
The SILO Architecture for Services Integration,
controL, and Optimization for the Future Internet

Rudra Dutta, George N. Rouskas Ilia Baldine Arnold Bragg, Dan Stevenson
North Carolina State University RENCI RTI International

Abstract— We propose a new internetworking architecture that
represents a departure from current philosophy and practice,
as a contribution to the ongoing debate regarding the future
Internet. Building upon our experience with the design and
prototyping of the Just-in-Time protocol suite, we outline a
framework consisting of (1) building blocks of fine-grain func-
tionality, (2) explicit support for combining elemental blocks to
accomplish highly configurable complex communication tasks,
and (3) control elements to facilitate (what is currently referred
to as) cross-layer interactions. In this position paper, we take a
holistic view of network design, allowing applications to work
synergistically with the network architecture and physical layers
to select the most appropriate functional blocks and tune their
behavior so as to meet the application’s needs within resource
availability constraints. The proposed architecture is flexible and
extensible so as to foster innovation and accommodate change, it
supports a unified Internet, it allows for the integration of security
and management features at any point in (what is now referred
to as) the networking stack, and it is positioned to take advantage
of hardware-based performance-enhancing techniques.

I. INTRODUCTION

The Internet, conceived in the era of mainframe computers
and 56Kbps links, has evolved into a complex world-wide
system of importance equal to that of the power grid and the
transportation infrastructure. The Internet’s explosive growth
has been mainly due to its innate ability to incorporate easily
new link and node technologies, and to accommodate seam-
lessly novel protocols, applications, and edge devices. The
Internet’s successful evolution from a free tool for academic
pursuits to a key component of the global information and
communications infrastructure, is a testament to the flexibility
of its architecture and the fundamental principles underlying
its design [10], [23]. The resulting combination of a simple,
transparent network offering a basic communication service
with end systems providing for a rich functionality, which
lies at the foundation of the Internet architecture, has proven
exceptionally adaptable to new and changing requirements.

While the network works well for common communication
tasks, there have emerged communities of users with widely
divergent needs for whom the current architecture is either not
adequate or an overkill. For instance, the e-Science commu-
nity, with its emphasis on high performance networking, is
supporting the development of specialized protocols [16]. At
the other end of the spectrum, the proliferation of network-
enabled low-power mobile devices and sensors designed for
simple, specific tasks, represents an increasing need for a
rudimentary communication service; hence TinyOS does not
implement the standard TCP/IP stack [19]. Continuing to

ignore these divergent needs could result in “balkanization” of
the Internet [22]. We feel that any new network architecture
must possess a wide range of operating regimes and be
able to deal gracefully with a broad spectrum of application
requirements, network performance, and device capabilities,
so as to ensure a unified, globally accessible Internet.

The suitability of protocol layering, as either an organizing
or implementation principle for future network architectures,
is also being questioned [7]. Protocols typically incorporate
significant functionality, making them inflexible and difficult
to evolve. New functionality is difficult to fit in the rigid
structure of network stacks, resulting in the proliferation of
1/2 layer solutions (e.g., IPSec and MPLS). Also, the lack of
mechanisms for cross-layer interactions has led to frequent
layer violations. Moreover, protocols were not designed to
take advantage of emerging hardware architectures such as
the Cell [20] with one main and several synergistic processors
in a single chip. A more modular design that makes it easier
to selectively offload into hardware the most time consuming
functions, might lead to significant performance gains.

As the limitations of the Internet architecture have become
evident, the networking community has taken a variety of
approaches in addressing the issues that arise. Typically, a
solution for a specific problem is engineered within existing
constraints; consider, for example, the research on TCP vari-
ants for high bandwidth-delay product networks [16], [18],
earlier work on TCP over wireless networks [2], and efforts
towards cross-layer optimization [24], [27], [28]. In other
cases, addressing broader needs, such as IP address shortage or
security, has led to more general solutions, which, however,
may violate some of the original principles of the Internet
or introduce new elements in its architecture; for instance,
network address translation is not consistent with the end-to-
end principle, whereas IPSec was introduced as layer 2.5.

