale, widespread deployment, and
visibility make GENI an inviting target for “denial of GENI” attacks.

Another consequence of the above is that GENI itself should resist low-level compromise to the
extent that the state-of-the-practice permits. We anticipate that many GENI nodes will be
connected to the legacy internet⎯e.g., the initial GENI management plane is expected to run
over the legacy internet⎯and as such they will need to be defended from compromise as any
internet-connected host must be. It is not the goal of this document to cover such defenses in

5

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

detail (instead, see [4] for a more complete discussion), but the regimen is familiar: use off-the-
shelf operating systems and system software and apply security updates promptly and
completely across the entire system; provide only the minimum number of open ports, and
those requiring authenticated access (of course, specific sandboxed experiments may open
additional ports); actively monitor the system to detect and report intrusions (e.g., attempts to
modify the boot file system); etc. While we touch on these issues, our primary focus here is the
uncommon challenges that the GENI facility introduces and the mechanisms that we
recommend be developed to address those challenges.

Following standard industry practice, we believe that the GENI operations and governance
teams should practice advance “test runs” of their procedures to handle serious security
breaches. No technical solution will be 100% foolproof in preventing attacks, especially given
the amount of pre-existing (and vulnerable) software that GENI needs to use in order to be cost-
effective. We of course hope that GENI will help foster research that will lead to a more secure
future Internet, but until that time, the cost of an attack is related to how quickly it can be
addressed⎯something that can be optimized with advance planning and practice.

2 Threat Model
There are three broad classes of attacks that must be addressed by the GENI security
architecture and by its operational procedures. First, attacks may be launched by outsiders on
the GENI infrastructure, either as a denial-of-service attack, or simply to gain control of GENI
resources. Second, and related, we need to prevent and limit the impact of accidentally or
maliciously misbehaving GENI experiments on the outside world; similarly, we must limit the
impact of attackers posing as legitimate GENI experimenters. Finally, we need a level of
isolation between experiments, so that GENI cannot be surreptitiously used by one
experimenter to disrupt another.

We discuss these three types of attacks in this section by providing a list of specific threats that
the GENI security architecture must address. The threats are listed according to our estimate as
to the relative frequency of that particular type of problem; for example, accidentally
misbehaving experiments are likely to be a somewhat frequent occurrence on a platform
designed to support experimental investigation, while determined attacks against the GENI
software are relatively less likely, but more serious. Fortunately, many of the same technical
solutions can be applied to both root causes. Note that the threats we list below are not
intended to be completely mutually exclusive: systematic attacks against GENI may combine
multiple elements, and thus the facility needs to be able to deal with all of these types of
problems simultaneously. We note as well that despite the Internet being explicitly designed to
support experimentation and evolution in its protocols, the Internet’s architecture is poorly
suited to deal with any of these types of problems.

• Runaway experiments that cause unwanted Internet or RF traffic. Experience with
PlanetLab suggests that unintentional misbehaving experimental code will be a common
occurrence on GENI. We believe a process is needed to assign and enforce specific, minimal
privileges appropriate to each experiment, e.g., so that a novice user’s mistake does not have
global consequences. Another requirement is a rapid “kill switch” to enable operations staff
to quickly suspend a misbehaving experiment. A companion document discusses external

6

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

RF monitoring to detect and stop experiments that inadvertently pollute the RF spectrum
[33].

• Runaway experiments that disrupt the execution environment for other experiments within
GENI, e.g., by exhausting disk space or file descriptors. These issues can be handled by
providing stronger isolation between experiments and by monitoring shared resources for
unexpected usage patterns.

• Experiments that escape their isolation boundaries and accidentally (or if an experiment is
taken over by an attacker, maliciously disrupt) the networks of hosting organizations (e.g.,
see [29]). The GENI facility must ensure that hosting organizations are not put at
significant risk for contributing resources to GENI, and the GENI effort must take measures
to convince hosting organizations that problems are rare and dealt with promptly.

• Legitimate experiments that trigger true or false alarms in other parts of the Internet or
wireless spectrum. This requires the ability to trace the source of packets or signals back to
the responsible party, so that the problem can be fixed and prevented from recurring.

• Misuse of an experimental service by an end user. For example, one example experimental
service conceived for GENI is to run a virtual ISP supporting a novel internal architecture.
Such an experimental ISP might be used by a malicious user to launder illegal packets. We
expect this set of concerns to be addressed by establishing GENI-wide standards for
experiments offering packet delivery services (or their equivalent) to end users. For
example, GENI might require that an experimental ISP provide basic monitoring or tracing
tools for legitimate law enforcement enquiries, and indeed we believe GENI should provide
a baseline toolkit for use by experimenters in meeting this requirement. A companion
document describes experimenter support in more detail [2].

• Theft of an experimenter’s credentials to use GENI. Unfortunately, it is well-known within
the security community that users are often careless with the keys used for authentication, if
only because key compromises are silent until it is too late. Carefully calibrating privileges
to match the experimenter’s sophistication is one avenue (e.g., users likely to be careless
with their keys would be given more limited privileges); another is to use technical means
described below (Section 5) to make it more difficult for attackers to gain access to user
keys.

• Corruption of the host operating system software running on the experimenter’s desktop
machine. Since end host corruptions are endemic on the Internet today, we need to make it
easy for the GENI operations staff to revoke and replace end user keys and privileges after
such break-ins. Even so, this is perhaps the most likely avenue for malicious attacks against
GENI.

• Corruption of the systems software running on one or more components. An attacker might
gain temporary control over a node by first gaining access to a GENI account (e.g., by
corrupting an experimenter’s host computer), and then launching an “experiment” that
exploits a vulnerability in the node operating system software to gain control over the node.
One important step is to actively manage all GENI hardware, e.g., to proactively keep all
operating system software up to date with known security patches. This means that any
changes we make to host software be minimal, so that patches can be applied quickly.
Another important step is that components should be configured with the minimal number

7

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

of open ports. Yet another important step is to discover problems quickly, e.g., by
providing for continuous monitoring of anomalous node behavior by GENI operations.
(This is of course made more complicated by the fact that the experimental architectures and
services running on top of GENI are by their very nature, anomalous!) Yet another
important step is to be able to fix the problem quickly once it is discovered. The emergence
of trusted computing hardware [28] and the integrity measurement architectures it supports
(e.g., [30]) should provide a mechanism for GENI operations staff to reset every node in
GENI to a known, good state.

• Denial of service attacks against the GENI management infrastructure. As we mentioned
above, GENI should fail “off” to avoid providing an avenue for an attacker to take control,
and then use denial of service to prevent the operations staff from taking countermeasures.
Technically, this can be accomplished by requiring privileges to be frequently refreshed.
Initially, we envision GENI management commands will be carried over the Internet for
convenience (subjecting them to all the problems of Internet security and reliability); as
GENI construction proceeds, however, it may be possible to move the GENI control plane to
running over GENI itself, reducing the likelihood of such attacks (see Section 7).

