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Abstract 
 

This report describes the Supercharged Planetlab Platform (SPP), a system designed as a prototype 
of an internet-scale overlay hosting platform. Overlay networks have become an important 
vehicle for delivering Internet applications. Overlay network nodes are typically implemented 
using general purpose servers or clusters. The SPP offers a more integrated architecture, 
combining general-purpose servers with high performance Network Processor (NP) 
subsystems. SPP nodes have recently been deployed as part of the Global Environment for 
Network Innovation (GENI) and are available for use by research users. 
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1. INTRODUCTION 
Network overlays have become a popular tool for implementing Internet applications. While 
content-delivery networks provide the most prominent example of the commercial application 
of overlays [DI02, KO04], systems researchers have developed a variety of experimental overlay 
applications, demonstrating that the overlay approach can be an effective method for deploying 
a broad range of innovative systems [BH06, FR04,RH05, ST02]. Rising traffic volumes in overlay 
networks make the performance of overlay nodes an issue of growing importance. Currently, 
overlays nodes are constructed using general purpose servers, often organized into a cluster 
with a load-balancing switch acting as a front end. This report describes the architecture of the 
Supercharged Planetlab Platform (SPP), a research system that explores an alternative approach 
that combines general purpose server blades and high performance Network Processor (NP) 
subsystems into an integrated architecture designed to support multiple overlay applications. 
The SPP is designed for scalability and high performance, with the objective of supporting 
internet-scale overlays, with router-like performance. We plan to deploy five SPPs as part of the 
National Science Foundation’s GENI initiative. The first three systems have recently been 
deploye, and the remaining two will be deployed by the end of 2010. 

The SPP has been designed to operate within the PlanetLab overlay network testbed [CH03, 
PE02]. Since its inception, PlanetLab has become a popular experimental platform and 
deployment vehicle for systems researchers in networking and distributed systems. PlanetLab 
nodes are implemented using conventional PCs, running a modified version of Linux. This 
provides a familiar implementation environment and is inexpensive and easy to deploy. At the 
same time, it does have significant performance limitations that have become increasingly 
apparent as the usage of PlanetLab has grown, and as researchers have sought to deploy long-
running services that carry significant volumes of traffic. Because PlanetLab applications run as 
user-space processes, their packet forwarding rates are typically limited to less than 50K packets 
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per second, which translates to less than 100 Mb/s for average packet lengths of 250 bytes. 
Applications that do significant processing of packets (rather than simply forwarding them) can 
have substantially smaller packet forwarding rates. In addition, applications running in 
PlanetLab are subject to high latencies (tens of milliseconds per hop), high delay jitter (tens to 
hundreds of milliseconds) and poor performance isolation. These characteristics are caused by 
the coarse-grained time-slicing provided by the operating system, and the failure to properly 
account for OS-level processing on behalf of different application processes. The SPP seeks to 
address these issues by integrating general purpose server blades with performance-optimized 
NP subsystems, into a platform that delivers the flexibility and ease-of-use of a conventional 
PlanetLab implementation, while delivering much higher levels of performance. By supporting 
a simple and familiar fast-path/slow-path application structure, we make it straight-forward 
for researchers to map the high volume part of their applications (which is typically fairly small) 
onto the NP resources, while enabling them to implement the more complex parts in the 
programmer-friendly environment offered by a general-purpose server.  This report provides a 
detailed description of the SPP architecture, including all hardware and software components.  

2. GENI DEPLOYMENT PLAN 
Five SPPs are being deployed within Internet 2 as part of NSF’s GENI initiative, and will be 
made available for use by the networking research community. Systems will be deployed at five 
locations (Salt Lake City, Kansas City, Washington D.C., Atlanta and Houston) and connected 
by gigabit links. Some sites will have multiple links connecting them, as shown in Figure 1. In 
addition to the direct links to other SPPs, each node will have several gigabit links to an Internet 
2 IP router. These interfaces will have IP addresses that are visible to any Internet 2 connected 
institution, allowing traffic from those institutions to reach the routers through the existing 

Figure 1. Planned Deployment of SPP Nodes in GENI Using Internet2 
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Internet 2 infrastructure. While these IP connections support only best-effort services, because 
of the way Internet 2 is engineered, we expect congestion on the IP access paths through 
Internet 2 to be minimal. 

To use the SPPs, users request slices through a controller called SPC-PLC at Washington 
University. SPP-PLC runs the Planet Lab Central (PLC) software, providing users with access to 
SPPs using the same web interface that they use to access PlanetLab. The SPPs will obtain slice 
configuration information from SPP-PLC and use it to setup accounts on individual SPPs that 
researchers can then use to login to SPPs so they can configure and run their experiments. 

The deployment will take place in two stages. The first stage (which is now complete) 
includes Salt Lake City, Kansas City and Washington D.C. These will be connected in a ring, 
with a pair of gigabit links between each adjacent pair of nodes. 

3. HARDWARE COMPONENTS 
3.1. Overview 
Figure 2 shows the main components of an SPP node. Most of the components are blades in an 
Advanced Telecommunications Computing Architecture (ATCA) blade server. ATCA is a standard 
for telecom-class blade servers, appropriate for a wide range of applications, including high 
capacity routers. All input and output occurs through the Line Card (LC), which is an NP-based 
subsystem with one or more physical interfaces. The LC forwards each arriving packet to the 
system component configured to process it, and queues outgoing packets for transmission, 
ensuring that each slice gets the appropriate share of the network interface bandwidth. The 
architecture can support multiple LCs, but the systems being deployed for GENI have one LC 
each. The General Purpose Processing Engines (GPE) are conventional dual processor server 
blades running the PlanetLab OS (currently Linux 2.6, with PlanetLab-specific extensions) and 
hosting vServers that serve application slices.  The Network Processing Engine (NPE) is a server 
blade containing two NP subsystems, each comprising an Intel IXP 2850 NP, with 17 internal 
processor cores, 3 banks of SDRAM, 3 banks of QDR SRAM and a Ternary Content Addressable 
Memory (TCAM). The architecture supports multiple NPEs, but the deployed systems have a 
single NPE each. The NPE supports fast path processing for slices that elect to use this 
capability and provides up to 10 Gb/s of IO bandwidth. The Control Processor (CP) is a separate 
rack-mount server that hosts the software that coordinates the operation of the system as a 
whole. The CP also hosts a Net-FPGA card with four 1 GbE interfaces. The Net-FPGA will be 