Currently, a consensus appears to forming within the com-
munity regarding the need to think carefully about the re-
quirements for the Internet in 15-20 years, to formulate a
vision [26] for the future, and to carry out a focused research
agenda to realize this vision, possibly starting with a “clean
slate” [15]. Recent work in this direction has addressed a num-
ber of important issues regarding a future network architecture,
including design principles [1], [13], accommodating “tussles”
among different stakeholders [14], introducing a “knowledge
plane” [12], overcoming the limitations of layering [7], and
new routing [29] and addressing [11] architectures.

As our contribution to this debate, in this paper we propose



a new network architecture that represents a departure from
current philosophy and practice. Building on our experience
with the design and prototyping of the Just-in-Time protocol
suite [4], [5], [30], we outline a framework consisting of
(1) building blocks of fine-grain functionality, (2) explicit
support for combining elemental blocks to accomplish highly
configurable complex communication tasks, and (3) control
elements to facilitate (what is currently referred to as) cross-
layer interactions. We take a holistic view of network design,
allowing applications to work synergistically with the network
architecture and physical layers to select the most appropriate
functional blocks and tune their behavior so as to meet the
application’s needs within resource availability constraints.

Among recent research, the work most closely related to
ours is that on role-based architecture (RBA) [7], [25]. RBA
represents a non-layered approach to the design of network
protocols, and organizes communication in functional units re-
ferred to as “roles.” Roles are not hierarchically organized, and
thus may interact in many different ways; as a result, the meta-
data in the packet header corresponding to different roles form
a “heap,” not a “stack” as in conventional layering, and may be
accessed and modified in any order. The main motivation for
RBA was to address the frequent layer violations that occur
in the current Internet architecture, the unexpected feature
interactions that emerge as a result [7], and to accommodate
“middle boxes.” We also advocate a non-layered architecture
based on silos of services assembled on demand and specific
to an application and network environment (refer to Section II)
as well as a more flexible header structure as in [5]). However,
our goal is on facilitating what in today’s layered architecture
is referred to as “cross-layer” interactions, in a manner that
meets the exact user requirements and optimizes performance.

Some earlier work also investigated more flexible frame-
works for realizing protocols. The use of micro-protocol
objects, each encapsulating a single function, to facilitate the
development of protocol stacks was considered in [6], [21].
Both approaches are x-kernel specific, as they rely on the
x-kernel [17] environment and its mechanisms for commu-
nication between micro-protocols. We are not tied to any
special purpose environment, rather, we target our approach
to a more common POSIX-like OS. In general, our proposed
architecture goes beyond previous work in that (1) service silos
are created on-demand, automatically, based on application
requirements, local policies etc., and (2) mechanisms for
adaptive control along with “cross-layer” interactions for the
purpose of optimizing behavior are built into the framework.

Some of the ideas we present herein were borne out of
our earlier research and development in three related areas.
In the first area, we defined a novel and flexible transport
layer architecture designed to support an unlimited set of new
applications, services, and protocols [8], [9]. The architecture
defines an open-ended set of standard transport services (i.e.,
as in ISO OSI layer 4) and novel transport services (to meet
new requirements), and there is a fundamental distinction
between a service and its implementation. E.g., “error-free
delivery” is a service; “Reed-Solomon FEC” is one mech-

anism for implementing the service; “error detection and
retransmission” is another. A subset of services comprises
a virtual transport protocol instance. Industry-standard and
experimental transport protocols can be emulated via an ap-
propriate instance. The architecture encourages novel service
combinations, and it supports adaptive controls in that the
control plane may monitor a service’s performance and invoke
a more or less stringent implementation to meet performance
or service quality requirements.

