
A Unified Software Architecture to Enable
Cross-Layer Design in the Future Internet

Ilia Baldine Manoj Vellala, Anjing Wang, George Rouskas, Rudra Dutta Daniel Stevenson
RENCI, Chapel Hill, NC NCSU, Raleigh, NC RTI, RTP, NC

ibaldin@renci.org {mvellal, awang, rouskas, rdutta} @ncsu.edu dstevenson@rti.org

Abstract— While research on cross-layer network optimization
has been progressing, useful implementations have been lagging
because the current Internet architecture does not accommodate
cross-layering gracefully. As part of our FIND project, we
propose a software architecture for the future Internet that
is designed to accommodate such interactions. We present a
conceptual overview as well as high level software design and
an early prototype implementation, and point out the strengths
of our architecture.

I. INTRODUCTION

Over the course of the past several decades, networking
technology has provided incalculable benefit for education,
government, commerce. In the last few years, it has become
increasingly clear that the next big wave that will change
the world will be the incorporation of small information
devices into every aspect of our lives, such as sensors and
actuators, and the constant access to such devices provided
by networking. We are already seeing the beginnings of this:
in sensor/actuator networks, in the increasing functionality
of mobile handheld devices, and in the migration of many
services to network appliances and the network itself. The
dominant vision of networking in the future, and computing
in general, has been called ubiquitous or pervasive networking.

Even as computing technology reaches new heights of ubiq-
uity, a crisis has been seen to be developing that can jeopardize
this future vision. The pervasive network of the future is
enabled by and must serve a new generation of communication
endpoints that are very different from the personal computers
and servers that form the bulk of the network endpoints in
today’s Internet. Communication devices are already appearing
which are more integrated, more embedded, with sensors and
other ubiquitous computing devices. Such devices often have
unique characteristics, both advantages and limitations, which
are not common in currently popular networking devices.
For example, power consumed by network interfaces and the
corresponding battery lifetime are often critical considerations
for small sensor network nodes or mobile handheld devices;
they are not generally considered critical for personal com-
puters. Current internetworking protocols are flexible enough
to handle them, but not gracefully. The overhead imposed in
bending the capability of such devices to existing network
architecture can make the use of such devices prohibitive and
even useless.

1This research was supported in part by NSF grant # Nets-FIND:0626103.

A. “Clean-Slate” Internet

Currently, a consensus appears to be forming within the
community regarding the need to think carefully about the
requirements for the Internet in 15-20 years, to formulate a
vision for the future, and to carry out a focused research
agenda to realize this vision, possibly starting with a “clean
slate”. A new initiative of the National Science Foundation
has targeted this issue [1]. This project team is currently
working on a project that is part of this initiative [2]. A
primary goal of our research project is to allow integration of
cross-layer design and optimization solutions into the future
Internet, because an important the inability to integrate cross-
layer interactions is seen as one of the significant shortcomings
of the current architecture.

Such interactions have become a common theme in handling
new communication devices efficiently. In general, the term
refers to the increasingly common tendency to leverage the
capabilities offered by emerging network devices by taking
them into account at all levels of operation of the net-
work, even operations such as routing or transport, which
are traditionally considered to be disjoint from the physical
communication device. Emerging pervasive devices are likely
to provide powerful capabilities, such as transmission power
control or angle-of-arrival detection, which impact all levels of
network operation. Similarly, the emerging class of ubiquitous
applications pose unique new challenges, such as mobility or
disconnection tolerance, which cannot be naturally mapped
to be the responsibility of any single one of the traditional
networking layers. However, the only way to currently im-
plement cross-layer control and optimization is by custom
implementation of the application and the entire protocol stack.
Flexibility is attained at the cost of a unified architecture.

We propose a new network architecture that represents a
departure from current philosophy and practice. We outline a
framework consisting of (1) building blocks of fine-grain func-
tionality, (2) explicit support for combining elemental blocks
to accomplish highly configurable complex communication
tasks, and (3) control elements to facilitate (what is currently
referred to as) cross-layer interactions. We take a holistic view
of network design, allowing applications to work synergis-
tically with the network architecture and physical layers to
select the most appropriate functional blocks and tune their
behavior so as to meet the application’s needs within resource
availability constraints. We call our architecture the Services
Integration, controL, and Optimization (SILO) architecture.