 

Figure 2.  System organization showing Control Processor (CP), General Purpose Processing 
Engines (GPE) and Network Processing Engines (NPE), Line Card and Switches 
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made available for use by researchers. The switching substrate includes a chassis switch and a 
separate external switch, which provides additional 1 GbE ports. The chassis switch board 
actually includes two switches, a Fabric Switch with both 1 GbE and 10 GbE ports for data traffic 
and a Base Switch with 1 GbE ports for control traffic. 
3.2. General Purpose Processing Engine (GPE) 
The GPEs (see Figure 3) are dual processor blade servers, specifically Radisys ATCA 4310 
blades with 2 GHZ Intel Xeon processors with 4 GB of memory and an on-board SAS disk (37 
GB). They have two GbE network interfaces, one on the fabric switch and one on the base 
switch. The base switch interface is reserved for control traffic only and is not directly accessible 
to user applications running on the GPEs. 
3.3. Network Processing Engine (NPE) 
The Network Processor Engine is implemented using a Radisys ATCA 7010 blade, which 
contains two Intel IXP 2850 NP subsystems. The 7010 blade communicates with the chassis 
switch through the Fabric Interface Card, a small mezzanine card that allows the 7010 to be 
used with different types of chassis switches. In the case of the SPP, the FIC provides a 10 GbE 
interface to the chassis switch that passes through the ATCA backplane. The 7010 blade can be 
configured with an optional input/output card that is mounted on the rear-side of the chassis. 
Such rear-mounted cards are referred to as Rear Transition Modules (RTM). The NPE does not 
use the RTM, but the Line Card does. The various components on the blade communicate 
through a Serial Peripheral Interface (SPI) switch supporting data rates of just over 12 Gb/s. 
The SPI interface transfers data in fixed length cells of 64 bytes, so is subject to segmentation 
losses when transferring variable length packets. The two NP subsystems share a Ternary 
Content Addressable Memory (TCAM) which can store up to 18 Mb of data and can be 
configured to support word lengths ranging from 72 to 576 bits. The xScale processors share a 
separate network connection to the base switch, which is used for control communication. 

 
Figure 3. General Purpose Processing Engine (Radisys ATCA 4310)
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Each of the IXP 2850s has an xScale management processor that runs an embedded version 
of Linux, plus 16 MicroEngines (ME), which are 32 bit RISC processors optimized for packet 
processing. Each ME has a small program store capable of storing 8K instructions, a register file 
and a small data memory. There is an on-chip SRAM that can be accessed by all of the MEs and 
multiple interfaces to off-chip memory. These include four SRAM and three DRAM interfaces. 
As with any modern processor, the primary challenge to achieving high performance is coping 
with the large processor/memory latency gap. Retrieving data from off-chip memory can take 
50-100 ns (or more), meaning that in the time it takes to retrieve a piece of data from memory, a 
processor can potentially execute over 100 instructions. The challenge for processor designers is 
to try to ensure that the processor stays busy, in spite of this. Conventional processors cope with 
the memory latency gap primarily using caches. However for caches to be effective, 
applications must exhibit locality of reference, and unfortunately, networking applications 
typically exhibit very limited locality of reference, with respect to their data. Since caches are 
relatively ineffective for networking workloads, the IXP provides a different mechanism for 
coping with the memory latency gap, hardware multithreading. Each of the MEs has eight 
separate sets of processor registers (including Program Counter), which form the MEs hardware 
thread contexts. An ME can switch from one context to another in 2 clock cycles, allowing it to 
stay busy doing useful work, even when several of its hardware threads are suspended, waiting 
for data to be retrieved from external memory.  

The MEs include small FIFOs (called Next Neighbor Rings) connecting to neighboring MEs, 
which can be used to support pipeline processing of packets. A pipelined program structure 
makes it easy to use the processing power of the MEs effectively, since the parallel components 
of the system are largely decoupled from one another. Pipelined processing also makes effective 
use of the limited ME program stores, since each ME need only store the instructions for its 
stage of the pipeline 
3.4. Line Card (LC) 
The Line Card is implemented using the same Radisys 7010 blade as the NPEs. The one 
difference is that the Line Cards are configured with the optional IO card. There are multiple IO 
cards available for the 7010. The Line Cards use an IO card with ten 1 GbE interfaces. The card 
supports swappable modules allowing it to accommodate either copper or fiber connections. 
Packets are transferred between the IO card and the 7010 boards NP subsystems through the 
on-board SPI switch. This requires that the Ethernet packets be fragmented into 64 byte cells for 