• Direct attacks against vulnerabilities in the GENI management software. GENI is a complex
distributed system, and therefore special care must be taken to avoid vulnerabilities in its
implementation. One step is the explicit modeling of trust relationships between GENI
components as described below. Another important step is to observe that the software
development processes adopted for GENI software are critical to the security of the GENI
facility. It is well-known that poor software quality is the source of numerous types of
serious security vulnerabilities in practice (e.g., buffer overflows and format-string
vulnerabilities). We believe it is imperative that GENI software development processes be
adopted so as to eliminate, to the extent practicable, these types of vulnerabilities. While
specifying software development processes is outside the scope of this document, an
example might be that all GENI-defined interfaces and protocols be adopted only after an
open, public review of potential security vulnerabilities, that changes to interfaces be made
only through a similar formal process, and that conformance tests be generated (ideally,
automatically) from a formal specification of the interface. Where practical all GENI
software should be implemented to be type-safe, e.g., via tools such as CCured or languages
such as Java. Where type-safety is impractical, e.g., in modifications to an existing operating
system implemented in C, standard practices such as software verification tools and test
suites can be used to reduce the likelihood of vulnerabilities. We also believe that serious
consideration should be given to requiring that source code produced for GENI be made
public, so as to allow for independent security analysis. However, we do not believe it is a
cost-efficient use of GENI resources to require every aspect of the management software to
be robust to arbitrary malicious attacks by privileged insiders (so-called Byzantine attacks).
Rather, we intend to rely on detection, confinement and resetting to a known good state to
correct intrusions when they occur.

Two additional issues that we do not yet consider in depth are the privacy of experimental
data and the privacy of management policy. Preventing unauthorized access to information
stored in GENI can be accomplished using the flexible access control architecture described
later in the document. However, preventing all forms of information leakage while an

8

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

experiment is running is an open research challenge, and one for which we hope GENI will
help facilitate the development of technical solution.

3 Security Requirements
This list of vulnerabilities suggests several requirements for GENI's security architecture:

• Explicit Trust: Privileges in a distributed system should be managed explicitly and formally.
Enforcing security in GENI is something of moving target, as the facility will be used during
its construction, and progress from a single management entity to a more federated model.
Thus we need a security model that can evolve along with GENI. The access control
approach we describe below (Section 4) is intended to provide the required flexibility,
rather than hard-coding trust relationships. One concrete benefit of this approach is late
binding⎯that we can start with a PlanetLab-style aggregation and delegation of rights, and
add federation later on, without needing to know exactly how trust will be managed in the
federated system. Without explicit trust, it is likely that trust will be unintentionally
misplaced, leading to system-wide vulnerabilities that can be exploited by the wily attacker.

• Least Privilege: The principle of least privilege is a tenet of computer security that requires
each component of a system be given exactly the authority it needs to perform its tasks and
no more. Failures to implement this principle are ubiquitous, and we face the consequences
frequently. For example, most web servers do not need to be able to open connections to
arbitrary addresses in order to perform their tasks. Yet this is permitted, and exactly this
ability has been used numerous times in the epidemic spread of worms. While achieving
least privilege in an absolute sense is arguably not feasible, it is our belief that the GENI
facility should approach least privilege as far as is practicable. Least privilege can secure the
GENI facility from malicious software, accidental violations, or just simply resource
exhaustions⎯in general, it can mitigate the risks caused by runaway experiments. It is also
equally useful in securing the experimenter's environment against attacks from other
experiments or faulty system software.

• Revocation: Despite our best efforts, it is inevitable that keys, slices, and systems will be
compromised in GENI. Thus a critical requirement for GENI is to be able to quickly revoke
and replace keys, suspend all permissions (e.g., slices) derived from a compromised key,
and (as in PlanetLab) reset each node to a known secure state.

• Auditability: The possibility of compromise also requires us to be able to trace why a
problem occurred so that it can be prevented from recurring. As we describe below in
Section 6.2, PlanetLab contains an initial implementation of some of the needed
functionality: it logs every packet header sent by every slice running on PlanetLab. Our
intent is to go well beyond what PlanetLab provides; we need to know which slice is
responsible for each packet, but also we need to be able to determine the entire chain of
responsibility (from central administrator to local administrator to local user) that gave the
user a specific capability that was misused.

• Scalability: With large-scale distributed systems, simple schemes such as using a small set of
authentication servers and/or replicating information required by authentication and
authorization tasks are not feasible. For instance, it is now commonly accepted in the grid

9

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

computing community that the grid security infrastructure needs to move beyond the use of
grid-wide unique IDs and a global table mechanism (GridMap) for replicating authorization
data. PlanetLab also is limited by its reliance on a global table mechanism. We propose a
specific more scalable authorization architecture below.

• Autonomy: A key requirement for GENI is the ability to federate autonomous facilities. A
GENI site should be able to authenticate and authorize requests from users in other sites,
support delegation of rights, and it should be able to do so without requiring centralized
trust. While it might be possible to extend the PlanetLab model in an ad hoc way to support
autonomy, below we advocate a more principled approach.

• Usability: The user must be explicitly modeled as part of the security architecture. Any
system that is hard to use will be evaded and ignored. The implication is that we need to
make it easy, rather than heavyweight as in PlanetLab, for users to create roles, restrict
rights, etc. We also need to make it easy for users to protect their private keys. In essence,
secure system and user behavior must happen by default.

• Performance: As with usability, the performance overhead of providing security needs to be
modest, or users will have an incentive to disable or evade the system. In practice, this
means managing security information (such as certificates delegating rights to a specific set
of users) as cache-coherent, distributed state. Caching means that lookups can be local and
fast in the common case, without compromising system semantics.

The rest of this document provides a partial list of technologies we propose to use in achieving
these requirements. We emphasize this is intended to be a partial list, focusing on those aspects
of GENI that present uncommon challenges and that we recommend be addressed via new
development. Given this restricted focus, there are several notable but intentional omissions
from this document:

• GENI nodes’ operating systems and the isolation properties they enforce. While this is
fundamental to GENI facility security and numerous other aspects of GENI function, we
expect that the initial GENI deployment will utilize the best available operating systems
at that time, as it is outside the scope of GENI to construct new secure operating systems
for the range of devices that GENI will incorporate.