Supporting a rich set of services, and mapping an appli-
cation’s resource and QoS requirements to services has a
number of performance implications. In the second area of
research, we designed techniques for pushing services onto
hardware, and for efficiently processing message headers that
convey service requests [5], [30]. JumpStart’s Just-in-Time
(JIT) is an open protocol suite with multicast extensions
which was developed under the assumption of an optical
core and wireless access networks. JIT uses a novel message
structure of flexible information elements (IEs). JIT IEs have
a common header and separate hardware-parsable compo-
nents for frequently executed functions, and software-parsable
components for infrequent complex functions. The same IE
format is used by all of the JIT management protocols –
routing, connection management, network management, etc.
This greatly simplifies hardware and software, and provides
flexibility to accommodate future requirements.

In the third area of research, we deployed JIT prototypes
in the ATDNet, a high-performance testbed in Washington,
DC [3], [4]. Our team designed, built, and installed proof-of-
concept JIT network controllers at three ATDNet sites as part
of an experimental optical burst switching network overlay.

In the rest of this position paper, we articulate our view
of an architecture that can supplant the current layer-based
Internet architecture. While this structure is still a vision and
we are likely to see changes in the details, it is our belief
that the future Internet will exhibit the essential aspects of our
silo architecture. At the end of the next section, we provide
an example of how existing networking software can be ac-
commodated within the silo architecture, while very different
functionality can also be obtained. Our contribution consists
of laying out the fundamental concepts of our architecture.
In Section III we also discuss some research issues we are
pursuing as part of a recent NSF FIND grant.

II. THE SILO ARCHITECTURAL FRAMEWORK

We now propose a flexible, service-oriented architecture for
the future Internet. Our design was guided by the following
goals for the network architecture of the future:

• Interworking flexibility and extensibility. Unlike the
overly strict layering and tight integration of coarse-
grain functions in current architectures, we advocate
a framework of fine-grain building blocks along with
explicit support for combining elemental functions in a
highly configurable manner, so as to carry out complex
communication tasks. The architecture does not limit
either the number of functional building blocks or their

2



combinations, thus fostering experimentation and innova-
tion and easily accommodating change.

• Support for a scalable, unified Internet. We are wit-
nessing a growing gap between commodity applications
running in today’s Internet, on the one hand, and high-
performance e-Science applications and a wide range of
wireless applications, on the other hand, which are tuned
to run on isolated customized networks. A fine-grained
modularization of networking functions opens up interest-
ing opportunities for low-powered devices like network-
enabled sensors, which do not need the full networking
stack, as well as high-performance applications which
require specialized protocols. These can be provided with
customized functional blocks most appropriate for their
requirements and network environment, all the while
staying within a consistent architectural framework.

• Holistic network design through explicit facilitation
of cross-service interactions. Existing protocol stacks
lack well-defined control interfaces for cross-layer in-
teractions, hence the latter have to be engineered in a
piecemeal and ad-hoc fashion. We have explicitly built
in the ability for functional blocks to interact with each
other so as to optimize their behavior for the specific
communication task at hand. To this end, the architec-
ture requires all functional blocks to have well-defined
interfaces and provides for a control entity that is able to
tune the parameters of individual blocks in order to match
the application QoS requirements and improve network
resource utilization.

• Smooth integration of security features. We feel that
it is critical to incorporate simple mechanisms into the
network architecture to create barriers to miscreants. The
SILO architecture allows for the integration of security
and management features at any point in (what is now
referred to as) the networking stack. By treating security
functions as easily pluggable components, our framework
makes it possible to include security into the design from
the ground up.

• Support for performance-enhancing techniques. A
finer modularization of the networking stack has the
potential to facilitate faster integration of hardware-
accelerated solutions. Our approach is positioned to take
advantage of the capabilities of multiprocessor-on-a-chip
architectures such as Cell [20] which are expected to
be prevalent in the future, by offloading small but com-
putationally intensive functions to secondary CPUs so
as to achieve dramatic performance improvements. This
goal may be further advanced by employing a message
structure similar to the one we implemented for Just-In-
Time [5] which facilitates hardware/software partitioning.