  
Figure 4.  Radisys ATCA 7010 Network Processor Blade with 10x1 GbE IO card 
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transfer through the SPI switch, which can lead to fragmentation losses for packets that are just 
a little too long to fit into one SPI cell. 
3.5. Switching Substrate 
The chassis switch is a Radisys ATCA 2210 card which includes two switches, a fabric switch 
with 10 GbE ports (these can optionally be used for 1 GbE interfaces) and a base switch with 1 
GbE ports. The fabric switch has four expansion ports on the front panel that can be used to 
connect directly to other components. The base switch also has four front panel ports which are 
used by the SPP for connections to the CP and the shelf manager. The external switch is a 
Netgear GSM 7228 with 24 1 GbE interfaces and the ability to host up to four 10 GbE interfaces. 
The SPP has one of these 10 GbE interfaces equipped and connected to the chassis switch 
through one of its front panel ports. 
3.6. ATCA Chassis 
The SPP uses a Shroff 5U six slot ATCA chassis (model name Zephyr) with an integrated Shelf 
Manager. The Shelf Manager has an on-board CPU that provides low level maintenance access 
to the chassis. This allows the various blades in the chassis to be remotely controlled. This is 
used primarily to force a reboot of a component that is not responding as expected. 
3.7. Control Processor 
The Control Processor (CP) is implemented by a Dell PowerEdge 860 with 2 GB of memory and 
160 GB of disk. It has three 1 GbE network connections. One is connected to the base switch (for 
control communication), one is connected to the fabric switch (for data communication to and 
from the line card) and one serves as a “back door” for remote maintenance access to the CP. 
The CP is also equipped with several serial interfaces, which connect to the Shelf Manager, the 
chassis switch blade, the external switch and each of the two GPEs. These provide backup 
maintenance access, in the event that standard access mechanisms fail. 
3.8. NetFPGA 
The NetFPGA is a PCI card that hosts a Xilinx Virtex 2 Pro 50 FPGA, on-board SRAM and 
DRAM and four 1 GbE interfaces. Each SPP has one NetFPGA which is available as a resource 
for use by researchers. The NetFPGA is hosted by the CP, and its four network connections go 
to the external switch. From there, packets can be forwarded to any of the other components in 
the system. More details on the NetFPGA can be found at http://www.netfpga.org/. 

Figure 5. Switch blade (Radisys ATCA 2210) 
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4. DATAPATH SOFTWARE 
In this section, we describe the software components that implement packet processing in the 
Line Card and NPE.   
4.1. Line Card 
The Line Card is part of the SPP substrate. That is, it implements packet processing functions 
that are common to all applications running on the SPP and performs no application-specific 
packet processing. However, elements of the SPP are configured for particular applications and 
we describe those elements and how they can be configured.  

Figure 7 shows the software components that implement the Line Card’s packet processing 
functionality. The software is organized into two pipelines, one that processes ingress traffic (that 
is traffic arriving on an external interface and passing through to the chassis switch) and one 
that processes egress traffic. Each of these pipelines is mapped onto a different NP subsystem as 
there is little interaction between the two. Each block in the diagram indicates the number of 
MicroEngines (ME) that are used to implement that component. In some cases, the multiple 
MEs just implement finer-grained pipeline stages. In other cases, they operate in parallel. 
Successive pipeline elements are separated by buffers, which are not shown in the diagram. 
Some of these are implemented using the Next Neighbor Rings. Others are implemented using 
the shared on-chip SRAM. 

For most pipeline components, per packet processing overhead is the dominant 
performance concern, so the software was largely engineered around the case of minimum size 
packets. For the SPP, the minimum packet size is determined by the minimum Ethernet frame 
length (effectively 88 bytes when the VLAN tag, flag, preamble and inter-packet gap are all 
accounted for). If all ten physical interfaces are operating at full rate, this means that each of the 
pipelines must process a packet every 70 ns. This means that a pipeline stage that is 
implemented with a single ME has less than 100 processor cycles it can use to process each 
packet. Since an access to external memory has a latency of 150 cycles for SRAM and 300 cycles 
for DRAM, it can access external memory only 2-4 times, even if it uses all eight hardware 
thread contexts to mask the memory latency. This is the fundamental challenge that must be 
met to maintain high performance. 

We start by describing the ingress pipeline. The RxIn block transfers packets from the IO 
interface of the IXP chip into memory. This involves reassembling SPI cells into packets, which 
are placed in DRAM buffers of 2 KB each. The RxIn block also allocates a buffer descriptor which 

 
Figure 6. NetFPGA card 
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is initialized and stored in SRAM. RxIn passes several pieces of metadata to the next pipeline 
element. This includes the physical interface on which the packet was received, its Ethernet 
frame length, several status flags and a reference to its buffer. 

The Key Extract block extracts selected header fields from the buffer. These include the IP 
packet length, the value of the IP protocol field and the destination IP address and port number. 
These are added to the metadata passed down the pipeline. The Lookup block performs a lookup 
in the shared TCAM. This is an exact match lookup, based on the interface number, protocol, 
destination IP address and port number. The result of the lookup specifies the queue the packet 
is to be placed in, a translated port number and a VLAN number, which is used within the 
chassis switch to determine where it goes next. It also includes a Statistics Index which is used to 
identify traffic counters that are to be updated for the given packet. The Header Format block 
makes any required changes to the packet headers in the DRAM buffer. This includes rewriting 
the TCP or UDP destination port number and rewriting MAC address to reflect the address of 
the component the packet is to be forwarded to next. The Lookup block can send selected 
packets to the xScale (as determined by the lookup results) and the xScale can insert packets 
into the pipeline through the Header Format block. 

The Queue Manager (QM) is the most complex of the components in the datapath. It is 
implemented using six MEs. Four of these implement the actual queueing functions, while one 
distributes packets received from the Header Format block across the four queueing engines, 
while the other provides a similar interface function on output. Each of the four queueing 
engines manages a separate set of linked list packet queues that are stored in external DRAM. 
The IXP provides low level hardware support for managing such queues, making the basic list 
operations highly efficient. However, maintaining high throughput is still challenging, as 
successive accesses to a single queue inherently requires at least one access per packet and each 
such access takes 150 cycles (the SRAM memory latency). Each queueing engine also 
implements five separate packet schedulers, which can be individually rate controlled. Each of 
these schedulers has its own list of queues, and implements a Weighted Deficit Round Robin 
scheduling policy. In the Line Card, queues are assigned to schedulers based on their 
destinations. In particular, all queues assigned to a particular scheduler share a common “next 
hop” (the CP, GPE1, GPE2 or the NPE). Multiple schedulers can share a common destination 

Figure 7. Line Card data path software components and hardware mapping 
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and this is used to enable higher overall throughput, as there are performance limits associated 
with both individual MEs and individual schedulers. 