• Defense of GENI nodes from compromise via attacks from the legacy internet. Those
GENI nodes that are connected to the legacy internet⎯and we expect that at least at
first, most or all will be for management purposes⎯will be at risk of compromise from
the outside. We expect this threat to be countered as it must be for any internet-
connected node (e.g., see [4]), i.e., with an appropriately configured firewall, elimination
of unnecessary services, prompt application of patches to necessary services, traditional
intrusion-detection, and so forth. In fact, protecting a dedicated GENI node from
compromise from the legacy internet might be simplified by its role: e.g., the node’s
firewall can drop connections to ports not associated with experiments from all but
recognized GENI Management Central computers. Of course, experiments in slices may
still be subject to compromise if they communicate with the legacy internet, but the
protections we describe below will confine this threat just as they would for any
wayward experiment.

10

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

A related way in which we restrict our focus for the remainder of this document is that we elide
treatment of sensor networks and other special-purpose “edge” systems that present resource
or connectivity constraints atypical of a general-purpose computing environment. Due to the
resource constraints of these systems, the security risks associated with them are primarily
inward-facing⎯i.e., that these components will be disrupted in a way so as to hinder
experiments on them or steal information from them⎯but their compromise poses relatively
little direct threat to the systems to which they connect. As with the rest of GENI, best practices
should be applied to defend them (e.g., see [33] for a discussion), but since we focus our
attention on new developments needed to meet the unique security threats posed by GENI, we
do not cover those other elements here. Nevertheless, several of the mechanisms proposed here
could play a role in those edge systems, at least for those elements that offer adequate resources
to execute them.

4 Access Control
The core of our proposed security architecture for GENI is a pervasive and unified access-
control infrastructure. In security parlance, access control refers to means to reach a yes-no
decision as to whether a requested access should be granted. The decision is reached by a
resource monitor, based on evidence as to whether the requested access conforms to security
policy. The goal of the architecture we propose is to provide a unified and yet flexible
mechanism for resource monitors to reach these decisions.

Access control is often intimately tied to authentication, and so a side-effect of the architecture
we propose is the provisioning and operation of a distributed Public Key Infrastructure (PKI)
and Certificate Authority to allow strong identities for facility users. Although PKIs are hard to
bootstrap, we note that GENI has a natural advantage that we believe can pave the way
towards more widespread use of PKIs: every site has a local administrator who can establish
and vouch for the credentials for each specific GENI user and physical device. Authentication
is required for both the network facility itself, to grant access to applications and services and
provide a basis for resource isolation, but also for applications and users. A flexible and
accessible public-key or other authentication service, along with the software and resources to
manage it, will bootstrap both GENI itself, and the development of applications on top of it.
This service must include the development of libraries to allow a variety of applications to use
the service and the development of guidelines for how and when applications should use the
service.

4.1 Background
One way of understanding our approach to access control is by analogy to the access control
framework already found in Java. Java implements a security manager that can be invoked from
any point in a Java program, with an action that has been requested and a security policy that
must be checked in order for that access to be permitted. The security manager implements a
systematic procedure for determining whether the access complies with the provided policy; if
not, it raises a security exception. Our goal in this document is to set out the requirements for
the analog of a security manager for GENI, i.e., a systematic procedure for determining whether
a particular access is consistent with a particular policy, without specifying for what accesses
such checks will be performed or what the policies should be. Just as the security manager is

11

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

equally useful in Java for both system-level access checks and checks by applications that were
not anticipated when the security manager was built, we would like the access control
framework that we describe here to be useful to both protect the GENI instrument and to enable
applications built over that instrument to protect themselves.

That said, as we will see, the analogy to the Java security manager ends there; the mechanism
we advocate here has little else in common with Java’s security manager. An authorization
service for GENI needs to address the large, distributed nature of the target platform, and the
need for designing a flexible system that can express a rich set of security policies.

In terms of existing technologies that address some of requirements described above, GENI's
predecessors in both the distributed systems community (PlanetLab) and the Grid community
(Globus) have primitive security architectures (key-based access control lists) that address
authentication more than authorization. These systems simply distribute the public keys of
users, use the keys to authenticate requests, and give execution privileges to authenticated
users; there is little to no differentiation regarding the privileges of authenticated users, nor is
there any mechanism for users to execute programs with restricted rights, to grant subsets of
their rights to other users, or to authenticate previously unknown users. Public-key
infrastructures such as X.509 [18] provide some of what is needed⎯they allow local sites to
authenticate users even if the necessary keys are not available locally⎯but they are limited by
the lack of support for local authorization policies.

4.2 Access-control systems and logics
Any system that implements access control does so through some type of program logic.
Usually this involves checking whether the requesting party is on an access control list, but it
might additionally involve checking whether that party is a member of a group, for example. In
distributed systems, access-control decisions often must be based on policies (e.g., expressing
delegations of authority, group memberships, and so forth) of different principals in the system.
It is typical for these policies to be encoded in digitally signed credentials that must be
assembled and presented to the resource monitor for evaluation. Numerous such systems and
standards have been developed in the research community (e.g., [36][10][11][14][9][19][8]).

Since the early 90s, efforts to gain assurance in decentralized access-control systems involved
modeling access-control policy and the system enforcement in a formal logic (e.g.,
[1][17][19][21]), so that claims about it could be made precise and verified. More recently,
formal logics have been explored as a means to implement the access-control decision procedure
(e.g., [1][35]), and have been used in such a capacity in a handful of research systems (e.g., [6]).
This increases assurance further by minimizing the gap between the logic (about which results
are proved) and the system implementation.

While detailing an access-control logic is outside the scope of this document, it is worthwhile to
summarize how such a logic is used. In such a system, formulas of the logic are instantiated
from digitally signed credentials. An example of such a credential might be a traditional
certificate issued by a certification authority, but more generally the credentials can utilize
richer constructs in the logic, such as groups or roles. The inference rules of the logic are then
applied to these formulas to construct a proof of a required access-control policy. The required

12

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

access-control policy can be different per resource being accessed, and its formal statement will
typically involve a nonce identifier so that the resulting proof cannot be replayed.

4.3 Authorization Architecture
We now provide a high-level view of our proposed system architecture and how the different
components work together to provide authorized access.

Principals, including users, administrators, and machines, can generate requests or make
assertions regarding privileges associated with other principals. Objects are resources, such as
CPUs, files, and network devices, which are to be guarded against unauthorized access. Each
object is associated with it a resource monitor that checks whether or not to grant access to the
object.

We decompose the act of gaining access to a resource into two distinct steps: constructing a
proof (typically, a set of certificates) that the access complies with access-control policy, and
checking that the proof is valid.