A. The SILO Network Architecture

The fundamental building blocks in the SILO architecture
are services. A service is a well-defined and self-contained
function performed on application data, and which is rel-
evant to a specific communication task. “In-order packet

delivery,” “end-to-end flow control,” “packet fragmentation”,
“compression,” “encryption,” and “multi-rate RF PHY” are all
examples of services in this context. Each service addresses a
separate, atomic function, hence the architecture provides more
flexibility and a much finer granularity than current protocols
which typically embed complex functionality.

At the core of the architecture is the mechanism through
which services interact in order to accomplish complex com-
munication tasks. Our approach represents a middle ground be-
tween the strict protocol stack imposed by current architectures
and the “heap” approach advocated by the RBA [7]. Specifi-
cally, we allow any set of services to be selected dynamically
for a particular task, but the order in which these services are
applied is not tied to the “layer” in which the service belongs,
but rather to a set of well-defined precedence constraints; for
instance, when the application requires both a “compression”
and an “encryption” service, the only meaningful interaction
is when compression is applied before encryption. In general,
the precedence constraints impose a partial ordering among
services. Once selected, however, the subset of services is
arranged in a specific order, derived from the partial ordering
and other rules, and this binding remains in effect for the
duration of the associated communication task (typically, the
lifetime of a connection).

A service is fully defined by describing: (1) the function it
performs, (2) the interfaces it presents to other services, (3)
any properties of the service that affect its relation with other
services (e.g., as required to establish a partial ordering), and
(4) its control parameters, which we also refer to as knobs,
and their actions and constraints. The knobs are adjustable
parameters specific to the function performed by the service,
with a specified range of values and a well-defined relationship
between these values and the perceived performance of the
service. For instance, “compression factor” is a knob for the
“compression” service. The knobs are manipulated by the con-
trol agent (defined below) so as to optimize the performance
of the subset of services selected for the specific task.

We distinguish between a service and its implementation. A
method is an implementation of a service that uses a specific
mechanism to carry out the functionality associated with
the service. For instance, “re-sequencing” is one method for
implementing the “in-order packet delivery” service, “window-
based flow control” is a method for the “end-to-end flow
control” service, and “802.11a OFDM PHY” is one method
for the “multi-rate RF PHY” service. A method implementing
a service must implement the service-specified interfaces, as
well as any service-specific knobs; in other words, service-
specific interfaces and knobs are polymorphic to all methods
implementing a given service. A method may also implement
method-specific knobs, i.e., control parameters unique to this
implementation of a service; for instance, “length of Reed-
Solomon FEC” is a knob specific to the “Reed-Solomon FEC”
method implementing the “error-free delivery” service. These
knobs are adjusted by the control agent to refine the method
behavior and optimize it for a specific environment. A method
is fully defined by describing (1) the service it implements,

3



(2) the specific algorithm/mechanism it uses to implement the
service, and (3) optional method-specific control parameters,
and their actions and constraints. We emphasize that the
architecture defines services and their interfaces, but it does
not define the methods that implement them; therefore, it is
possible that several alternative methods for a given service
co-exist within the network.

We refer to an ordered subset of methods, each method
implementing a different service, as a silo. One can think of a
silo as a vertical stack of methods; conceptually, applications
reside at the top of the stack, and network interfaces reside
at the bottom. A silo performs a set of transformations on
data from the application to the network or vice versa, so
that the delivery of data from an application to its peer
is consistent with the application’s requirements. Each data
transformation corresponds to a method in the silo, and may
include the generation (or processing) of metadata to be
included (respectively, present) in the packet. A silo possesses
a state that is a union of all constituent method states as well
as any shared state resulting from cross-method interactions. A
silo structure and all related state information are associated
with a specific traffic stream (equivalently, a connection or
flow) and persist for the duration of the connection. One
important aspect of silos is that they can be optimized for
each traffic stream, as we explain next.