The TxIn block transfers packets from the DRAM buffers to the IO interface. This involves 
segmenting packets into SPI cells. The Statistics block is used by most of the other components 
to record traffic statistics. It has an input FIFO (not shown) which is implemented using the on-
chip SRAM accessible to all MEs. The IXP hardware provides low level support to enable 
multiple MEs to write to such FIFOs without interference and without requiring explicit 
software concurrency control. This allows them to issue update requests for statistics counters 
without having to interrupt their main packet processing flow. The Stats block processes these 
requests and maintains the traffic counters in external memory. This delegates the memory 
access overheads associated with updating the statistics counters to a separate ME, in order to 
minimize the impact on those MEs processing packets. A typical statistics request updates both 
a packet counter and a byte counter, allowing effective monitoring of both packets processed 
and aggregate bandwidth. There is one other ME that is not shown in the diagrams. This ME 
maintains the free space list of packet buffers. It also is used by multiple MEs and accepts 
“buffer recycling requests” from other MEs using a similar input FIFO. 

The egress pipeline is similar to the ingress pipeline, but there are a few differences. First, the 
egress pipeline includes a Flow Statistics module that maintains information about outgoing 
packet flows. This data is collected to allow for accountability of outgoing packets. Since the 
SPP is a shared platform used by researchers to carry out networking experiments, it is possible 
for users of the platform the use it to send packets to Internet destinations that don’t want to 
receive those packets (this can happen inadvertently or maliciously). This can lead the users of 
the computers at those destinations to complain about the unwanted traffic. When this happens, 
it’s important for SPP operators to have the ability to determine the individual user whose 
experiment is generating the unwanted traffic. The Flow Stats module provides the low level 
data collection needed to support this. The requirement for flow statistics originates with the 
PlanetLab testbed, and the data collected is compatible with the data collected for conventional 
PlanetLab nodes. The Flow Stats module maintains its data in an external SRAM which can be 
read by the xScale control processor. Software running on the xScale aggregates the data 
produced by the Flow Stats module and periodically transfers it to the Control Processor, which 
stores it on disk and makes it available to system administrators. 

All the other components of the egress pipeline are similar to their counterparts in the 
ingress pipeline, although there are small differences. For example, the header fields used as the 
lookup key in the Lookup module are different, and include the VLAN on which the packet 
arrived and its source IP address and port number. The Queue Manager is the same as in the 
ingress pipeline but is configured differently. Each of the Line Card’s outgoing interfaces is 
assigned a distinct packet scheduler and each experiment running on the SPP (more precisely 
each slice) that is using an interface has a queue on that interface with a weight that reflects its 
assigned share of the interface bandwidth. In the simplest case, each of the outgoing interfaces 
is a separate physical interface, but it is possible to define multiple virtual interfaces on a given 
physical interface and associate a separate scheduler with each virtual interface. This makes it 
possible to provision each virtual interface with a specific share of the physical interface 
bandwidth. The external interfaces each have an associated IP address and the GPEs associate 
these same IP addresses with their own virtual interfaces. So, a GPE sends a packet out of the 
SPP on a particular external interface by sending it with the source IP address associated with 
that interface. This allows the GPE software to be largely oblivious to the fact that it is operating 
within an SPP. 
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Because the SPP supports multiple processing engines, the TCP and UDP port numbers 
associated with the external interfaces must be shared by the CP, the GPEs and the NPE. Since 
the CP and GPE operating systems each control the port numbers that they associate with 
sockets, it’s possible that port numbers selected by different components will conflict with one 
another. This requires a form of Network Address Translation (NAT) on the part of the Line 
Card. More specifically, the Line Card must translate the port numbers of the SPP’s endpoint of 
TCP and UDP connections that originate with the SPP (i.e. client connections). That is, it must 
translate the source port number for packets leaving the SPP and the destination port number 
for packets arriving at the SPP. The port number translation is implemented by packet filters 
inserted in the Line Card’s TCAM. All packets forwarded by the Line Card must match such a 
filter. If there is no filter for a given packet, that packet will be directed to the xScale, where a 
NAT daemon will determine if the packet belongs to a new outgoing connection, and if so will 
assign it a port number and install a TCAM filter to implement the translation of subsequent 
packets. For TCP connections, an additional filter is installed to send copies of SYN packets to 
the NAT daemon, so it can detect the closing of the connection, remove the associated filters 
and de-allocate the assigned port number. Traffic on UDP connections is monitored 
continuously, and the associated port numbers are freed after an extended period of inactivity. 
The NAT daemon also performs translations on outgoing ICMP echo packets, allowing 
applications on GPEs to send ping packet and receive the corresponding reply. 
4.2. Network Processing Engine Software – version 1 
The organization of the first version of the NPE software and its mapping onto MEs is shown in 
Figure 8. This software uses one of the two NP subsystems on the Radisys 7010 blades. Our 
original plan was to instantiate the same software on both blades, allowing them to be used as 
largely independent NPEs. Unfortunately, limitations of the 7010’s input/output layer made 
this infeasible, so in the initial deployment of the SPP, only one of the two NP subsystems is 
available to users. The next section describes another version of the software that is under 
development and which will replace the first version, as soon it has been completed. 

As in the Line Card, the software components that implement the NPE are organized as a 
pipeline. Packets received from the chassis switch are copied to DRAM buffers by the Receive 
(Rx) block on arrival, which also passes a reference to the packet buffer through the main packet 
processing pipeline. Information contained in the packet header can be retrieved from DRAM 
by subsequent blocks as needed, but no explicit copying of the packet takes place in the 
processing pipeline. At the end of the pipeline, the Transmit (Tx) block forwards the packet to 
the output. Buffer references (and other information) are passed along the pipeline primarily 
using FIFOs linking adjacent MEs. Pipeline elements typically process 8 packets concurrently 
using the hardware thread contexts. The Substrate Decapsulation block determines which slice 
the packet belongs to, by doing a lookup in a table stored in one of the SRAMs. It also 
effectively strips the outer header from the packet by adjusting a pointer to the packet’s buffer 
before passing it along the pipeline.  