Next we briefly review some relevant prior work. In Sec-
tion II we present the conceptual framework of the SILO,
and follow up in Section III with the software architecture to
implement it. Section IV concludes the paper.

B. Prior Work

Recently, the concept of cross-layering has gained attention.
This increasingly common concept refers to control and per-
formance optimization actions taken by the network control
algorithm that cannot be localized in any one of the layers
of a layered architecture such as the OSI reference model. It
has become clear that cross-layer control is indispensable in
many contexts. The development of Software Defined Radios
(SDR) and of dynamic approaches to spectrum efficiency
such as that advanced by the FCC based on “interference
temperature” [3] shows that such cross-layer interaction will
span the entire gamut of layered architecture. Current literature
contains numerous examples of cross-layer design in many
contexts, [4]–[9] provides a representative sample. In fact,
the lack of mechanisms for cross-layer interactions (e.g., for
performance tuning) has led to frequent layer violations and
the proliferation of 1

2 layer solutions (e.g., IPSec and MPLS)
even in the Internet. As we mentioned before, implementations
for such strategies have been largely treated as an ad-hoc and
custom projects.

On the architectural front, there have been work propos-
ing new models, though none that specifically targets cross-
layering goals. Among recent research, the work most closely
related to ours is that on role-based architecture (RBA) [10],
[11]. RBA represents a non-layered approach to the design
of network protocols, and organizes communication in func-
tional units referred to as “roles.” Roles are not hierarchically
organized; as a result, the metadata in the packet header
corresponding to different roles form a “heap,” not a “stack”,
and may be accessed and modified in any order. The main
motivation for RBA was to address the frequent layer vi-
olations that occur in the current Internet architecture, the
unexpected feature interactions that emerge as a result [10],
and to accommodate “middle boxes.” We also advocate an
architecture based on collections of services assembled on
demand and specific to an application and network environ-
ment (refer to Section II) as well as a more flexible header
structure (as in [12]). However, our goal is on facilitating
what in today’s layered architecture is referred to as cross-
layer interactions, in a manner that meets the exact user
requirements and optimizes performance; we also leverage the
beneficial aspects of layering, unlike RBA.

Some earlier work also investigated more flexible frame-
works for realizing protocols. The use of micro-protocol
objects, each encapsulating a single function, to facilitate the
development of protocol stacks was considered in [13], [14].
Both approaches are x-kernel specific, as they rely on the x-
kernel [15] environment and its mechanisms for communica-
tion between micro-protocols. We are not tied to any special
purpose environment, rather, we target our approach to a more
common POSIX-like OS.

II. SILO ARCHITECTURE

We briefly describe the key concepts of our architecture in
this section. For a full description, please see [16] or [2].

A. Services

The fundamental building blocks in the SILO architecture
are services. A service is a well-defined and self-contained
function performed on application data, and which is rel-
evant to a specific communication task. “In-order packet
delivery,” “end-to-end flow control,” “packet fragmentation”,
“compression,” “encryption,” and “multi-rate RF PHY” are all
examples of services in this context. Each service addresses a
separate, atomic function, hence the architecture provides more
flexibility and a much finer granularity than current protocols
which typically embed complex functionality.

At the core of the architecture is the mechanism through
which services interact in order to accomplish complex com-
munication tasks. Our approach represents a middle ground be-
tween the strict protocol stack imposed by current architectures
and the “heap” approach advocated by the RBA [10]. Specifi-
cally, we allow any set of services to be selected dynamically
for a particular task, but the order in which these services are
applied is not tied to the “layer” in which the service belongs,
but rather to a set of well-defined precedence constraints; for
instance, when the application requires both a “compression”
and an “encryption” service, the only meaningful interaction
is when compression is applied before encryption. In general,
the precedence constraints impose a partial ordering among
services. Once selected, however, the subset of services is
arranged in a specific order, derived from the partial ordering
and other rules, and this binding remains in effect for the
duration of the associated communication task (typically, the
lifetime of a connection).