The task of constructing the proof could be accomplished by any of the following means. In the
simplest case, the proof could be obtained using the very mechanism that was used for finding
the resource. For instance, if the principal became aware of the resource through a resource
allocator (such as Emulab's assign), a resource discovery tool (such as SWORD [27]), or a
resource broker (such as SHARP [15]), the same underlying tool could be extended to generate
the necessary certificates and provide it to the principal. In the more general case, one could
use a general-purpose theorem prover that would perform distributed queries to discover a set
of credentials that would constitute the proof for authorized access (e.g., [23][5]). However, as
the certificates are stored in distributed repositories, the certificate discovery process might
require multiple remote accesses, potentially causing performance bottlenecks. A middle-
ground that is less general but potentially more efficient would be to have an application-
specific rule base for discovering the credentials and assembling the proof; the rule base would
then embody a set of application-specific heuristics for finding the desired set of certificates.

The task of checking the validity of the proof is performed by the resource monitor, a task
which places the resource monitor at the very heart of the authorization service. When
provided with a security policy, expressed as a formula of the logic, and a claimed proof
(including digitally signed credentials) that a request satisfies this security policy, the resource
monitor would verify the digital signatures on all certificates to ensure their validity and then
verify that the claimed proof using them is indeed a valid proof of the security policy.

The resource monitor thus embodies significant design decisions, not the least of which is with
respect to what logic the resource monitor verifies the proof. There appears to be a tradeoff
between the expressiveness of this logic and the ease of generating proofs of access. For
example, if we were to adopt the proposal of Appel and Felten [3] that advocates the use of
higher-order logic, we would be favoring extensibility over efficiency of proof generation. This
logic allows the expression of policies using higher-order predicates and quantifications, and so
is powerful enough to encode many different authentication frameworks (such as Taos [36],
SPKI/SDSI [14], and X.509 [18]). However, with such generality, the process of automatically

13

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

generating the appropriate proof becomes undecidable in the general case [3], and moreover, it
is difficult to prove certain security properties of the framework. A careful study of the
tradeoffs is still needed before deciding on the appropriate formal logic.

Within the above framework, we plan to employ a rich set of certificates or declarations to
implement various forms of authorizations. Following previous research efforts (e.g.,
[36][11][14]), we envisage the use of following abstractions:

• Identity certificates that bind principals to keys. These certificates are useful for
authenticating principals.

• Authorization certificates that attest to privileges associated with principals. When
combined with the identity certificates, these certificates enable authorized access.

• Delegation certificates that pass on privileges (or a subset of privileges) from one principal
to another. As part of the delegation certificate, the delegator can state whether the
delegatee can further delegate the privileges to yet another principal in the system.

• Group membership certificates that allow an authorizing agent to group together principals
and manage their privileges in a scalable and efficient manner.

• Roles that allow a principal to voluntarily restrict its privileges, thereby limiting the dangers
posed by security violations.

• Revocation of previously issued certificates, as no authorization service would be complete
without mechanisms for revoking privileges associated with misbehaving principals or
compromised keys.

While it is beyond the scope of this document to define the full set of actions or resources for
which authority should be checked in GENI, we believe the above framework is flexible enough
to be used in the following contexts:

• The service should enable fine-grained controls on resource usage of user-level experiments.
It should enable the execution of user-level programs in sandboxed contexts that enforce
least privilege.

• The authorization service should support the access checks performed during system
administrative tasks for creating, removing, or modifying information regarding sites and
nodes. It should also support the process of granting, revoking, or checking roles, and
authorize site-management tasks such as rebooting nodes or setting bandwidth limits.

• The service should also be useful for implementing user tasks pertaining to updating user
information, initiating and controlling experiments, including operations such as adding or
removing virtual machines from an experiment.

There are a number of important technical questions that remain open in the design, including:

• What form of logic should be used in the authorization service in order to be able to handle
the types of actions we plan to run on GENI? Should more restrictive logic forms be used in
order to enable efficient proof generation or simplicity?

14

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

• What tradeoffs exist between generality, flexibility, performance, and assurance? Can we
express various security policies without loss of efficiency? Do we need mechanisms for
caching the results of certificate discovery queries and authorization checks?

• A related question concerns the granularity in which access rights are to be expressed. Fine-
grained access rights allow a system to implement the principle of least privilege, but
potentially at the cost of increased overhead. We might need some form of dynamic
bundling of rights and/or indirection to enforce the principle of least privilege without
sacrificing performance.

• What secondary mechanisms are required to limit the damage caused by security
compromises? For instance, revocations could be implemented using Certificate Revocation
Lists, one-time certificates, and/or short validity intervals. Which of these mechanisms is
appropriate for different usage patterns?

4.4 An Example
To illustrate the use of the decentralized access-control framework that we propose, in this
section we sketch an example of one way in which it might be used in GENI. (We avoid use of
logical formalism to the extent possible, however.) This example is based on a similar one
found in Lampson [21]. Consider a computer that an organization, say CMU, wishes to
contribute for use by GENI experimenters, but only in a limited fashion. For example, CMU
desires that GENI experiments be permitted to execute on this computer but not to open
connections to legacy Internet hosts; rather, slivers are permitted only to connect to other GENI
hosts. The following steps might be taken to enforce this policy, while permitting experiments
to take advantage of this node. Below, when we say that public key pubkey “delegates
authority” to an entity (e.g., another public key), we mean that the corresponding private key is
used to digitally sign a message delegating authority to that entity.

1. The computer, denoted node, is initialized with a hardware private key with verification
key nodeKey, which is used to sign a statement delegating authority to a private key
controlled by CMU (with corresponding public key cmuKey).

2. The computer is installed with the GENI operating system. A resource monitor in the
operating system that intervenes in connection requests is configured to require the each
connection request be accompanied by proof that nodeKey says connect(…). Here,
says is a logical constructor typical of access-control logics (e.g., see [21]); intuitively this
statement indicates that the connection request is compliant with policy attributable to
nodeKey.

3. The cmuKey is used to delegate authority to the GENI management system, to authorize
connections from node to only GENI addresses (and not legacy Internet addresses). In this
delegation, GENI is named by its public key geniKey.

4. GENI delegates authority to a principal investigator (PI) to create a sliver on node. The
rights passed to this investigator, named by piKey, include creating a sliver that connects
from node to GENI addresses. This delegation is encoded in a digital credential signed by
geniKey.

15

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

5. The PI (via piKey) delegates this authority to a group, piKey.students, of graduate
students who are developing the experiment. In addition, piKey creates a credential for
each such student, named by his public key studentKey, giving that student the authority
of the piKey.students group.

6. Upon deploying a sliver to node, a graduate student uses studentKey to delegate to that
sliver (sliverKey) the authority to connect to GENI nodes.