The Parse block includes slice-specific program segments. More precisely, Parse includes 
program segments that define a preconfigured set of Code Options. Slices are configured to use 
one of the available code options and each slice has a block of memory in SRAM that it can use 
for slice-specific data. Currently, code options have been implemented for IPv4 forwarding and 
for the Internet Indirection Infrastructure (I3) [ST02]. New code options are fairly easy to add, 
but this does require familiarity with the NP programming environment and must be done with 
care to ensure that new code options do not interfere with the operation of the other 
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components. The primary role of Parse, is to examine the slice-specific header and use it and 
other information to form a lookup key, which is passed to the Lookup block. 

The Lookup block provides a generic lookup capability, using the TCAM. It treats the lookup 
key provided by Parse as an opaque bit string with 112 bits. It augments this bit string with a 
slice identifier before performing the TCAM lookup. The slice’s control software can insert 
packet filters into the TCAM. These filters can include up to 112 bits for the lookup key and 112 
bits of mask information. Software in the Management Processor augments the slice-defined 
filters with the appropriate slice id before inserting them into the TCAM. This gives each slice 
the illusion of a dedicated TCAM. The position of filter entries in the TCAM determines their 
lookup priority, so the data associated with the first filter in the TCAM matching a given lookup 
key is returned. The number of entries assigned to different slices is entirely flexible, but the 
total number of entries is 128K. 

The Header Formatter which follows Lookup makes any necessary changes to the slice-specific 
packet header, based on the result of the lookup and the semantics of the slice. It also formats 
the required outer packet header used to forward the packet to either the next PlanetLab node, 
or to its ultimate destination. 

The Queue Manager (QM) implements a configurable collection of queues. More specifically, 
it provides 20 distinct packet schedulers, each with a configurable output rate, and each with an 
associated set of queues. Separate schedulers are needed for each external interface supported 
by Line Cards. The number of distinct schedulers that can be supported by each ME is limited 
by the need to reserve some of the ME’s local memory for each. Each scheduler implements the 
weighted deficit round robin scheduling policy, allowing different shares to be assigned to 
different queues. When a slice’s control software inserts a new filter, it specifies a slice-specific 
queue id. The filter insertion software remaps this to a physical queue id, which is added, as a 
hidden field, to the filter result. Slices can configure which external interface its queues are 
associated with, the effective length of each queue and its share of the interface bandwidth. 

The Statistics module maintains a variety of counts on behalf of slices. These can be accessed 
by slices through the xScale, to enable computation of performance statistics. The counting 
function is separated from the main processing pipeline to keep the associated memory accesses 
from slowing down the forwarding of packets, and to facilitate optimizations designed to 
overcome the effects of memory latency. The counts maintained by the Statistics module are 
kept in one of the external SRAMs and can be directly read by the xScale. 
4.3. Network Processing Engine Software – version 2 
Figure 9 shows the organization of version 2 of the NPE software. There are two primary 
objectives for this version. The first is to take advantage of both NP subsystems on the Radisys 

 
Figure 8.  NPE software structure showing the use of memory by various software 
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7010 blade, to increase the amount of traffic that can be handled from 5 Gb/s to 10 Gb/s. The 
second is to provide support for packet replication, allowing applications to more easily 
implement services that require multicast. 

In this version, the packet processing pipeline is distributed across both NPs. On NPUA (the 
top one in the figure), eight MEs are assigned to the Parse block, allowing for more extensive 
processing of user packets. These will operate in parallel and will take advantage of all eight 
thread contexts, allowing up to 64 packets to be processed concurrently. This allows for up to 
780 instructions to be executed per minimum size packet, and for up to 20 DRAM references or 
41 SRAM references per packet. 

The result returned by the Lookup block on NPUA includes a Result Index, which is passed to 
NPUB in a shim header which is added to the packet by the AddShim block. The Lookup and Copy 
block on NPUB uses the result index to select an entry from an SRAM-resident table that 
specifies one or more queues in which the packet is to be placed. For multicast packets, a Header 
Buffer is created for each copy. The associated buffer descriptor includes a reference to the 
original packet buffer, which is now referred to as the Payload Buffer. For each copy, the IP 
packet header information needed to forward that copy to its next destination is placed in the 
header buffer and a reference to the header buffer is passed to the Queue Manager, along with 
the appropriate queue and packet scheduler information. A reference count is also placed in the 
descriptor of the payload buffer, so that it can be deallocated when the last header buffer has 
been processed. 

The Header Format block includes slice-specific code that formats the header of the slice’s 
outgoing packets, by writing the header information in the header buffer. Of course, the slice-
specific code may also make changes to the payload of a packet by writing to the payload 
buffer. The Header Format block passes the reference to the header buffer to the TxB block, 
which formats the outgoing packet by reading the header from the header buffer, and the 
payload from the payload buffer. 

5. CONTROL SOFTWARE 
The major control software components are shown in Figure 10. The SPP-PLC is a separate 
system that runs the PlanetLab Central software, providing an interface through which users 
can request new slices and instantiate those slices on one or more SPP. The System Resource 
Manager is the top level controller and coordinates the use of various resources by the different 
components of the architecture. The Resource Manager Proxy provides an interface through 
which user slices can request and configure resources. The Substrate Control Daemons (SCD) in 

Figure 9. Version 2 of the NPE datapath software 
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the Line Card and NPE provide an interface through which the datapath software running in 
the network processors is configured. The SPP Login Manager (SLM) provides a mechanism to 
enable users to login to the vServers for their individual slices, so they can install code, request 
and configure resources and run experiments. More details of the various components are 
provided below. 
5.1. System Resource Manager (SRM) 
The SRM is the top level controller for the SPP and provides several services. These include 
acquiring slice definitions from SPP-PLC, instantiating slice definitions, reserving and assigning 
resources to slices and coordinating the initialization of the whole system. The SRM implements 
functions provided by the Node Manager on a conventional PlanetLab node, but must provide 
this functionality in the context of a system with a more complex internal structure, and a richer 
set of resources. 

The SRM polls SPP-PLC periodically to obtain new slice definitions. When a new slice is 
detected, the SRM selects one of the two GPEs on which to instantiate the slice. Slice 
instantiation involves creating a vServer on the selected slice, initializing it and configuring a 
login so that users can access their assigned vServer. 