B. Knobs

A service is fully defined by describing: (1) the function it
performs, (2) the interfaces it presents to other services, (3)
any properties of the service that affect its relation with other
services (e.g., as required to establish a partial ordering), and
(4) its control parameters, which we also refer to as knobs,
and their actions and constraints. The knobs are adjustable
parameters specific to the function performed by the service,
with a specified range of values and a well-defined relationship
between these values and the perceived performance of the
service. For instance, “compression factor” is a knob for the
“compression” service. The knobs are manipulated by the con-
trol agent (defined below) so as to optimize the performance
of the subset of services selected for the specific task.

C. Methods

We distinguish between a service and its implementation. A
method is an implementation of a service that uses a specific
mechanism to carry out the functionality associated with
the service. For instance, “re-sequencing” is one method for
implementing the “in-order packet delivery” service, “window-
based flow control” is a method for the “end-to-end flow

control” service, and “802.11a OFDM PHY” is one method
for the “multi-rate RF PHY” service. A method implementing
a service must implement the service-specified interfaces, as
well as any service-specific knobs; in other words, service-
specific interfaces and knobs are polymorphic to all methods
implementing a given service. A method may also implement
method-specific knobs, i.e., control parameters unique to this
implementation of a service; for instance, “length of Reed-
Solomon FEC” is a knob specific to the “Reed-Solomon FEC”
method implementing the “error-free delivery” service. These
knobs are adjusted by the control agent to refine the method
behavior and optimize it for a specific environment. A method
is fully defined by describing (1) the service it implements,
(2) the specific algorithm/mechanism it uses to implement the
service, and (3) optional method-specific control parameters,
and their actions and constraints. We emphasize that the
architecture defines services and their interfaces, but it does
not define the methods that implement them; therefore, it is
possible that several alternative methods for a given service
co-exist within the network.

We refer to an ordered subset of methods, each method
implementing a different service, as a silo. One can think of a
silo as a vertical stack of methods; conceptually, applications
reside at the top of the stack, and network interfaces reside
at the bottom. A silo performs a set of transformations on
data from the application to the network or vice versa, so
that the delivery of data from an application to its peer
is consistent with the application’s requirements. Each data
transformation corresponds to a method in the silo, and may
include the generation (or processing) of metadata to be
included (respectively, present) in the packet. A silo possesses
a state that is a union of all constituent method states as well
as any shared state resulting from cross-method interactions. A
silo structure and all related state information are associated
with a specific traffic stream (equivalently, a connection or
flow) and persist for the duration of the connection. One
important aspect of silos is that they can be optimized for
each traffic stream, as we explain next.

D. Control Agent

A control agent is an entity residing inside a node, which is
responsible for (1) composing a silo for an application stream
(or selecting an appropriate commonly-used silo, as we discuss
shortly), and (2) appropriately adjusting all the service- and
method-specific knobs and facilitating cross-service interac-
tions. Composing a silo refers to determining the subset of
services it contains, their order in the stack, and the method
implementing each service. The objective is to dynamically
custom-build a silo for each new connection. To this end,
the control agent takes into account the application’s QoS
requirements, current network resource availability and other
conditions, the precedence constraints among services, and any
policy in effect at the time. The current policy is derived from a
combination of local node policies (e.g., battery-saving mode)
as well as, possibly, one or more network-wide policies of
varying scopes. An example of control agent behavior is tuning

the length of the FEC in order to enhance the “error-free
delivery” service in response to increased radio interference
reported by the “PHY” service. This example clearly illustrates
an intentional design feature of the silo architecture, namely,
the explicit ability to perform cross-service optimization.

A control agent may optionally be able to communicate with
control agents at other nodes in the network (e.g., neighboring
nodes, nodes on the connection path, or the connection peer
node) in order to optimize the behavior of a silo further; this
communication may take place either in- or out-of-band. The
control entities should be able to function without the ability
to communicate (e.g., due to network bandwidth constraints),
but should it be available, they should be able to utilize it.