A control agent is an entity residing inside a node, which is
responsible for (1) composing a silo for an application stream
(or selecting an appropriate commonly-used silo, as we discuss
shortly), and (2) appropriately adjusting all the service- and
method-specific knobs and facilitating cross-service interac-
tions. Composing a silo refers to determining the subset of
services it contains, their order in the stack, and the method
implementing each service. The objective is to dynamically
custom-build a silo for each new connection. To this end,
the control agent takes into account the application’s QoS
requirements, current network resource availability and other
conditions, the precedence constraints among services, and any
policy in effect at the time. The current policy is derived from a
combination of local node policies (e.g., battery-saving mode)
as well as, possibly, one or more network-wide policies of
varying scopes. An example of control agent behavior is tuning
the length of the FEC in order to enhance the “error-free
delivery” service in response to increased radio interference
reported by the “PHY” service. This example clearly illustrates
an intentional design feature of the silo architecture, namely,
the explicit ability to perform cross-service optimization.

A control agent may optionally be able to communicate with
control agents at other nodes in the network (e.g., neighboring
nodes, nodes on the connection path, or the connection peer
node) in order to optimize the behavior of a silo further; this
communication may take place either in- or out-of-band. The
control entities should be able to function without the ability
to communicate (e.g., due to network bandwidth constraints),
but should it be available, they should be able to utilize it.

We expect that in a network following the SILO architecture
a number of services will be defined and standardized; the

4,1
service

method

control agent

application

physical layer

policies

silos

s

s

s

s

s

s
1

2

3

4

5
6

m
1,1

m
1,2

m
2,1

m

m

m

m

m
1,2

1,1

4,1

3,1

3,2 m m m

mmm

m m

3,1

3,1

2,2

6,1 6,1

6,35,2

Fig. 1. Elements of the SILO architecture

architecture, however, does not impose any limit on the
supported services, and is designed to facilitate the addition of
new services. Specifically, it should be possible to construct
abstract representations of services so as to reason formally
about their properties and interactions. Therefore, we expect
a large number of experimental and special purpose services
to emerge, the most successful of which (e.g., in terms
of adoption) may eventually become standardized. Similarly,
for common and/or straightforward communication tasks, we
expect that a set of pre-constructed silos will be defined. At the
same time, we envision many scenarios in which the silo will
need to be constructed on-demand, by selecting and vertically
arranging a needed set of services, further specialized into
methods, in order to tailor its behavior to the application
requirements and the network environment.

Figure 1 illustrates the elements of the architecture. The
cloud represents the universe of services, each service rep-
resented as a circle, with dots within a circle denoting the
various methods implementing a particular service. The solid
arrows represent precedence constraints among services. The
control agent interacts with all elements of the architecture
and is responsible for constructing silos of methods consistent
with the constraints.

We note that the silo concept blurs the distinction between
“core nodes” and “edge devices,” in the sense that the role
of a node is not tied to specific layers of the protocol stack.
Instead, each network node/device is free to implement any
service, and its actual role is determined by the services
included and the selective construction of silos out of the
existing services to accommodate the communication tasks at
hand; for instance, a sensor node may not include a “reliable
delivery” service, whereas servers in a Grid environment may
include implementations of a “congestion control” service
customized for links with high bandwidth-delay products. As
a consequence, a node may freely transition from one role to
another, e.g., as in a wireless device which may act as either
an edge system or a router, depending on the type of network
to which it is attached, while remaining consistent with the
SILO framework. Furthermore, the SILO architecture removes
the necessity of having different control and management
paradigms or interfaces for routers as opposed to endpoint
devices. In this context, for instance, the collection of data for
monitoring resource usage and performance can be thought of

4



as a service that is specific to switches/routers; similarly, the
collection of usage metrics related to billing is a category of
services specific to access and border switches.

