
ORBIT Phase I Project – Excerpts from Final Report Page: 1

WINLAB, Rutgers University Sept 2008

4.2 Project Title: PlanetLab Integration (Senior Personnel: Dr. George Hadjichristofi, Mr. Ivan
Seskar, Prof. Marco Gruteser, Prof. Dipankar Raychaudhuri)

While PlanetLab serves as the baseline model for programming and virtualization in wired GENI
[1-3], the model needs to be significantly extended to accommodate: device heterogeneity (e.g.
wireless access points, ad hoc radios, sensors), a broader range of experiment types (e.g. short-
term network performance experiments running on selected network nodes vs. long-term slices
used in PlanetLab), and alternative end-user support requirements (e.g. experienced programmers
needing little if any experimental support vs. protocol analysts who might prefer tools for higher-
level programming and execution management). Integrating PlanetLab with a large-scale
wireless testbed like ORBIT aims to yield important design insights on the issues of device
heterogeneity and necessary extensions to control and management protocols for effective
support of wireless networks as an integral part of the experimental system.

Progress: We provide proof of concept for the integration of a wireless and wired testbeds by
deriving two baseline models of integration that allow:(1) Scheduled access to wireless ORBIT
nodes from slivers used by PlanetLab experimenters, and(2) Long-running "ORBIT slice" in
PlanetLab nodes that can be accessed by ORBIT experimenters. Based on these models, we
developed working prototypes of an integrated system.

For the first model, the integration was facilitated through the use of a PlanetLab-Orbit proxy
node as indicated in Figure 30. The proxy enables PlanetLab users to include ORBIT nodes in
their experiments. PlanetLab users can log into their slivers and start their experiments. Traffic
generated from the PlanetLab slivers and directed to the PlanetLab-Orbit proxy is forwarded to
the ORBIT nodes corresponding to those slivers. This set up was achieved through the use of
GRE tunnels from PlanetLab nodes to the PlanetLab-Orbit proxy and from the proxy node to the
ORBIT grid. As shown in Figure 30 (bottom), traffic from 3 PlanetLab slivers representing 3
separate experiments is redirected by the proxy to 3 different groups of ORBIT nodes (assuming
SDMA virtualization is used).
For the second model, we extended the ORBIT control framework to include PlanetLab nodes.
Typically, during an ORBIT experiment the NodeHandler, which is the central experiment
controller in ORBIT, would be used to deploy an experiment (see Figure 31). The ORBIT users
would provide an experimental script to the NodeHandler that defined the experiment. The
NodeHandler would then parse the script and communicate with the NodeAgents running on each
active node on the grid. Applications would then be loaded and executed by the NodeAgents on
the nodes based on the instructions from the NodeHandler. To enable ORBIT users to include
PlanetLab nodes in their experiments, we have added the same functionality to PlanetLab nodes.

The ORBIT NodeAgent software was modified and installed on PlanetLab slices. The
NodeHandler was also modified to support the new NodeAgent software running on the
PlanetLab nodes. The mode of communication between the NodeHandler and NodeAgents was
changed from multicast on ORBIT nodes to unicast TCP connections based on the fact that
Internet does not guarantee delivery with multicast traffic. The NodeHandler now provides a
single programming interface with extended capability to start applications on the PlanetLab
nodes. Thus, we avoid the previous method of setting PlanetLab-Orbit experiments by manually
connecting with “ssh” into the PlanetLab nodes to configure and start the applications. This
integrated control framework provides abstraction for the experimenters and facilitates
reproducible experiments.

ORBIT Phase I Project – Excerpts from Final Report Page: 2

WINLAB, Rutgers University Sept 2008

Console
Support
services

PL-Orbit
Proxy

Internet

21

Experiment
Script

Experiment
Script

START

NodeAgentsNodeAgents

sliver

sliver

sliver

sliver

NodeHandler

Figure 30. PlanetLab to ORBIT Integration.

Figure 31. ORBIT to PlanetLab Integration.

A snippet of the experimental script is shown in Figure 32. This script is parsed by the
NodeHandler to configure the PlanetLab nodes. The modules in italics have been developed to
extend the ORBIT control framework to include PlanetLab Nodes. The purpose of each module is
as follows:
defPNodes: It defines the PlanetLab nodes that are a part of the experiment.
defPApplication: It defines the experiment applications to be started on the PlanetLab nodes. The
NodeHandler also reports success or error after execution of these applications on the PlanetLab
nodes.