Once assigned to a vServer, a user can run programs that send and receive packets on the 
external interfaces. Outgoing connections are subjected to port number translation at the Line 
Cards, as described in Section 4. Users may also request the use of specific external port 
numbers in order to run servers that listen on specific ports. User requests are made through an 
interface provided by the RMP on the user’s assigned GPE. The RMP forwards these requests to 
the SRM which manages all system level resources, including external port numbers, physical 
interface bandwidth and NPE resources. 
5.2. Resource Manager Proxy (RMP) 
The RMP provides an API used by applications running in vServers. The API allows users to 
reserve resources in advance (such as external port bandwidth and NPE fastpaths), to acquire 
those resources when a reservation period starts and configure the resources as needed. The 
RMP is implemented as a daemon that runs in the root context and is accessed through a set of 

Figure 10. Major Control Software Modules 
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library routines. A command line interface is also provided so that users can reserve and 
configure resources interactively, or through a shell script. The command line interface converts 
the given commands to API calls.  

The main API calls are listed below in topical sub-sections, along with a brief description of 
how each call is used.  We use a representation that attempts to informally describe the interface 
semantics.  More precise descriptions are given in the reference manual.  We use an abstract 
interface syntax that has the form “R F(A1,…,An)” where F is the function name, Ai is the i-th 
argument, and R is the return value.  Mnemonic names are used to convey usage while data 
type modifiers have been omitted.  The following abbreviations and mnemonics are used in 
argument names and descriptions: 
• FP  FastPath 
• EP  EndPoint – a logical interface used by a slice and mapped to a physical interface 
• LC  LineCard 
• BW  BandWidth 
• DB  DataBase 
• Xdescr X description where X is Q, EP or FP for Queue, EndPoint, or FastPath  
• Xid  X identifier where X is F, FP, MI, Q or S for Filter, FastPath, MetaInterface,  
   Queue, or Slice 

5.2.1. Interfaces 
      ifList  get_ifaces(ifList)  

Return a list of all physical interfaces of the SPP.  Slices configure MIs using 
the information from this list.  The returned list indicates for each physical 
interface the attributes of the interface; i.e., interface number, the interface 
type (Internet or peering), the IP address, the total bandwidth and the 
available bandwidth. 

      ifNum  get_ifn(EPaddr)  
Return the physical interface number of the EP. 

      ifAttributes  get_ifattrs(ifNum,ifAttributes) 
Return the attributes of the physical interface. 

      IPaddr  get_ifpeer(ifNum) 
Return the IP address of the physical interface. 

5.2.2. GPE Interface Bandwidth 
      rmpCode  resrv_pl_ifbw(ifNum,BWkbps) 

Reserve bandwidth (Kbps) on the physical interface. 
      rmpCode   free_pl_ifbw(ifNum,BWkbps)  

Release bandwidth (Kbps) from the physical interface. 

5.2.3. GPE Endpoints 
      EPdescr  alloc_endpoint(EPdescr) 

Given an EP description, allocate a new EP, and return a reference to the EP.   
A filter is installed in the LC to direct matching traffic to the GPE.  For TCP 
or UDP, you can select the port number or have the system give you one. 

      RMPcode  free_endpoint(EPdescr)  
Free the endpoint, de-install the LC filter for the EP, and return the status. 
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5.2.4. FastPaths 
      FPdescr  alloc_fastpath(codeOpt,bwSpec,resSpec,memSpec,FPdescr)  

Given specifications for the aggregate bandwidth, other resource (filters, 
queues, buffers and stats) and memory, allocate a new FP for the code 
option, and return a reference to the FP description. 

      free_fastpath(FPid)  
Free the resources of the FP. 

5.2.5. FastPath Bandwidth 
      RMPcode  resrv_fpath_ifbw(FPid,ifNum,BWkbps)  

Reserve bandwidth (Kbps) on a physical interface for a FP. 
      RMPcode  free_fpath_ifbw(FPid,ifNum,BWkbps)  

Free the bandwidth (Kbps) of a FP from a physical interface, and return the 
status. 

5.2.6. FastPath MetaInterfaces 
      MIid    alloc_udp_tunnel(FPid,EPdescr )  

Given a UDP tunnel EP description allocate the EP for the FP, and return the 
MI identifier. 

      RMPcode  free_udp_tunnel(FPid,MIid)  
Free the MI of a FP, and  return the status. 

      EPdescr  get_endpoint(FPid,MIid,EPdescr)  
Return the UDP tunnel EP description for a given MI of a FP. 

5.2.7. FastPath Queue Management 
      RMPcode  bind_queue(FPid,MIid,qidListType,qidList)  

Associate the listed queues to the MI of the FP, and return the status. 
      Qdescr  get_queue_params(FPid,Qid,Qdescr)  

Return the parameters (threshold, bandwidth) for the FP queue, and return a 
description of the queue. 

      BWkbps  set_queue_params(FPid,Qid,Qdescr)  
Set the queue parameters (threshold, bandwidth) for the FP queue, and return the 
bandwidth of the queue. 

      Qlen  get_queue_len(FPid,Qid,Qlen)  
Return the length of the FP queue. 

5.2.8. Fastpath Filter Management 
      rmpCode  write_fltr(FPid,Fid,Fltr)  

Install a FP filter, and return the status. 
      rmpCode  update_result(FPid,Fid,Fltr)  

Modify the FP filter, and return the status. 
      Fltr  get_fltr_byfid(FPid,Fid,Fltr)  

Return the FP filter given the filter ID. 
      Fltr  get_fltr_bykey(FPid,key,Fltr)  

Return the FP filter that matches the key. 
      fltrResult  lookup_fltr(FPid,key,Fltr)  

Return the result part of the FP filter that matches the key. 
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      rmpCode  rem_fltr_byfid(FPid,Fid)  
Remove the FP filter given the filter ID, and return the status. 

      rmpCode  rem_fltr_bykey(FPid,key)  
Remove the highest priority FP filter that matches the key, and return the status. 