7. In order to open a connection to a GENI node, the sliver must assemble a proof that
nodeKey says connect(…). How it does so depends on the logic being used, but
intuitively it will need to utilize the credentials described above, i.e., that formed in Step 1
that delegates authority from nodeKey to cmuKey; in Step 3 to delegate authority from
cmuKey to geniKey; in Step 4 to delegate authority from geniKey to piKey; in Step 5 to
delegate authority from piKey to piKey.students and to grant the authority of
piKey.students to studentKey; and in Step 6 to delegate authority from studentKey
to sliverKey. As such, when sliverKey says connect(…), it can be inferred (via this
substantial chain of reasoning) that nodeKey says connect(…).

Of course, since humans do not relate to others using keys, the above delegations might instead
be to named persons, e.g., the professor’s name instead of piKey. The relationship between
that name and the key piKey is a classic “certification authority” problem that can be solved
using a GENI certification authority or via some other means of registration. While we do not
think it necessary to fully specify this here, we comment that this type of certification can be
encompassed with an adequately rich logic, i.e., so that the certification credentials are
expressed in the same logical language as the other credentials in the system.

Another extension of the above example that we anticipate being used in GENI is including
integrity measurement (e.g., [30]) of the node platform in the proof process, i.e., so that a valid
proof of nodeKey says connect(…) can be constructed only if node is executing the
approved GENI operating system, for example. We have elided this from the example above,
however, for simplicity.

Several subtleties in authorization are already evident in the above example, even at its high
level of informality. For example, the compromise of the private key corresponding to
geniKey might enable a sliver to use node to connect to non-GENI addresses, even though this
key was delegated only the right to connect to GENI addresses. This could occur, in particular,
if geniKey is used to define what addresses are addresses of GENI components (i.e., by digitally
signing those addresses). In this case, the compromise of the corresponding private key would
enable the adversary to redefine GENI addresses, to potentially include all addresses. This
threat suggests, for example, that GENI might want to have different keys for delegating
authority and defining the addresses owned by GENI.

4.5 Discussion
We now address potential concerns regarding the proposed design.

16

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

Is an advanced authorization service really needed for GENI? Authorization is potentially
deeply embedded in every GENI interface. If the authorization framework is left unspecified,
every potential application might develop its own ad-hoc mechanism, violating basic software
engineering principles and potentially resulting in rigid interfaces with limited functionality
that will be very difficult to change later on. The risks of rigidity and ossification could be
avoided by developing and eventually agreeing on the API for an authorization service.

Is the proposed authorization scheme more complicated than it should be? We believe that the
proposed authorization service is relatively straightforward to implement and easy to use for
various application scenarios. Note that one of our key design decisions is to separate the proof
verifier from the proof generator. Only the proof verifier needs to be part of the resource
monitor, thereby making the trusted computing base small and easy to implement. The proof
generator is also simple for typical usage settings, with the proof generation mechanism just
making the authorization chain more explicit. In a certain sense, one could view our proposed
scheme as a methodology with ``checkable preconditions'' regarding who is authorized to
perform which operations. By making the authorizing certificates explicit, the principle of least
privilege could be enforced.

We also believe that the generality of our proposed mechanism is essential given that the trust
relationships between GENI entities is likely to evolve over time. We need an authorization
framework for GENI that can be used to support both very simple policies (a la PlanetLab) and
vastly more complex ones that could arise later. Similarly, it need not immediately be used to
control access to all resources on day one, but the potential is there to refine the security policies
over time.

5 Protecting Private Keys
An access-control architecture is only as secure as the private keys that contribute statements to
it. Other private keys might play a similarly important role for GENI, e.g., as the means to
decrypt sensitive data that is collected and stored on untrusted (from the user’s perspective)
GENI nodes.

For this reason, we believe it important to provide facilities that help a GENI user or
administrator protect her long-term private key (or any other private key for which the use
should be contingent on consent of a user) from misuse if it is disclosed to an adversary. There
is a spectrum of protections that might be considered as described below, in order from least
secure to most secure:

• Password encryption of the private key has the obvious advantage of being familiar to
the majority of would-be GENI users. However, it places an undue burden on users to
choose passwords that will resist an offline dictionary attack. For example, if the private
key is stored in encrypted form on the desktop machine of the user, then it is vulnerable
to an attacker who gains access to the key file⎯e.g., from a machine backup or due to
misconfigured access controls on the host⎯and then breaks the password via an offline
dictionary attack. In addition, a key that succumbs to such an attack can be used by the
adversary indefinitely, at least until the components that trust the corresponding public
key (e.g., to verify signatures or create encryptions) cease doing so.

17

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

• A password-enabled private key can be made more secure by sharing control over the
use of the private key with a GENI component; we will call this component a capture-
protection server (CPS) and a private key that it protects a capture-protected key (CPK). The
CPS limits the use of a CPK to only the owner of that key⎯i.e., the user who can supply
the password or PIN for that CPK⎯and optionally provides the means by which the key
can be disabled (temporarily or permanently) even for the legitimate user or someone
who can impersonate that user. While disabled, the CPK cannot be used to perform
cryptographic operations. Proposals to implement such a CPS go back at least to
Yaksha [16], and build from cryptographic techniques to share control over the use of a
cryptographic key between two parties (c.f., [13][12][26][24]). Modern proposals (e.g.,
[24]) highlight simple management properties (e.g., the CPS does not require
initialization per user) and better minimize trust in the CPS. In particular, the CPS need
not be in the trusted computing base for secrecy of the CPK: as long as the CPK itself
remains undisclosed, the compromise of the CPS does not enable misuse of the key.

This approach retains the familiar interface of a password-protected private key, but
without relying on the user to select a password that could withstand an offline
dictionary attack (e.g., a 4-digit PIN would suffice, just as for an ATM). Moreover, this
approach better protects the key file in the case of its inadvertent disclosure, in the sense
that the key file is useless to the attacker unless he can impersonate the user to the CPS.
That is, once obtaining the key file, the attacker would be forced to conduct his
dictionary attack online (where it can be detected and stopped by the CPS) versus offline
as with a simple password-encrypted key file. This solution remains susceptible,
however, to an attack that both captures the key file and the user’s password/PIN⎯at
least until the CPS is notified and disables the key.

There need not be only one CPS for all of GENI. GENI Central can provide a default
CPS, though it should be possible to change the CPS used for a private key, e.g., to a CPS
newly set up by an institution to protect its users’ keys. This is in keeping with the tenet
that ultimately the only authority GENI Central has is that which institutions place in it.
Modern proposals support such functionality, as well [25].

• Storing the private key solely on a hardware token (e.g., smartcard) can make it
significantly less likely that an adversary will gain access to a private key. This solution
is appropriate for keys whose compromise could have far-reaching consequences (e.g.,
the keys of GENI administrators). Methods of disabling (as in the CPS description
above) a key protected via a hardware token are also possible. Of course, there are a
variety of hardware tokens to choose from, including some that are tamper-resistant.