We also point out the inherent strength of the SILO
architecture which is explicitly designed with cross-service
optimization in mind. Recently, it has become clear that cross-
layer control is indispensable in many emerging environments,
such as wireless multihop networks. The development of
Software Defined Radios (SDR) and of dynamic approaches to
spectrum efficiency such as that advanced by the FCC based
on “interference temperature”, shows that such cross-layer
interaction will span the entire gamut of layered architecture.
However, layering has been a tremendously useful networking
paradigm precisely because it limits the interaction with the
internals of the protocol at one layer with that in another. As a
consequence, protocols can be designed and implementations
can be written comparatively in isolation, more manageably
and leading to more maintainable software. Different protocols
for the same layer and different implementations of the same
protocol can be “plugged in and out” without affecting the
correctness or functionality of protocols at other layers. A
cross-layer control algorithm by its nature destroys this useful
characteristic, because each layer must make some of its
internals visible and accessible to other layers. Further, it is
rather brittle, because changing the protocol at a given layer
or even just the implementation of the same protocol may
break cross-layer interactions. Thus the proliferation of cross-
layer methods have raised the fear of a regress to monolithic
software, unmanageable and unmaintainable. Either that, or
cross-layer approaches would remain curiosities and special
cases, never to affect significantly the mainstream architecture.

The concept of knobs for services and methods side-steps
these problems. The SILO approach can be viewed as “oper-
ate in layers, control across layers.” As today, services and
methods are required only to provide a minimal interface,
hiding internal details. However, traditional protocols are only
required to provide invocation methods (APIs), whereas in
the SILO architecture we require them to provide a minimal
control interface as well. Beyond this, the methods can be
designed and implemented in isolation as before. However, the
control agent has a unique view into the knobs of every method
in the silo, and can embody all the integrated control concerns.
In this way, “cross-layer” (or, more appropriately, “cross-
service”) can become part of the mainstream architecture.

B. SILO Examples

We present two examples showcasing some of the capabil-
ities of the SILO architecture: we establish that it is relatively
straightforward to implement the functionality of existing pro-
tocols within the framework, and we demonstrate the strengths
of the framework in facilitating cross-layer interactions.

Figure 2(a) presents a silo equivalent to the current TCP/IP
over Ethernet protocol stack. Each block in the silo contains
the name of the corresponding service, as well as the name of
the module (in italics and indented) implementing the service.
Each module implements a polymorphic interface defined for

the corresponding service. An example of an interface for
the “segmentation” service could be: In – data buffers of
arbitrary length; Out – buffer fragments not exceeding the
maximum length; Service-specific control knob
– maximum length of the fragment. The module “variable
length sequential segmentation” implements the “segmenta-
tion” service in the traditional way of segmenting a stream
of data. A possible alternative implementation (not suitable
for TCP/IP emulation) could be one that stripes data from
the input buffers across multiple outgoing fragments. While
the silo shows a TCP SACK-like variant, any other TCP
variation (e.g., Reno, Tahoe, BIC) can be emulated similarly
by substituting the appropriate services inside the silo.

To illustrate the power of the SILO framework in facilitating
“cross-layer” interactions, Figure 2(b) presents a silo for
streaming video over a wireless network. An application at the
top supplies raw video frames, and at the bottom, packetized
video is transmitted over RF. This is similar to transmitting
MPEG video over UDP in today’s Internet, with one notable
difference: it includes “video compression” as a service within
the SILO architecture, not external to it, which allows it to
interact with other services to achieve better results.

Let us explain the topmost services in this silo in more
detail. Raw video is processed by the “video compression”
service, implemented by a module according to the H.264
VBR standard. A service-specific control knob allows the
control agent to dynamically tune the compression level as
a tradeoff to video quality. The bitstream exiting the “H.264”
module goes through the “video encapsulation” service which
is implemented by the “raw encapsulation” module, meaning
that the bitstream proceeds unmodified. It would be easy
to substitute the “raw encapsulation” module with one that
packages the bitstream as, say, an MPEG TS stream. The
raw MPEG bitstream is segmented using the “segmentation”
service; this service is implemented by the “fixed length
sequential segmentation” module, which always creates seg-
ments of equal, pre-specified length, waiting for more data
if necessary. The “rate control” service is responsible for
ensuring that the bitstream does not exceed certain rate and
burst size parameters. The desired rate is originally specified
by the application. Since MPEG encoders can at times exceed
specified bit rates, the control agent can dynamically tune the
video compression level to achieve the highest quality under
the specified rate. Finally, the “error-free delivery” service
is implemented by the “Reed-Solomon FEC” module; the
latter includes a module-specific control knob which allows
the control agent to dynamically tune the length of the FEC.