Orbit nodes PlanetLab node

sliver
sliver
sliver
sliver
sliver

GRE

GRE

GRE

GRE

GRE

GRE

Exp. 1
Exp. 2
Exp. 3

Exp. 1

Exp. 2

Exp. 3

PL-Orbit Proxy

Console

Support
services

PL-Orbit Proxy

Internet

2

1 START1 START

3

sliver

sliver

sliver

sliver

ORBIT Phase I Project – Excerpts from Final Report Page: 3

WINLAB, Rutgers University Sept 2008

 WhenPLReady: It waits for the NodeAgents on the PL nodes to report to the NodeHandler.
PLexpdone: This facilitates a clean slice after the experiment is done.

#DEFINE THE NODES
defPNodes('planet.cc.gt.atl.ga.us','planetlab01.cs.washington.edu')

START THE APPLS. ON THE PL NODES
WhenPLReady(){
defPApplication('bash /home/orbit_pkamat/PLDEMO1'){}
wait 195
defPApplication('bash /home/orbit_pkamat/PLDEMO2'){}
PLexpdone() }

Figure 32. Script Snippet.

VMAC Virtualization

Exp. 1

Exp. 3

Exp. 2

Exp. 1

Exp. 2

Exp. 3

Wired Wireless

Servers
Mobile
Clients

Channel x

3 VAPs

PlanetLab
node

Figure 33. Integration and virtualization of wired-wireless networks

As part of proof-of-concept of integrated and virtualized wired-wireless experiments we have
demonstrated the FDMA and VMAC methods of virtualization and PlanetLab-Orbit integration at
a series of events and workshops held at WINLAB. Figures 33 shows some integrated scenarios
that were demonstrated. The important aspect of these configurations is that we have extended the
notion of virtualized wired slices to wireless networks and provided a wired-wireless network
slice that can also support both short-term and long-term running experiments while better
utilizing wireless resources.

Conclusions and Future Work: This project has enabled proof-of-concept integration between
wired and wireless testbed. The ORBIT to PlanetLab integration has provided ORBIT users with
a single programming interface and experimental methodology that enables the dynamic
inclusion of wired nodes during the execution of experiments. On the other hand, the PlanetLab
to ORBIT integration has enabled PlanetLab users to include ORBIT wireless nodes in their
experiments. It should be noted that from the perspective of PlanetLab users the capability to
dynamically deploy and set up experiments is missing, since PlanetLab has no control framework
that will provide such services. Open research issues include the dynamic set up of GRE tunnels
to connect PlanetLab slivers with wireless resources as well as the allocation of such resources.

Virtualization with FDMA

Channel x

Channel y

Slice 1

Slice 2

Wired
PlanetLab

Wireless
Orbit

ORBIT Phase I Project – Excerpts from Final Report Page: 4

WINLAB, Rutgers University Sept 2008

A paper describing the integration approach and initial results is currently in preparation.

References for Sec 3.2:

[1] L. Peterson, GENI: Global Environment for Network Investigations, ACM SIGCOMM '05,
August 2005.
[2] GENI Design Principles, http://www.geni.net/design_principles.pdf
[3] NSF Global Environment for Networking Initiatives, http://www.geni.net/

ORBIT Phase I Project – Excerpts from Final Report Page: 5

WINLAB, Rutgers University Sept 2008

4.3 VINI-ORBIT Integration (Senior Personnel: Dr. George Hadjichristofi, Mr. Ivan Seskar,
Prof. Marco Gruteser, Prof. Dipankar Raychaudhuri)

Project Background/Rationale:
VINI is a virtual network infrastructure within PlanetLab that allows network researchers to
evaluate their protocols in a realistic environment, while providing a high degree of control over
network conditions [1][2]. VINI leverages a number of technologies which have been integrated
together, such as UML, XORP [3], Click [4][5], and OpenVPN [6]. Figure 34 shows the basic
components that are utilized in a VINI virtual node. UML runs as a user-space process and
creates a virtual environment complete with network devices. The UML instance is started from
within the experimenter’s slice on PlanetLab. Each virtual environment communicates with other
VINI environments by creating an overlay topology with UML interfaces as the end points.
XORP, running within UML, is an open source routing protocol suite that implements a number
of routing protocols, such as BGP and OSPF. It manipulates routes in the data plane through the
Click modular software router. XORP generally assumes that each link to a neighboring router is
associated with a physical interface. For example, if the MIT sliver in Figure 34 is to be
connected to Alaska, packets sent out via eth2 of the UML would be sent to Alaska.

Figure 34. VINI software architecture.

