
2

Network Protocol Specification
Languages & Compilers

Jasson Casey
jasson.casey@gmail.com

Dr. Alex Sprintson
spalex@tamu.edu

3

Background

•  Coming from Industry
–  Equipment design and development
–  Service architecture design and development

•  Research Interests
–  Confluence of networking and programming languages
–  Static analysis & abstract interpretation of protocols specs
–  Optimization and target generation

•  Protocol implementations
•  Abstract configuration

4

NP Compiler Motivation
•  Protocol Design

–  Introduction of security vulnerabilities
–  Introduction of inefficient format/representation
–  Difficult to translate to specifications

•  Protocol Implementation Problems
–  Time consuming and laborious
–  Inconsistency of implementation
–  Introduction of security vulnerabilities

•  Industry Problems
–  Interoperability is a large portion of product development
–  System wide vulnerability assessment is based on incidents
–  Most new products require the integration of many new protocols
–  Protocol development is a bottleneck

5

Areas of Work

•  Implementer productivity – Prolac, Click
•  Protocol specific compiler optimizations
•  Protocol parser generator – binpacc, packet-types
•  Correct implementation – Austin Protocol Compiler
•  Protocol correctness - Esterel
•  Security analysis – Protocol Composition Logic

6

Complete Tools
•  Prolac

–  Language
•  Functional
•  Simple syntax can cover common network idioms

–  Compiler
•  Removal of dynamic dispatch
•  In-lining of common functions
•  Outlining unlikely error handling

–  Obstacles
•  Actual use requires extensive native language interaction
•  No primitives: encoding, state machine, events, transitions, etc

–  A Readable TCP in the Prolac Protocol Language, E. Kholer, M. Kaashoek,
D. Montgomery, ACM SigComm 99

7

Prolac Example

8

Complete Tools
•  Austin Protocol Compiler, Tommy McGuire, Springer

–  Language
•  Functional
•  Encoding primitives for TLV style protocols
•  System primitive support: timers, and UDP IO

–  Compiler
•  Guarantee from abstract to concrete model

–  Obstacles
•  Encoding lacks support for nested objects and lists
•  Encoding lacks primitives for ASCII encoded protocols
•  No support for stream IO
•  Little optimization

–  T. McGuire, M. Gouda, The Austin Protocol Compiler, Springer 2004

9

APC Example

10

Previous Industry Work

11

Existing Gaps

•  Not accessible to the novice
•  Limited descriptive power
•  Some are intended for modeling only
•  Little integration of concepts

12

Research Directions

•  Language design
–  Semantics of network primitives

•  High-level IR transformations
–  Cross layer optimization
–  Source translation

•  Design feedback
–  Security analysis of design specification
–  Performance and efficiency analysis
–  Instrumented implementations

13

GENI/LEARN Experiments

•  Existing test plan
–  Medium to small scale simulations
–  Small to medium scale network deployments
–  Limited by budget and time

•  Potential GENI/LEARN test plan
–  Virtual resources exposed through GENI/LEARN
–  Enable large scale testing
–  Reduced testing budgets
–  Compressed test setup time

14

Conclusion

•  Goals
–  Approachable by novice
–  Can specify existing common IETF RFC(s)
–  Optimize for target system (byte alignment, cache

compaction, etc)

•  Successful if …
–  Does not compromise existing level of security and

performance
–  Rapid prototype new and existing protocols