The knobs provide the control agent with options in main-
taining video quality based on levels of RF interference and/or
contention. For example, in response to higher noise level, the
control agent may shorten the fragment size or lengthen the
FEC to increase the probability of successful packet delivery.
Similarly, with higher level of contention, the control agent
may increase the fragment size or opt for lower bit rate
and higher video compression, depending on the bit rate and
quality constraints specified by the application.

5



Rate control
Leaky bucket rate control

Forwarding
Unicast forwarding

Header error detection
16−bit checksum

Raw Video 

Error detection
16−bit checksum

Flow control
Window−based flow control

Reliable transmission
SACK

In−order delivery
Sequence numbers

Data To/From Application

Header error detection
16−bit checksum

Forwarding
Unicast forwarding

Frame encapsulation
Ethernet II encapsulation

MAC
802.3 MAC

MAC
802.11 MAC

Frames To/From the Network Control Agent Communications Frames To/From the Network

�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Video Compression 
H.264 Compression

Video Encapsulation
Raw Encapsulation

C
on

tr
ol

 A
ge

nt

S
ilo

 S
ta

te

Frame encapsulation
802.2/802.3 encapsulation

S
ilo

 S
ta

te

Fixed length sequential segmentation
Segmentation

Error−free delivery
Variable length Reed−Solomon FEC

TCP SACK

Segmentation 
Variable length sequential segmentation

PHY PHY
OFDM RF PHY

Ethernet 

IP

100Mbps UTP PHY

(a) TCP/IP over 100Mbps Ethernet (b) Video over wireless

Fig. 2. SILO examples: (a) TCP/IP emulation (b) MPEG video transmission over wireless

III. CONCLUDING REMARKS

The SILO architecture is our contribution to the ongoing de-
bate on the future of the Internet. The proposed framework of
automatically assembled fine-grain functional building blocks
with its emphasis on explicit control interfaces, can be the
centerpiece of a new architecture which interacts harmoniously
with applications and the physical layer to optimize user
experience. There are many research questions that must be
answered to make the SILO architecture a workable reality,
such as: How would building blocks be selected and what
should their granularity be? How are services defined? How
are silos constructed and optimized? How are the silo optimiz-
ing choices communicated to the user, and user preferences
captured? How do nodes interact in the SILO architecture and
how can proper interaction between nodes be guaranteed? We
are working on several of these research questions as part
of a recent NSF FIND grant, and hope to report positive
results in the near future. We are also working on proof-of-
concept prototypes of silo-based systems, on which we shall
demonstrate the approaches yielded by our research.

REFERENCES

[1] B. Ahlgren et al. Invariants – a new design methodology for network
architectures. In FDNA-04, pages 65–70, Portland, OR, 2004.

[2] H. Balakrishnan, , V. N. Padmanabhan, S. Seshan, and R. Katz. A com-
parison of mechanisms for improving TCP performance over wireless
links. In SIGCOMM 1996, pages 256–269, August 1996.

[3] I. Baldine, A. Bragg, G. Evans, M. Pratt, M. Singhai, D. Stevenson,
and R. Uppali. JumpStart deployments in ultra-high-performance optical
networking testbeds. IEEE Commun. Mag., 43(11):S18–S25, Nov. 2005.

[4] I. Baldine, M. Cassada, A. Bragg, G. Karmous-Edwards, and D. Steven-
son. Just-in-time optical burst switching implementation in the ATDnet
all-optical networking testbed. In Globecom 2003, pages 2777–2781.

[5] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson.
JumpStart: A just-in-time signaling architecture for WDM burst-
switched networks. IEEE Commun. Mag., 40(2):82–89, Feb. 2002.

[6] N. T. Bhatti and R. D. Schlichting. A system for constructing config-
urable high-level protocols. In SIGCOMM 1995, pp. 138–150, 1995.