5.2.9. FastPath  Stats Management 
      statsRecord  read_stats(FPid,statsId,flags,statsRecord)  

Return the FP stats record (counter group) for the stats ID. The flags argument selects 
which counters to return.  You can select the byte or packet counter and whether the 
preQ or postQ counter  

      rmpCode   clear_stats(FPid,statsId,flags)  
Reset the FP stats counters for the stats ID.  The flags argument selects which 
counters to return. 

      statsHandle  create_periodic(FPid,statsId,period, 
historySize,flags)  

Create a periodic stats read event for the stats ID with the given period and history 
size, and return a handle for the operation.  The flags argument indicates the 
retrieval method:  either push the stats data to a registered port, or have the VM pull 
the data using the get_periodic command. 

      rmpCode   delete_periodic(FPid,statsHandle)  
Remove the periodic event, remove the callback state, and return the status. 

      rmpCode   set_callback( FPid,statsHandle,ipPortNum)  
Setup the callback for a periodic stats push model that sends stats records to the IP 
port number, and return the status. 

      statsRecord  get_periodic(FPid,statsHandle,statsRecord)  
Return the stats record associated with the stats handle. 

5.2.10. FastPath Memory 
Each code option is provided with a block of SRAM.  A slice can read/write to any location in 
this block.  A code option may elect to provide library functions to manipulate control 
structures within this block.  The valBuf argument to the read/write functions is a structure that 
includes the number of bytes in the buffer and the buffer itself. 

      rmpCode  mem_write(FPid,offset,valBuf)  
Write data to the SRAM starting at offset within the FP block, and return the status.  
The valBuf argument is a structure that includes the number of bytes and the data. 

      valBuf  mem_read(FPid,offset,nbytes,valBuf)  
Read bytes into the value buffer, and return a reference to the value buffer. 

5.2.11. Reservation Management 
      rmpCode  make_reservation(rsvRecord)  

Make a reservation, and return the status. 
      rmpCode  update_reservation(rsvRecord)  

Update a reservation. 
      rmpCode  cancel_reservation(date)  

Cancel the reservation that includes the specified date and time. 
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5.3. Substrate Control Daemons (SCD) 
The SCDs run on the xScale processors of the Line Card and NPE. They provide a messaging 
interface, through which other control software components can exercise control. These include 
messages to access traffic counters, add/remove TCAM packet filters, configure queue 
parameters (including WDRR weights and discard thresholds), read/write specific memory 
locations used for control and status registers, etc. These are described in more detail below. 
All functions have a context ID (contextID) as an argument.  A context ID of 0 indicates a 
privileged operation performed by the substrate.  Any other context ID indicates a user context 
and is either a fastpath ID or internal slice ID. 

Many of the functions  (e.g. write_fltr) appear to be similar to ones in the RMP.  This is 
expected because the evaluation of an RMP operation must often be relayed to an SCD for 
evaluation but with one important difference.  The SCD has a substrate view of objects whereas 
the RMP provides a higher-level of abstraction.   

The Line Card SCD allows the SRM to control various elements of the Line Card data path. 
This includes the TCAM-resident packet filters (on both input and output), interface addressing 
and bandwidth, NAT filter table configuration and queueing parameters.  

The NPE SCD allows the SRM and the RMP to control various elements of the NPE data 
path. This includes fast path configuration data, per-slice packet filters resident in the TCAM 
and queueing parameters.  

5.3.1. Control Table Initialization 
There are several tables and control blocks used by the control software.  

      set_sched_params(contextId,Sid,ifNum,BWkbpsMax,BWkbpsMin,valBuf)  
Set the interface number and bandwidth characteristics for a Scheduler in the Per 
Scheduler Parameters table. 

      set_encap_cb(contextId,Sid,srcIPaddr,dstMACaddr,valBuf)  
On the NPE, set the source IP Address and destination MAC Address associated 
with the specified scheduler. 

      set_sched_mac(contextId,Sid,dstMACaddr,srcMACaddr,valBuf)  
On the LC, set the destination and source MAC Addresses for the specified 
scheduler.  

      set_encap_gpe(contextId,FPid,GPEipAddr,NPEipAddr,valBuf)  
On the NPE, for a fast path, set the GPE IP Address and NPE IP Address to be used 
for communication between the GPE and NPE for local delivery and exceptions. 

      set_fpmi_bw(contextId,FPid,Sid,MIid,BWkbps,valBuf)  
On the NPE, for a particular fast path, set the bandwidth for a MI using a particular 
scheduler. 

      SCDcode  set_src_hwaddr(contextId,MACaddr)  
On the NPE, set the NPE’s source MAC Address. 

      SCDcode  set_iface_table(contextId,ifTable)  
On the NPE, initialize the RX Interface ID table. This table translates the receive 
destination address on a packet to a 4 bit index which will be used in the Lookup 
key. 

5.3.2. FastPath (NPE SCD Only) 
      set_fast_path(contextId,FPid,codeOpt,vlanID, 

num_queues,num_filters,num_buffers,num_stats, 
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SRAM_offset,SRAM_size,DRAM_offset,DRAM_size,valBuf)  
On the NPE, create a new fast path. 

      rem_fast_path(contextId,FPid,valBuf)  
On the NPE, remove a fast path. 

      SCDcode  set_gpe_info(contextId,EXport,LDport,EXqid,LDqid) 
On the NPE, for a particular fast path, set the Local Delivery and Exception traffic 
port numbers and QIDs. 

5.3.3. Memory 
      write_sram(contextId,offset,valBuf)  

On the NPE, write to the SRAM block for a particular fast path. 
      read_sram(contextId,offset,valBuf,count)  

On the NPE, read from  the SRAM block for a particular fast path. 