We expect that in a network following the SILO architecture
a number of services will be defined and standardized; the
architecture, however, does not impose any limit on the
supported services, and is designed to facilitate the addition of
new services. Specifically, it should be possible to construct
abstract representations of services so as to reason formally
about their properties and interactions. Therefore, we expect
a large number of experimental and special purpose services
to emerge, the most successful of which (e.g., in terms
of adoption) may eventually become standardized. Similarly,
for common and/or straightforward communication tasks, we
expect that a set of pre-constructed silos will be defined. At the
same time, we envision many scenarios in which the silo will
need to be constructed on-demand, by selecting and vertically
arranging a needed set of services, further specialized into
methods, in order to tailor its behavior to the application
requirements and the network environment.

Figure ?? illustrates the elements of the architecture. The
cloud represents the universe of services, each service rep-
resented as a circle, with dots within a circle denoting the
various methods implementing a particular service. The solid
arrows represent precedence constraints among services. The
control agent interacts with all elements of the architecture
and is responsible for constructing silos of methods consistent
with the constraints.

E. Edge and Core

We note that the silo concept blurs the distinction between
“core nodes” and “edge devices,” in the sense that the role
of a node is not tied to specific layers of the protocol stack.
Instead, each network node/device is free to implement any
service, and its actual role is determined by the services
included and the selective construction of silos out of the
existing services to accommodate the communication tasks at
hand; for instance, a sensor node may not include a “reliable
delivery” service, whereas servers in a Grid environment may
include implementations of a “congestion control” service
customized for links with high bandwidth-delay products. As
a consequence, a node may freely transition from one role to
another, e.g., as in a wireless device which may act as either
an edge system or a router, depending on the type of network
to which it is attached, while remaining consistent with the
SILO framework. Furthermore, the SILO architecture removes

the necessity of having different control and management
paradigms or interfaces for routers as opposed to endpoint
devices. In this context, for instance, the collection of data for
monitoring resource usage and performance can be thought of
as a service that is specific to switches/routers; similarly, the
collection of usage metrics related to billing is a category of
services specific to access and border switches.

F. Cross-Layering with SILO

We also point out the inherent strength of the SILO ar-
chitecture with respect to cross-layering. As we remarked
before, cross-layer control is indispensable in many emerging
environments, such as wireless multihop networks. However,
layering has been a tremendously useful networking paradigm
precisely because it limits the interaction with the internals
of the protocol at one layer with that in another. As a
consequence, protocols can be designed and implementations
can be written comparatively in isolation, more manageably
and leading to more maintainable software. Different protocols
for the same layer and different implementations of the same
protocol can be “plugged in and out” without affecting the
correctness or functionality of protocols at other layers. A
cross-layer control algorithm by its nature destroys this useful
characteristic, because each layer must make some of its
internals visible and accessible to other layers. Further, it is
rather brittle, because changing the protocol at a given layer
or even just the implementation of the same protocol may
break cross-layer interactions. Thus the proliferation of cross-
layer methods have raised the fear of a regress to monolithic
software, unmanageable and unmaintainable. Alternatively,
cross-layer approaches would remain curiosities and special
cases, never to enter significantly the mainstream architecture.

The concept of knobs for services and methods side-steps
these problems. The SILO approach can be viewed as “oper-
ate in layers, control across layers.” As today, services and
methods are required only to provide a minimal interface,
hiding internal details. However, traditional protocols are only
required to provide invocation methods (APIs), whereas in
the SILO architecture we require them to provide a minimal
control interface as well. Beyond this, the methods can be
designed and implemented in isolation as before. However, the
control agent has a unique view into the knobs of every method
in the silo, and can embody all the integrated control concerns.
In this way, “cross-layer” (or, more appropriately, “cross-
service”) can become part of the mainstream architecture.