[7] R. Braden, T. Faber, M. Handley. From protocol stack to protocol heap
- role-based architecture. Comp. Comm. Rev., 33(1):17-22, Jan. 2003.

[8] A. Bragg, I. Baldine, and D. Stevenson. A transport layer architectural
framework for optical burst switched networks. In WOBS 2003.

[9] A. Bragg, S. Bryant, B. Hurst, and S. Thorpe. Transport protocols for
optical burst switched networks. In PFLDnet ’04, Chicago, IL, 2004.

[10] D. D. Clark. The design philosophy of the DARPA internet protocols.
In SIGCOMM 1988, pages 106–114, Stanford, CA, August 1988.

[11] D. D. Clark, R. Braden, A. Falk, and V. Pingali. FARA: Reorganizing
the addressing architecture. In FDNA-03, pages 313–321, Karlsruhe,
Germany, 2003.

[12] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A
knowledge plane for the internet. In SIGCOMM 2003, pages 3–10,
Karlsruhe, Germany, August 2003.

[13] D. D. Clark, K. Sollins, J. Wroclawski, and T. Faber. Addressing
reality: An architectural response to real-world demands on the evolving
internet. In FDNA-03, pages 247–257, Karlsruhe, Germany, 2003.

[14] D. D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in
cyberspace: Defining tomorrow’s internet. In SIGCOMM 2002, pages
347–356, Pittsburgh, PA, August 2002.

[15] National Science Foundation. Future internet network design meeting.
http://find.isi.edu/.

[16] Data Transport Research Group. Survey of transport protocols other
than standard grid TCP. Global Grid Forum, 2005.

[17] N. Hutchinson and L. Peterson. The x-kernel: An architecture for imple-
menting network protocols. IEEE Transactions on Software Engineering,
17(1):64–76, 1991.

[18] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, architecture,
algorithms, performance. In Proceedings of the 2004 IEEE INFOCOM
Conference, pages 2490–2501, Hong Kong, March 2004.

[19] P. Levis et al. TinyOS: An operating system for wireless sensor
networks. In W. Weber, J. Rabbey, and E. Aarts, editors, Ambient
Intelligence, New York, NY, 2004. Springer-Verlag.

[20] S. Moore. Multimedia monster. IEEE Spectrum, 43(1):20–23, Jan. 2006.
[21] S. O’Malley and L. Peterson. A dynamic network architecture. ACM

Trans. Computer Systems, 10(2):110–143, May 1992.
[22] Computer Business Review Online. ITU head foresees internet balka-

nization, November 2005.
[23] J. Saltzer, D. Reed, and D. D. Clark. End-to-end arguments in system

design. ACM Trans. Computer Systems, 2(4):277–288, Nov. 1984.
[24] V. Srivastava and M. Motani. Cross-layer design: A survey and the road

ahead. IEEE Commun. Mag., 43(12):112–119, Dec. 2005.
[25] D. D. Clark et al. Newarch project: Future-generation internet architec-

ture. http://www.isi.edu/newarch/.
[26] D. D. Clark et al. Making the world (of communications) a difference

place. ACM Computer Communication Review, 35(3):91–96, July 2005.
[27] S. C. Visweswara, A. A. Goel, and R. Dutta. An adaptive ad-hoc

self-organizing scheduling method for quasi-periodic sensor traffic. In
Proceedings of SECON 2004, pages 342–351, 2004.

[28] J. Wang, L. Li, S. Low, and J. Doyle. Cross-layer optimization in TCP/IP
networks. IEEE/ACM Trans. Networking, 13(3):582–595, June 2005.

[29] X. Yang. NIRA: A new internet routing architecture. In FDNA-03,
pages 301–312, Karlsruhe, Germany, 2003.

[30] A. H. Zaim, I. Baldine, M. Cassada, G. N. Rouskas, H. G. Perros, and
D. Stevenson. JumpStart just-in-time signaling protocol: A formal
description using extended finite state machines. Optical Engineering,
42(2):568–585, Feb. 2003.

6