5.3.4. Queue Management 
      SCDcode  bind_queue(contextId,MIid,qidListType,qidVector)  

Associate the listed queues to the context’s MI, and return the status. 
      BWkbps  set_queue_params(contextId,Qid,threshhold,BWkbps)  

Set the context’s queue parameters (threshold, bandwidth) for the queue, and return 
the bandwidth of the queue.  

      get_queue_params(contextId,Qid,threshhold,BWkbps)  
Return the context’s parameters (threshold, bandwidth) for the queue through the 
threshold and BWkbps parameters, and return a description of the queue.  

      get_queue_len(contextId,Qid,pktCnt,byteCnt)  
Return the length of the context’s queue through the pktCnt and byteCnt parameters.  

      set_queue_sched(contextId,Qid,Sid,valBuf)  
Associate a specified queue with the specified scheduler. 

5.3.5. NPE Filter Management 
      SCDcode  npe_write_fltr(contextId,Fid,substrateFltr)  

Install a context’s substrate (generic) filter with filter ID.  
      SCDcode  npe_update_result(contextId,Fid,result)  

Modify the result part of a context’s substrate (generic) filter with filter ID.  
      substrateFltr  npe_get_fltr_by_key(contextId,key,substrateFltr)  

Return the context’s substrate (generic) filter that matches the key.  
      substrateFltr  npe_get_fltr_by_fid(contextId,Fid,substrateFltr)  

Return the context’s substrate filter given the filter ID.  
      substrateResult  npe_lookup_fltr(contextId,key,substrateResult) 

Return the result part of the context’s substrate (generic) filter that matches the key.  
      SCDcode  npe_rem_fltr_by_key(contextId,substrateKey)  

Remove the context’s highest priority substrate filter that matches the key, and 
return the status.  

      SCDcode  npe_rem_fltr_by_fid(contextId,Fid)  
Remove the context’s substrate filter given the filter ID, and return the status.  



 - 19 - 

5.3.6. Line Card  Filter Management 
There are two Line Card filter databases:  ingress and egress.  Ingress filters are used to 
determine which SPP component (e.g., NPE, GPE) should handle incoming packets.  Egress 
filters are used to determine which output interface to send outgoing packets.  The database ID 
(DBid) indicates the database to be used. 

      write_fltr( contextId,DBid,Fid,key,mask,result,valBuf) 
Install a context’s LC filter (key, mask, result) in the given database.  

      update_result(contextId,DBid,Fid,result) 
Update a context’s LC filter result in the specified database.  

      get_fltr_by_key(contextId,DBid,key,mask,result,keyLen,resultLen)  
Given the key, retrieve a filter from the specified database. 

get_fltr_by_fid(contextId,DBid,Fid,key,mask,result,keyLen, 
resultLen)  

Given the filter id, retrieve a filter from the specified database.  
      lookup_fltr(contextId,DBid,key,result,resultLen)  

Given the key, retrieve the filter result from the specified database. 
      rem_fltr_by_key(contextId,DBid,key,valBuf)  

Given the key, remove the filter from the specified database. 
      rem_fltr_by_fid(contextId,DBid,Fid,valBuf)  

Given the filter id, remove the filter from a specified database. 

5.3.7. Statistics Management 
      statsRecord  read_stats(contextId,statsId,flags,statsRecord)  

Return the context’s stats record (counter group) for the stats ID. The flags argument 
selects which counters to return.  You can select the byte or packet counter and 
whether the preQ or postQ counter.  

      SCDcode  clear_stats(contextId,statsId,flags)  
Reset the context’s stats counters for the stats ID,  and return the status.  The flags 
argument selects which counters to return.  

      statsHandle   create_periodic(contextId,statsId,period,count, 
flags)  

Create a periodic stats read event for the stats ID of the context with the given period 
and history size, and return a handle for the operation.  The flags argument indicates 
the retrieval method:  either push the stats data to a registered port, or have the VM 
pull the data using the get_periodic command.  

      SCDcode  del_periodic(contextId,statsHandle)  
Remove the context’s periodic event, remove the callback state, and return the status.  

      SCDcode  set_callback(contextId,statsHandle,UDPport)  
Setup the context’s callback for a periodic stats push model that sends stats records 
to the UDP port number, and return the status.  

      statsRecordVector  get_periodic(contextId,statsHandle, 
statsRecordVector)  

Return the context’s stats record associated with the stats handle.  

5.3.8. MicroEngine Management 
      start_mes(contextId,valBuf)  

Start the MicroEngines on an NPU.  
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      stop_mes(contextId,valBuf)  
Stop the MicroEngines on an NPU. 

5.3.9. NAT 
      nat_filters(contextId,ingressStartFid,ingressEndFid, 

egressStartFid, egressEndFid)  
On the LC, initialize the NAT filter tables. This sets aside a block of the TCAM for the 
Ingress NAT filters and a block of the TCAM for the Egress NAT filters. 

5.3.10. MetaInterface Management 
      SCDcode  create_mi(contextId,FPid,MIid,Sid) 

On the NPE,cCreate a new meta-interface for a fast path. 
      SCDcode  delete_mi(contextId,FPid,MIid) 

On the NPE, delete the specified meta-interface for the specified fast path. 
      SCDcode  set_mi_bw(contextId,FPid,MIid,BWkbps)  

On the NPE, for the specified fast path, set the bandwidth for a meta-interface. 
      SCDcode  bind_queue_sched(contextId,Qid,Sid)  

On the NPE, bind a queue to a scheduler. 
      SCDcode  unbind_queue_sched(contextId,Qid)  

On the NPE, unbind a queue from a scheduler and release its bandwidth on that 
scheduler. 

      SCDcode  unbind_queue(contextId,Qid)  
On the NPE, unbind a queue from a meta-interface and release its bandwidth on that 
meta-interface. 

6. SUMMARY 
The SPPs were designed and have been deployed to provide an experimental resource for the 
use of the networking research community. This document provides a detailed description of 
the SPP architecture to assist prospective users, interested in running experimental networks on 
the SPPs. We are in the process of transferring much of the information in this document in a 
wiki, along with additional user-level documentation. Comments and feedback on this 
document can be directed to the first author (jon.turner@wustl.edu). 
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