While ideally the third option would be welcomed by all GENI users, we expect that this is
unlikely. In particular, most GENI users will use the system only sporadically and so might be
unwilling to carry a hardware token regularly. This, in turn, might increase the frequency of
occasions when the researcher needs the token but either forgot to carry it or misplaced it.
Hence, for the sake of usability, we do not anticipate requiring all users to utilize hardware
tokens. Rather, we suggest supporting hardware tokens for those willing to use them (and
requiring them for some classes of users, such as GENI administrators) and supporting one or
more CPS, run by GENI Central or by institutions, for other users. Moreover, the authorization

18

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

infrastructure outlined in Section 4 can tune authorizations depending on the manner in which
the key to which authority is delegated is protected.

6 Audit Trails and Intrusion Detection
As we discussed earlier, auditing is an essential part of our proposed security architecture for
GENI. Auditing complements authorization (e.g., if authorization is explicit, you can more
tightly verify the audit trail).

Fortunately, auditing in this environment is simplified by the lack of sharing between virtual
machines running on any node in GENI. As a result, without a compromise of the virtual
machine and its containment system, users can only read and modify files within their own
virtual file systems. This simplifies the need to track what happens within a virtual
machine⎯as long as the process of logging into the virtual machine checks the authorizations
(and perhaps logs them), the question of what happens solely within the virtual machine is not
a concern outside the node.

This approach naturally implies that the more important aspect of auditing is what is externally
visible from the node. Any traffic that is sent to or received by the node is a possible source of
problems, regardless of who generates the traffic. The network is also one point of shared
visibility in GENI. It is unlikely that every site participating in GENI will be able to allocate
enough IP addresses such that every virtual machine has its own IP address. As a result, the IP
address space and the port space will have to be shared on GENI, leading to the main reason for
network-related auditing: determining what project is responsible for actions that raise alarms.

6.1 Intrusion Detection
“Alarms” can arise from various sources. In PlanetLab today, these “alarms” are most often
complaints from network operators on the Internet, who object to traffic being received from
PlanetLab machines (perhaps due to the alarms from their own intrusion detection systems).
Relying on alarms from network operators elsewhere should not be the preferred method of
intrusion detection in GENI, however. Some activities might not be detected or understood
quickly, and so it is incumbent upon the designers of GENI to build the facility in such a way
that GENI monitors itself for trouble-causing behavior.

Ideally, it would be possible to specify for GENI what kinds of network traffic or other activities
should be detected as dangerous. Specifying and detecting such undesirable behaviors is the
domain of signature-based intrusion detection (or sometimes misuse detection). Though widely
used in practice today, this approach provides neither completeness, nor accuracy. As to the
latter, PlanetLab experiments are notorious for raising false alarms with signature-based
network intrusion detectors, due to the widely varying behaviors that PlanetLab experiments
exhibit. We expect that the even wider variety of networking research enabled by GENI will
only exacerbate this problem.

For the same reason, learning-based anomaly detection systems⎯in which “normal” behavior is
modeled using machine learning algorithms, and these models are then used to detect
departures from “normal” behavior⎯are also unlikely to be broadly applicable in GENI.

19

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

Individual experiments will likely be too varied to enable the construction of a model of
normalcy that is applicable to all of them (while still being useful for limiting unintended
behaviors). Moreover, individual experiments may be too transient to establish a reliable
baseline of “normal” behavior specific to that experiment, and even if such a baseline were
established, it would likely include behavior that was not intended by the experimenters, owing
to the immaturity of the experiment. As such, we anticipate that neither signature-based
network intrusion detection nor learning-based network anomaly detection will be used
extensively for monitoring network traffic in GENI.

In place of these methods, we anticipate requiring each PI to declare aspects of her experiment’s
network behavior in advance, so that this behavior can be examined and approved as
reasonable, and so that the experiment can be monitored for compliance with that declaration.
Intrusion detection based on specifications of intended behavior (versus specifications of bad
behavior) is the domain of specification-based intrusion detection, e.g., [20][32]. Though not widely
used in practice, we believe this approach is more suitable for GENI due to its customization of
the specification to each individual experiment; this should provide for fewer, more accurate
alarms. In addition, while not every alarm indicates an intrusion, it indicates a behavior that
the experimenters apparently did not anticipate; as such, they learn something from the alarm,
as well. Finally, specification-based intrusion detection complements the authorization
framework discussed in Section 4 , in that a specification can both monitor the enforcement of
access-control policy and limit behaviors that must be permitted but that should not be
overused.

In the initial version of GENI, we anticipate that the specifications requested from
experimenters will be coarse and focused on enabling GENI to contain the behavior of runaway
experiments, e.g.: maximum bandwidth consumption; address ranges and ports to which
connections might be opened from the experiment’s slice; whether communication to and from
the legacy Internet is required by the experiment; and the amount of storage that its output will
consume. (Of course, GENI will then need to include monitors to detect violations of these
specifications.) We envision that experience with GENI will drive support for richer and more
fine-grained specifications in subsequent versions, if necessary.

While we believe that specification-based intrusion detection is well-suited for use in GENI,
specifying behaviors of one’s experiment is not an activity to which most researchers are
accustomed, e.g., in the context of experiments on PlanetLab. There are several aspects of this
mechanism that will impact its acceptance among the research community, including the ease
with which the requested specifications can be divined from experiments and expressed, and
the consequences of alarms. Alarms will presumably need to have consequences to the
experiment or experimenter, but at the same time, experimenters will need to be dissuaded
from providing specifications so weak as to be meaningless. As such, we would argue that
these specifications need to be an input to the process by which experiments are approved to
run on GENI.

Finally, while we expect network behavior to be monitored primarily via specification-based
intrusion detectors, other types of behaviors may be more suitable for monitoring via more
traditional approaches. For example, unexpected modification of files can be detected using the
well-known Tripwire tool or a variety of existing rootkit detectors. More generally, we

20

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

recommend that audit trails be generated from a variety of vantage points and, when those
vantage points are accessed via complex authorization relationships (e.g., chains of delegation,
shared authority), that the proofs of compliance with access-control policy be recorded so that
responsible parties can be discerned when problems are detected.