 In reality, all packets going in and out of UML are sent first through the UML switch and Click
modules at the lower layers. The UML switch is a virtual switch used to connect UML and Click
through Unix sockets. Click inspects, modifies, and route all types of packets. OpenVPN was

MIT PlanetLab node

VINI virtual node

Alaska
VINI
node

UML

Unix Socket

Unix Socket

eth1 eth2

UML Switch

OpenVPN

Click

XORP

UDP tunnel

California
VINI
node

UDP tunnel

Non-VINI
node

tunnel

U
D

P
 tu

n
n

el

VINI Ingress

tun0

ORBIT Phase I Project – Excerpts from Final Report Page: 6

WINLAB, Rutgers University Sept 2008

Wireless
Wireless

wireless node wired node
(ORBIT) (VINI)

Wireless
Network

Wireless
Network

introduced into the VINI software architecture with the main scope of connecting an outside
machine to a VINI experiment as an edge node allowing for IP traffic injection into VINI.

The objective of this project is the integration of VINI and ORBIT while satisfying the following
goals:

• No packet type restrictions: Any type of Ethernet encapsulated packet should be able to
propagate between the two networks. These packet types include both IP, non-IP packets, as well
as broadcast traffic.

• Arbitrary topology creation: The solution should provide researchers with the capability to
connect any wireless node to any wired node in different combinations and carry Layer 3 and
above experiments. Figure 35 shows a sample network configuration where wireless nodes (e.g.,
ORBIT nodes) are connected to wired (e.g., VINI) nodes. One or more wireless nodes are
connected to multiple wired nodes in the integrated overlay network.

Figure 35. Sample configuration of the integrated testbed.

Progress: A series of modifications were made on the existing VINI architecture to
accommodate this integration. At the higher layer, UML was configured with an additional
interface to accommodate traffic to the ORBIT testbed. The interface was linked with a TAP
interface, which was associated with OpenVPN. The OpenVPN module was then configured to
carry Ethernet tunnels (i.e., Ethernet packets encapsulated in IP) instead of IP tunnels. Click was
also modified to link UML traffic to the OpenVPN application by simply passing packets without
processing them for forwarding purposes. This configuration allowed the delivery of Ethernet
packets directly to the UML enabling Layer 3 experimentation.

While VINI provides a powerful platform to create controlled network topologies, it’s
automatically generated underlying configuration files require intimate knowledge of VINI’s
inner workings. As described above, VINI links together the Click modular software router,
UML, UML Switch, XORP BGP/OSPF routing software and OpenVPN using a system of Unix
sockets, UDP sockets and Linux Tap/Tun interfaces. By carrying Ethernet traffic to the user space
we allow users with basic knowledge in Linux and Linux networking to use the integrated testbed

ORBIT Phase I Project – Excerpts from Final Report Page: 7

WINLAB, Rutgers University Sept 2008

without knowing the details of the lower layers of virtualization on the nodes (e.g., Click) or
having to modify the underlying system. Therefore, transparency aids the user to expedite the
deployment of an integrated network layer experiment.

On the ORBIT side, there was more flexibility since ORBIT nodes do not have a pre-defined
software architecture as compared to VINI nodes. An ORBIT baseline image was used as a
foundation (Debian GNU with Linux kernel 2.6.12) and OpenVPN was compiled and installed
along with other supporting packages. The Linux kernel was recompiled with the Tunneling and
Bridging options to enable the creation of TAP interfaces for OpenVPN Ethernet tunnels. ORBIT
nodes were configured based on a Router or Bridge configuration, which provided different
topology characteristics. In the Router configuration, an ORBIT node is set up as a router that can
handle any routing protocol used by XORP. This set up can be visualized as adding nodes and
extending the existing VINI core network, while providing access to a wireless networks.
Typically, this mode can be utilized to enable integration of multi-hop wireless networks with a
wired testbed. In the Bridge configuration, an ORBIT node bridges the OpenVPN interface with
the wireless interfaces and removes the need to carry routing. Such a set up allows for
experiments where multiple wireless end nodes are attached to VINI nodes and can be visualized
as adding a physically disjoint wireless interface to a VINI node. Typically, this mode can be
utilized to enable the integration of access point functionality on the wired testbed nodes (i.e., one
hop wireless connectivity). Even though IPv4 was used in our tests, this framework will allow
non-IP traffic. For both the Bridge and Router configurations, the VINI scripts were set to
automatically generate commands for the ORBIT control framework to image, power on, and
configure the ORBIT Bridge and Router nodes. Thus, automatic topology creation during
experiments was facilitated.

