
Resource Specifications
 (and end-to-end slices)

Larry Peterson
Princeton University

A Bunch of Nodes

My Slice – My Topology

Your Slice – Your Topology

Some Nodes are Special

My Slice is Special

Or Includes a Special Subset

Another Special Subset

OpenFlow
Enterprise

RSpec – Two Problems
•  Interface Negotiation – Introspection

– Learn the set of resources an aggregate supports
– Program-heavy (return WSDL)

➤  SetMemory(value)
➤  SetCPU(value)
➤  SetLink(value)
➤  …

– Data-heavy (return XSD)
➤  SetResources(type=value)

•  Resource Negotiation
– Learn the “amount” of resource an aggregate will grant you

Resource Negotiation
•  Today

 RSpec = GetResources()
 SetResources(RSpec)

•  Generalize
 until successful {
 result = SetResources(Request)
 …modify Request…
 }

•  How do we ensure progress (and termination)?

Resource Negotiation
•  Aggregate returns…

– Capacity – what it will say yes to (XSD)
– Policy – how to interpret this capacity (XSLT)

P(Request, Capacity) = True => request will be honored
P(Request, Capacity) = False => request will be honored

•  Examples
– P(R, C)  Yes if R and C are the same graph

➤  VINI today
– P(R, C)  Yes if R is a subset C

➤  VINI tomorrow
– P(R, C)  Yes if R is subset of C and site sliver cnt ok

➤  PlanetLab today

Resource Negotiation
•  Best Part…

– Policies can be composed (multi-aggregate slice mgrs)
– Peering policies can be expressed and verified
– Maintaining polices simplified (defined in single place)
– Greater degree of automation (load-dependent)