6.2 An Example Audit Trail Generator: PlanetFlow
Costs and requirements of an auditing system for GENI are difficult to predict, but some insight
can be gleaned from the auditing system used in PlanetLab. This system, known as PlanetFlow,
logs the packet headers of all packets sent and received by each node in the system. Packets are
collected into flows, using the standard 5-tuple of <source IP, source port, destination IP,
destination port, protocol>. These tuples are augmented with start and end times, total number
of packets, total number of bytes, and the slice responsible for the traffic. In the case of UDP
traffic, which lacks any easy determination of sessions, all UDP traffic from a single slice to the
same destination port and address are considered part of the same session. It should be noted
that this level of auditing does not keep track of the precise timing of each packet, other than the
first and last packets within a session. In practice, this level of detail has not been needed in
handling any complaint on PlanetLab. We should note that the GENI facility architecture
group is studying ways to capture more detailed data, but for a different purpose⎯to serve the
needs of those researchers studying how GENI is being used. Typically, this will require more
intensive traffic monitoring, but for briefer periods. We refer the reader to the GENI
Instrumentation and Measurement Systems Specification Document for more detail.

In terms of resource consumption, PlanetFlow’s logging generates on the order of 2 Kbps (after
compression) for every 1 Mbps of PlanetLab traffic. We believe this amount of overhead is
acceptable, particularly since only traffic from GENI to the outside Internet needs to be tracked,
and since complaints usually arrive promptly, there is no need to permanently store the logs.
The processing overhead is similar: on average, PlanetFlow consumes 2.5% of each node’s CPU
on PlanetLab. We note this code is not heavily optimized. The main collector uses netlink
sockets to capture packet information, which is then aggregated into flows by a user-level C
program before being inserted into a MySQL database. Performance of this system has not been
an issue for PlanetLab, and even if it were to scale linearly with bandwidth, it would not be a
first-order barrier for GENI. There are some known sources of improvement possible:

• Have a kernel module aggregate packets into flows, which would reduce most of the data
transfer and context switches to the user-space program. Especially for large data flows over
high-bandwidth connections, this step would greatly eliminate the data volume between the
components.

• Replace MySQL with a custom database specialized for the task at hand. Though the
insertion process in MySQL has been known to be the major cycle consumer within
PlanetFlow, it has not been worth replacing at this point because the overall resource profile
of PlanetFlow has been low enough to be ignored. However, a more specialized database
could reduce much of the overhead

• Switch from an eager architecture to a lazy one. Right now, all data is processed as soon as it
is made available, even though the vast majority of it will never be queried. If a lazy
approach were used instead, this data could be logged to disk immediately after the

21

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

aggregation step (or even without aggregation, if disk space is not an issue), with no other
indexing or processing. Queries would take longer since the data would then have to be
processed, but given that most data is never examined, the tradeoff can reduce PlanetFlow’s
profile tremendously.

Of course, the auditing system for GENI may require additional data beyond the current tuples.
For example, it may be desired to have more than just a simple tuple for each session, with the
options ranging from timestamping every packet sent/received to keeping more information
from the IP/TCP headers, or even logging part/all of the packet. These extra options require
more processing and storage, but can also provide a more complete view of activity from the
node to other nodes. Conversely, it may also be desirable to filter information, such as all of the
traffic between GENI nodes, or some subset of the traffic that matches other specified rules.
Once these choices have been made, the processing and storage requirements can be calculated,
and an appropriate prototype can be tested. While we expect that most of these choices should
not cause too much extra CPU consumption, even at higher speed, any choice that requires
higher storage may find itself competing for disk bandwidth or seeks with other applications. In
these cases, the standard node configuration may opt to have a dedicated disk per cluster for
storing the audit log.

7 Open Issues
Several open technical issues discussed in the previous sections must be addressed prior to an
initial deployment of GENI. Moreover, looking at subsequent refinements of GENI beyond the
initial deployment, we see opportunities to address other issues that we have not attempted to
address yet (and that we do not expect to be addressed in its initial version). As this document
is revised, such issues will be added to this section. Below is a partial list of open issues:

• In some instantiation of GENI (though probably not at initial deployment), it might be
advisable to move the control plane of GENI away from IP infrastructure and toward
one that offers better resilience to denial-of-service attacks. As discussed in Section
Error! Reference source not found., at present we accept the possibility of denial-of-
service attacks against the GENI control plane and, in response, GENI will be designed
to retreat to a safe state when its safe operation cannot be assured. Moving the GENI
control plane to a more robust protocol suite should better minimize the circumstances
in which such a retreat will occur, thus increasing the effective availability of GENI.
That said, we avoid making a recommendation for a DoS-resilient control plane at this
point in time, for multiple reasons. First, the design of DoS defenses is among the most
actively pursued research topics in the network security community today, and it is
characterized by a plethora of techniques and manners of defeating DoS. As such, we
hope that one of the successes of the initial deployment of GENI is the testing and
validation of various candidates for a more robust GENI control plane. (It is notable that
such validation has been lacking to date, owing in large part to the lack of a facility like
GENI.) Second, this control plane may itself utilize a protocol suite that is distinctly
different from IP, and so the DoS defenses must work in concert with this protocol suite.
This, too, is a topic to be worked out via competition on the GENI facility.

22

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

• The extent to which operational data in the GENI facility should be public information is
yet to be determined. In the context of this document, one example of such operational
data is access control policy and the authority that various parties possess. Retaining
privacy of this information in the context of decentralized access-control systems such as
that in Section 4 has been a topic of some study (e.g., [37][34][35]), though we believe
that further study is needed to ascertain the circumstances in which such privacy
policies would impose on the efficiency or even the possibility of completing access
proofs in a system like GENI.

• More generally, the numerous operational practices and procedures needed to maintain
the security of a facility like GENI (and to protect the Internet from GENI) also remain to
be defined. These should obviously include industry best practices, e.g., keeping GENI
nodes up-to-date with the latest patches; periodic “fire drills” to maintain a state of
readiness for the operational staff to respond to large-scale events; and procedures for
handling alarms and for propagating those alarms to others. Additional procedures
need to be put in place, however, that are unique to GENI, not the least of which is some
procedure for evaluating experiments (and accompanying requests for new permissions)
as to whether they are acceptably safe. This is particularly true for experiments that
involve malware, as security researchers may well want to conduct such experiments on
GENI. The protection mechanisms described in this document, together with adequate
intra-node isolation (e.g., via secure virtual machine monitors) not described here, could
offer a basis for constraining such experiments to render them acceptably safe. But the
means for making this decision and configuring the slice accordingly remains to be
specified.

8 Conclusion
This document has described the requirements for security of the initial deployment of the
GENI facility, and surveys the technologies that we believe should be developed to address
those requirements that are specific to the GENI facility. These technologies include a
pervasive access-control infrastructure for regulating access to GENI and experimental
resources alike, and for enforcing an approximation of least-privilege access rights (Section 4);
mechanisms for protecting the private keys that underlie this access-control infrastructure
(Section 5); and the use of (primarily, specification-based) intrusion detection to monitor for
experiments that perform outside the bounds that their experimenters expect and that have
been approved (Section 6). Each of these technologies, if adopted for GENI, will need to be
constructed for the GENI facility; we are unaware of commercial implementations of these
components that would be adequate for adoption in GENI in their present forms. We believe
they offer numerous benefits toward addressing the unique security requirements of the GENI
facility. Combined with operational best practices, we believe that these technologies can
render the GENI system to be both safe and usable by its target community of experimental
network and distributed systems researchers, illustrating the benefits of architecting security
from the beginning into a globally distributed system of networks and computers.