III. IMPLEMENTATION FRAMEWORK

In this section, we describe the architecture of the prototype
software demonstrating the capabilities of the SILO concept.
The prototype is built in accordance with the Pilot System
principle [17], which implies a limited lifespan of the first
prototype system. It is intended to be a tool to help us learn
about how to properly implement a fully functional SILO
framework as well as how not to implement such a system.
The anticipated lifespan of this prototype is 2 years.

A. Overview

For ease of discussion, we use the following terminology
(note the contrast in the first two items):

• SILO : A framework for creating flexible networking
applications

• silo : State storage, associated executable code and ex-
ecution contexts necessary to perform communication
functions on behalf of an application. A silo represents
a collection of services and methods operating on a data
flow.

• silo state : A storage abstract which maintains informa-
tion necessary for silo operation (example - congestion
window size, number of packets/bytes transmitted etc)

• silo handle : Unique identifier of silo state used between
the application and the SILO framework

• Service request : Description of desired services commu-
nicated by the application to the SILO framework.

• silo recipe : An XML-based description of the composi-
tion and state necessary to create a silo. Contains pointers
to dynamically linkable code to methods constituting a
silo.

• Control interface : An abstract describing control options
of a specific method within a silo. Control interface is
composed of method-specific and service-specific control
knobs. Service-specific knobs are inherited based on
polymorphism of services and methods.

• Control strategy : An algorithm used to manipulate silo
control interfaces in concert in order to achieve a specific
optimization goal.

The prototype is implemented as a series of user-space
components implemented in C++ interconnected using tra-
ditional UNIX IPC mechanisms (e.g. UNIX sockets, shared
memory, message queues etc). Individual components may
incorporate multiple threads depending on the needs of the
components. Whenever appropriate, thread-based concurrency
will be replaced with event queues to simplify locking and
debugging.

Because of the need to develop this prototype rapidly, user-
space approach was chosen over a kernel-based implemen-
tation. High performance, generally ascribed to kernel-based
implementations is not of high priority in this case. User-
space approach will allow us to incorporate the code and
components from other Open Source Software (OSS) projects
without regard to their implementation details. It allows us to
mix and match implementation frameworks and languages to
achieve the fastest result. An example includes using some
OSS Java components alongside the C/C++ implementation
of the SILO framework.

B. High-level prototype architecture

The architecture will consist of the following major com-
ponents:

• The SILO framework
• The SILO ontology
• The SILO-Enabled Application (APP)

• The SILO Construction Agent (SCA)
• The SILO Management Agent (SMA)
• Universe of Services Storage (USS)
• Control Strategies Storage (CSS)
The application creates a service request, which describes

its communications requirements. Based on the requirements
the SCA constructs a silo recipe, which it then passes to
the SMA. The SMA dynamically links in necessary code
and instantiates the state for the new silo using the silo
recipe. The application and the SMA communicate by ref-
erencing a silo handle. The SMA maintains the silo state
and when necessary, manipulates the control interfaces in
order to optimize performance. A control strategy is used
to govern the manipulation of the control interfaces. The
SMA selects appropriate control strategies from the Control
Strategies Storage based on the desired optimization goals.
The high-level behavior of the framework is affected by the
policies that are currently in effect (as selected by the user
and/or system and/or network administrator). The described
interactions are shown in Figure ??. Below, we describe the
individual components in greater detail.

1) Component Description:
a) The SILO framework: The SILO framework consists

of C++ header files and library code that implements the nec-
essary API. Two types of API and libraries are implemented:

• Application API - for creating SILO-enabled applications
• Internal API - library code common to the individual

SILO components (e.g. to facilitate inter-component
communications)
b) The SILO Ontology: The SILO ontology is an XML-

based (RDF) description of the relationships between SILO
services and methods used to create and operate SILOs. It
describes interfaces between services as well as service and
method control interfaces.