As a proof-of concept of the integrated architecture we deployed a Layer 3 experiment over VINI
and ORBIT. The objective of this experiment was to investigate hand-off issues between access
points that may belong to different Internet Service Providers (ISPs). Figure 36 represents the
topology that is used in the experiment. Three VINI nodes are physically located in Berkeley,
California Tech, and MIT and communicate with each other via UDP tunnels. A Video Server is
linked to the California Tech VINI node by using an ORBIT node with the Bridge configuration
as previously described. We then attach two access points, A and B, to the other VINI nodes and
configure them in the Router mode. The ath0 wireless interfaces and 172.16.X.X IP addresses on
the four ORBIT nodes are manually configured to have the proper channel, essid, frequency and
IP addresses. The TAP/Bridge interfaces and 192.168.X.X IP configurations on the ORBIT nodes
are configured automatically. OSPF is utilized to automatically set up connectivity between
nodes. The execution steps of the experiment are as follows; initially, video is streamed from the
Video Server to the Mobile Client through access point A. As the Mobile Client moves away
from access point A connectivity breaks and the video freezes. Access point A senses that the link
is broken and through OSPF advertises that it is no longer in the routing path of the Mobile
Client, and that information is propagated and reflected in all the nodes. Meanwhile the Mobile
Client establishes connectivity to the network via access point B, which in turn advertises the new
link to the Mobile Client. Once the new routing information is propagated in the network the
video is restored. It is important to note that this investigation is different from Mobile IP because
in the case of mobile IP access point A would relay the packets of the Mobile Client to access
point B after the hand-off. In this scenario, the packets do not traverse the Berkleley and access
point A overlay nodes and do not get redirected to access point B. They instead go through
California Tech, MIT, and access point B and are delivered to the Mobile Client.

Initial results of our measurements with the Iperf tool have shown that the packet delay with
Mobile IP is 443 msecs as compared to 225 msecs with our set up. Furthermore, by manual

ORBIT Phase I Project – Excerpts from Final Report Page: 8

WINLAB, Rutgers University Sept 2008

California Tech

Berkeley MIT

OpenVPN
Ethernet
Tunnel

OpenVPN
Ethernet
Tunnel

OpenVPN
Ethernet
Tunnel

Access
Point A
(Router
Mode)

Access
Point B
(Router
Mode)

Video Server

Mobile Client

192.168.107.1

192.168.100.2

192.168.100.3

192.168.101.2

192.168.101.3

192.168.105.1

192.168.103.1

192.168.107.2
192.168.103.2

br0:192.168.105.2192.168.105.3

172.16.0.2

172.16.0.1 172.16.0.1

UDP tunnel

(Bridge
Mode)

Orbit nodes VINI nodes

triggering the change in the routing paths when the connectivity of the Mobile Client between
access point A and B changed, we have found that it takes approximately 4.5 seconds for the new
routes to propagate in the network and for the video to get restored.

Figure 36. Integrated architecture to test hand-off in a mobility scenario.

Conclusions and Future Work: We developed and tested an integrated architecture solution that
enables network layer experiments over wired and wireless networks on existing Internet links
with realistic background traffic. Our solution provides an abstraction of the underlying software
architecture that simplifies the configuration complexity of setting up experiments. In addition, it
supports non-IP traffic and broadcast traffic, as well as any- to-any host connectivity. VINI nodes
use virtualization to accommodate multiple users. The cost of providing Layer 3 experiments
through virtual internetworking at the UML level is, however, a lower performance since
forwarding data packets in the UML kernel incurs nearly 15% additional overhead [7]. As future
work, we intend to continue our integration efforts and exploit some of the new features that will
be available with VINI, such as fixed bandwidth guarantees over Internet2 links.

A paper describing the integration approach and initial results was presented at WinTech 07 [8].

References for Sec 3.3:
[1] “Understanding VINI” , https://www.vini-veritas.net/documentation/pl-vini/user/understand, available

May 10, 2007
[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI Veritas: Realistic and

Controlled Network Experimentation,” in ACM SIGCOMM, Vol. 36, No. 4, pp. 3-14, October 2006.
[3] “XORP: Open Source IP Router,” http://www.xorp.org/, available May 17, 2007.
[4] “Click Modular Router,” http://pdos.csail.mit.edu/click/, available May 20, 2007.
[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click modular router,” ACM

Transactions on Computer Systems, vol. 18, pp. 263–297, August 2000.
[6] “OpenVPN: An open source SSL VPN solution,” http://openvpn.net/.

ORBIT Phase I Project – Excerpts from Final Report Page: 9

WINLAB, Rutgers University Sept 2008

[7] X. Jiang and D. Xu, “Violin: Virtual internetworking on overlay infrastructure,” in Proc. International
Symposium on Parallel and Distributed Processing and Applications, pp. 937–946, 2004.
[8] George C. Hadjichristofi, Avi Brender, Marco Gruteser, Rajesh Mahindra, Ivan Seskar, ” A Wired-
Wireless Testbed Architecture for Network Layer Experimentation Based on ORBIT and VINI”, Proc.
WinTech 07, Sept 2007, Montreal.