23

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

References
[1] M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security 6(1−2):3−21,

October 1998.
[2] T. Anderson (ed.). GENI Distributed Services. GENI Design Document 06-24, Distributed

Services Working Group, September 2006.
[3] A. W. Appel and E. W. Felten. Proof-carrying authentication. In Proceedings of the 6th ACM

Conference on Computer and Communications Security, November 1999.
[4] J. Basney, R. Campbell, H. Khurana, and V. Welch. Towards operational security for GENI. GENI

Design Document GDD-06-10, July 2006. Available at http://www.geni.net/GDD/GDD-06-10.pdf.
[5] L. Bauer, S. Garriss and M. K. Reiter. Distributed proving in access-control systems. In

Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81−95, May 2005.
[6] L. Bauer and M. A. Schneider and E. W. Felten. A general and flexible access-control system for

the Web. In Proceedings of the 11th USENIX Security Symposium, August 2000.
[7] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,

and M. Wawrzoniak. Operating system support for planetary-scale network services. In
Proceedings of the 1st Symposium on Networked Systems Design and Implementation, pages
253−266, March 2004.

[8] M. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic health
records. In Proceedings of the 17th IEEE Computer Security Foundations Workshop, pages
139−154, 2004.

[9] M. Blaze, J. Feigenbaum, J. Ioannidis and A. D. Keromytis. The KeyNote trust management
system, version 2. IETF RFC 2704, September 1999.

[10] M. Blaze, J. Feigenbaum and J. Lacy. Decentralized trust management. In Proceedings of the 1996
IEEE Symposium on Security and Privacy, pages 164−173, May 1996.

[11] E. Belani, A. Vadhat, T. Aderson and M. Dahlin. The CRISIS wide area security architecture. In
Proceedings of the 7th USENIX Security Symposium, January 1998.

[12] D. Boneh, X. Ding, G. Tsudik, and C. M. Wong. A method for fast revocation of public key
certificates and security capabilities. In Proceedings of the 10th USENIX Security Symposium, pages
297−308, August 2001.

[13] C. Boyd. Digital multisignatures. In Cryptography and Coding, pages 241−246, Clarendon Press,
Oxford, 1989.

[14] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. M. Thomas and T. Ylonen. SPKI certificate
theory. IETF RFC 2693, September 1999.

[15] Y. Fu, J. Chase, B. Chun, S. Schwab and A. Vahdat. SHARP: An architecture for secure resource
peering. In Proceedings of the 19th ACM Symposium on Operating Systems Principles, October
2003.

[16] R. Ganesan. Yaksha: Augmenting Kerberos with public key cryptography. In Proceedings of the
1995 ISOC Network and Distributed System Security Symposium, pages 132−143, February 1995.

[17] J. Halpern and R. van der Meyden. A logic for SDSI’s linked local name spaces. Journal of
Computer Security 9:47−74, 2001.

[18] ITU-T Recommendation X.509 (1997 E): Information Technology - Open Systems Interconnection
- The Directory: Authentication Framework, June 1997.

[19] T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, pages 106−115, May 2001.

[20] C. Ko, M. Ruschitzka and K. Levitt. Execution monitoring of security-critical programs in
distributed systems: A specification-based approach. In Proceedings of the 1997 IEEE Symposium
on Security and Privacy, pages 175−187, May 1997.

24

GENI Facility Security (DRAFT) September 15, 2006 (v0.5)

[21] B. Lampson. Computer security in the real world. In Proceedings of the Annual Computer Security
Applications Conference, 2000.

[22] B. Lampson, M. Abadi, M. Burrows and E. Wobber. Authentication in distributed systems: Theory
and practice. ACM Transactions on Computer Systems 10(4):265−310, November 1992.

[23] N. Li and J. C. Mitchell. Understanding SPKI/SDSI using first-order logic. International Journal
of Information Security, 2004.

[24] P. MacKenzie and M. K. Reiter. Networked cryptographic devices resilient to capture.
International Journal on Information Security 2(1):1−20, November 2003.

[25] P. MacKenzie and M. K. Reiter. Delegation of cryptographic servers for capture-resilient devices.
Distributed Computing 16(4):307−327, December 2003.

[26] A. Nicolosi, M. Krohn, Y. Dodis and D. Mazieres. Proactive two-party signatures for user
authentication. In Proceedings of the 10th ISOC Network and Distributed System Security
Symposium, pages 233−248, February 2003.

[27] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed resource discovery on
PlanetLab with SWORD. In Proceedings of the First Workshop on Real, Large Distributed
Systems, December 2004.

[28] S. Pearson. Trusted Computing Platforms: TCPA Technology in Context. HP Professional Series,
Prentice Hall, first edition, 2002.

[29] L. Peterson, A. Bavier, M. Fiuczynksi and S. Muir. Experiences building PlanetLab. In
Proceedings of the 7th USENIX Symposium on Operating System Design and Implementation,
November 2006.

[30] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementation of a TCG-based
integrity measurement architecture. In Proceedings of the 13th USENIX Security Symposium,
August 2004.

[31] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings
of the IEEE 63(9):1278−1308, September 1975.

[32] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou. Specification-based
anomaly detection: A new approach for detecting network intrusions. In Proceedings of the 9th
ACM Conference on Computer and Communications Security, pages 265−274, November 2002.

[33] W. Trappe. Requirements Document for Security of GENI Wireless Networks. GENI Design
Document 06-16, Wireless Working Group, September 2006.

[34] W. H. Winsborough and N. Li. Safety in automated trust negotiation. In Proceedings of the 2004
IEEE Symposium on Security and Privacy, May 2004.

[35] M. Winslett, C. C. Zhang and P. A. Bonatti. PeerAccess: A logic for distributed authorization. In
Proceedings of the 12th ACM Conference on Computer and Communications Security, November
2005.

[36] E. Wobber, M. Abadi, M. Burrows and B. Lampson. Authentication in the Taos operating system.
ACM Transactions on Computer Systems 12(1):3−32, February 1994.

[37] T. Yu, M. Winslett and K. E. Seamons. Supporting structured credentials and sensitive policies
through interoperable strategies for automated trust negotiation. ACM Transactions on Information
and System Security 6(1):1−42, February 2003.

25