The SILO Ontology is stored by the Universe of SILO
Services component.

c) SILO-Enabled Application : The SILO-enabled Ap-
plication (APP) is any application that includes a network-
ing communications component implemented using the SILO
framework. This means the APP is linked against the SILO
library and communicates with the SILO components. The
APP could be an existing networked application (e.g. a web-
browser) whose socket-based TCP/IP interface has been re-
placed with SILO framework API calls or, alternatively, a
purpose-built application utilizing the SILO framework.

d) SILO Construction Agent: SILO Construction Agent
(SCA) is a major component of the architecture whose respon-
sibility it is to assemble a silo based on application service
request. It utilizes the SILO Ontology, an inference Engine,
and a collection of custom algorithms in order to turn the
application request into a silo recipe. The silo recipe is used
by the SMA to construct the custom silo for the application.

e) SILO Management Agent: SILO Management Agent
(SMA) is responsible for (a) Constructing a silo for a spe-
cific application based on a recipe created by the SCA, (b)

Maintaining the silo state during the communications session,
(c) Manipulating the control interfaces within individual silos
in order to optimize its behavior according to a specific
optimization goal.

The construction of a silo involves instantiating the silo
state, linking in the necessary method code from the Universe
of Services Storage and starting any required execution con-
text.

Control interface manipulation is performed in order to
optimize either individual or collective behavior of silos within
a single node or among many nodes. The selection of appro-
priate control strategy is governed by policies that are stored
within Universe of Services Storage component.

f) Universe of Services Storage: The USS serves as the
main repository of information about the SILO framework. It
contains (a) The ontology that describes relationships between
silo services and service interfaces, (b) A database of method
implementations which helps the SMA locate the executable
code necessary to construct a given silo, (c) Current policy set-
ting which affect the operation of the SILO framework. These
can be application-, node- and network-specific. The USS has
a query-based interface, which allows other components of the
SILO framework to utilize its functionality.

g) Control Strategies Storage: The CSS serves as the
repository of control strategies for the SMA. Initial function-
ality of the CSS will be subsumed within the SMA R1. Further
SMA releases will rely on a standalone CSS equipped with
a query interface to help select and retrieve an appropriate
control strategy based on application requirements and policies
currently in effect.

2) Component Interactions: Interfaces between different
components are expected to be reliable. Blocking is performed
where appropriate. The interfaces are:

• Between the Application and SCA. Application sends a
service request for a silo, specifying the types of services
it needs. SCA replies with a silo handle.

• Between the Application SMA. Application passes data
to SMA and receives user data from SMA using the
silo handle. Data can take the form of (a) Stream,
represented either as non-delineated buffers in some
traditional stream-oriented transport, or file descriptors;
or (b) Sequence of records, or delineated buffers, which
is a record-oriented transport that preserves record bound-
aries. Only suitable for silos that have been defined for
purposes of record-oriented transport.

• Between SCA and SMA. SCA communicates to SMA
the silo handle and the silo recipe.

• USS to SCA and SMA. USS presents a unified interface
to the rest of the SILO framework. This interface allows
other SILO components to query USS about its contents.

• Between CSS and SMA. CSS interface serves to enable
search and selection of the best control strategy based on
application requirements and active policies.

C. Ongoing Work
We are continuing to develop this framework while imple-

menting the first prototype. We envisage that individual com-
ponent releases will be bundled together into SILO releases.
The first one, planned for September 2007, does not include
the CSS. Also, the SCA functionality supported is as follows.
Application service request consists of a proposed nearly
complete set of services. SCA verifies precedence constraints
and interface compatibilities, and puts the services in the
correct order. It may perform trivial fill-ins of missing methods
(e.g. shim methods that help resolve inter-service interface
incompatibilities). The SMA is able to dynamically construct
and instantiate a silo based on a recipe from SCA. The USS is
able to integrate the initial ontology storage (likely a collection
of XML files) with method implementation database (using
BerkeleyDB format).

Subsequent releases will include enhancements to the SCA
so that application requests can be defined in more generic
terms without spelling out the exact set of services. The SCA
will be capable of constructing a silo recipe based on the
request or, alternatively, notifying the application that its re-
quest cannot be satisfied. Additionally, it will allow for policy
integration. Similarly, future releases of SMA will have the
additional capabilities of selecting one control strategy from a
set of hard-coded strategies to satisfy a simple optimization
objective. Eventually, the SMA will be able to select and
utilize a flexible closed-loop control strategy selected from
CSS, in order to optimize the behavior of the silo based on
the current policy. The USS will support policy storage and
query in a future release. Finally, after the planned updates to
the SCA and SMA, the CSS will be included in the release.

IV. CONCLUSION

We have advanced a new architecture for software imple-
mentation of networking protocols. This architecutre, called
SILO, is based on fine-grain composable services, dynamic
composition of network stacks with per-flow state, and is
specifically designed to allow easy representation, implemen-
tation and optimization of cross-layer interactions. We hope
to make example implementations showcasing the strength
of the SILO architecture in the near future. We invite the
cross-layer design community to utilize the SILO framework
to implement specific control strategies, and look forward to
reporting further enhancements to the architecture based on
their feedback.

REFERENCES

[1] National Science Foundation, “Future internet design website,”
http://www.nets-find.net/.

[2] “Services integration, control, and optimization,” http://www.net-
silos.net/.

[3] F. C. Commission, “Notice of inquiry and notice of proposed rulemak-
ing,” Public Notice FCC 03-289, November 28, 2003, seeks comments
on “Interference Temperature” Model.

[4] V. Srivastava and M. Motani, “Cross-layer design: A survey and the road
ahead,” IEEE Communications Magazine, vol. 43, no. 12, pp. 112–119,
December 2005.

[5] J. Wang, L. Li, S. H. Low, and J. C. Doyle, “Cross-layer optimization
in TCP/IP networks,” IEEE/ACM Transactions on Networking, vol. 13,
no. 3, pp. 582–595, June 2005.

[6] R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet, “CrossTalk: Cross-
layer decision support based on global knowledge,” IEEE Communica-
tions Magazine, vol. 44, no. 1, pp. 93–99, January 2006.

[7] V. T. Raisinghani and S. Iyer, “Cross-layer feedback architecture for mo-
bile device protocol stacks,” IEEE Communications Magazine, vol. 44,
no. 1, pp. 85–92, January 2006.

[8] R. Madan, S. Cui, S. Lall, and A. Goldsmith, “Cross-layer design for
lifetime maximization in interference-limited wireless sensor networks,”
in Proceedings of the 2004 IEEE INFOCOM Conference, Mar 2005.

[9] Y. Wu, P. A. Chou, Q. Zhang, K. Jain, W. Zhu, and S.-Y. Kung, “Network
planning in wireless ad hoc networks: A cross-layer approach,” IEEE
Journal on Selected Areas in Communications, vol. 23, no. 1, pp. 136–
150, January 2005.

[10] R. Braden, T. Faber, and M. Handley, “From protocol stack to protocol
heap – role-based architecture,” ACM Computer Communication Review,
vol. 33, no. 1, pp. 17–22, January 2003.

[11] D. D. Clark et al., “Newarch project: Future-generation internet archi-
tecture,” http://www.isi.edu/newarch/.

[12] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson,
“JumpStart: A just-in-time signaling architecture for WDM burst-
switched networks,” IEEE Communications Magazine, vol. 40, no. 2,
pp. 82–89, February 2002.

[13] S. O’Malley and L. Peterson, “A dynamic network architecture,” ACM
Transactions on Computer Systems, vol. 10, no. 2, pp. 110–143, May
1992.

[14] N. T. Bhatti and R. D. Schlichting, “A system for constructing con-
figurable high-level protocols,” in Proceedings of the 1995 ACM SIG-
COMM Conference, Cambridge, MA, August 1995, pp. 138–150.

[15] N. Hutchinson and L. Peterson, “The x-kernel: An architecture forim-
plementing network protoccols,” IEEE Transactions on Software Engi-
neering, vol. 17, no. 1, pp. 64–76, 1991.

[16] R. Dutta, G. N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson, “The
silo architecture for services integration, control, and optimization for
the future internet,” in Proceedings of IEEE ICC, Glasgow, Scotland,
2007, (to appear).

[17] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing. Addison-Wesley, 1975, 1995.

