

- TransCloud = A Cloud Where Services Migrate, Anytime, Anywhere In a World Where Distance Is Eliminated
 - Joint Project Between GENICloud, iGENI, et al
 - GENICloud Provides Seamless Interoperation of Cloud Resources Across N-Sites, N-Administrative Domains
 - iGENI Optimizes Private Networks of Intelligent Devices Capable of Dynamically Provisioned Low-Latency, High-Performance Communications Among Multiple Physically-Distributed Infrastructures and Federated Domains

- General Premise = Transition From Legacy Architecture, Technologies, Protocols, Implementations
 - Legacy Environments Reflect Obsolete Concepts of **Facility-based Services**
 - Legacy Environments Do Not Leverage The Potential Of A Wide Range Of Exceptionally Powerful Emerging Models, Architecture, Technologies, and Services
- The GENI -- "Clean Slate" Approach -- Enables Creating and Implementing Totally New Types of **Distributed Environments, Including Those Integrating** New Cloud and Networking Architecture and Sponsored by The child of gyndation

Context 1: Seamless Computation Services Available Anytime, Anywhere

- Everybody Wants "the Cloud"...BUT...
 - Performance of Cloud services Highly Dependent On Location
 - Of End-User, Applications, Middle Processes, Network Topology
 - Of Cloud Data, Compute Processes, Storage, etc
- Why?
 - Performance of Legacy Protocols and Other Elements, Highly Dependent on Latency Issues
- Therefore:
 - If the Clouds Are Too Far Away, Performance Will Be Severely Restricted
 - If Clouds Have Large Internal Latencies AND Uses Legacy Protocols, Performance Will Be Very Severely Restricted
- Ergo
 - Clouds Needs To Be Close To Experience Sites OR
 - Networks (And Clouds) Can Be Designed To Eliminate Distance

Context 2: Living With Legacy Protocols Over Commodity Internet vs Creating Alternatives

- Legacy Is There For a Reason
 - Compatibility
 - Fairness
 - Congestion Avoidance
 - Other Considerations
- Therefore: Distributed Cloud
 - Minimal Latencies Over Legacy Internet To Anywhere/Everywhere
- Therefore: Private Internal Networks
 - Eliminate Latency Dependence Internally
 - Use Aggressive Internal Transport/Application Protocols
 - TIA-1039, Reliable Blast UDP, Lambda RAM
 - Flow Control Enabled....And Other Techniques/Technologies

Context 3: General Considerations

- Major Cloud Use Case: Big Data, Distributed Collection, Must Live With Available Networks
 - Smart Cities
 - Sensor Nets
 - Enterprise
- Current World: May Have To Rely On Provider Service
- Best Case: Create Private Network
 - Owning Optical Fiber
 - Create High Performance Wireless Point-to-Point Links
- Many Data Intensive Science Projects, Including
 - High Energy Physics (e.g. LHCNet, Science Data Network, I-WIRE)
 - Atmospheric Sensing Apparatus
 - Ocean Observing (e.g., Project Neptune)
 - Distributed Radio and Optical Telescopes, etc

- Computation is Ubiquitous and Easy To Obtain
- Programs Are Small and Easy to Transmit
- Most Programs Can Reduce Data
- Often Data Is Large and Challenging To Transmit
 - E.g., Jim Gray distributing SDSS by sending computers by FedEx!
- Solution -- Send Programs to Data

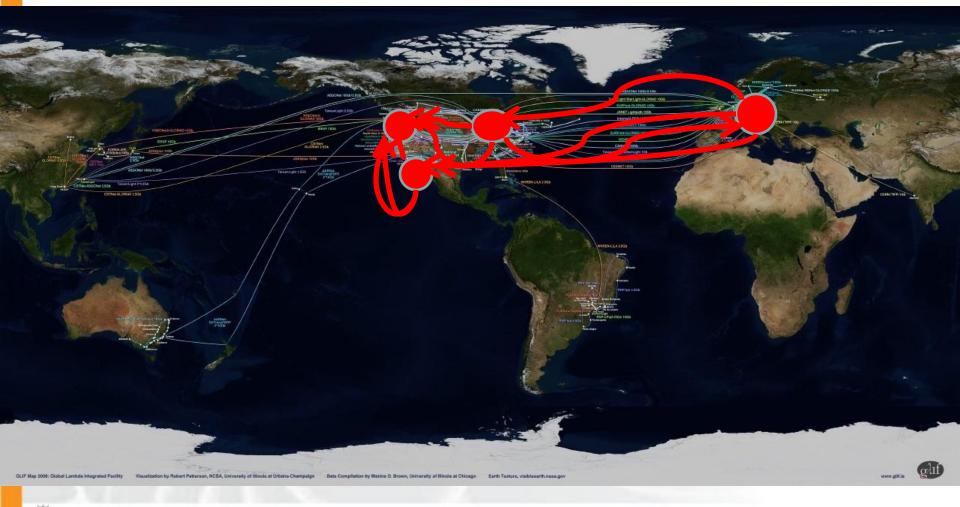
Solution – TransCloud

- Introducing TransCloud Prototype
 - An Early Instantiation of the Proposed Architecture
 - A Distributed Environment That Enables Component and Interoperability Evaluation
 - A Distributed Environment That Can Enhance GENI's Potential As a Research Instrument
 - A Testbed On Which Early Experimental Research Can Be Conducted
 - An Environment That Can Be Used To Explain/Showcase New Innovative Architecture/Concepts Through Demonstrations, e.g., Three Demonstrations at GEC 10

- TransCloud = A Highly Geographically Distributed Environment That Can Support Services Based On
 - Highly Distributed Processes Any Process, Anywhere World Wide – Freed From Physical Dependencies
 - Using Multiple Independently Administered and Distributed Resources, Including Compute Processing, Dynamic Networking, Storage, Data, Analytics, etc.
 - Using a Ubiquitous Environmental "Stack" ~
 Conceptually, Creating a Type of "TCP" Stack Oriented For This Much Larger Blend of Resources

- Several Basic TransCloud Concepts
 - High Performance Highly Distributed Cloud Architecture Allowing Processes Across Multiple Administrative Domains Integrated With Dynamic Networking (GENI)
 - Utilizing Scalable Lightweight Federation Processes
 - Services Are Based On Processes That Can Be Executed Anywhere World-Wide (Location Independent)
 - Top Level Services Can Be Accessed Via Public Internet
 - Core Processes and Data Streams Leverage
 Sophisticated Communication Services Not Merely
 "Best Effort" Commodity Internet

- TransCloud Architectural Components
 - High Level APIs
 - A High Performance General Programming Environment
 - A Wide Area Programming Environment Integrated With Query Systems And High Performance Data Access Services
 - Resource Management Frameworks, Including Cluster, VM and Network Resource Management
 - High Levels of Virtualization Based on VMs and Network Abstractions



TransCloud Architecture

Distributed Pig	
Distributed Hadoop	
NaCIRePy	
GENI Eucalyptus	1039/RBUDP
Slice Federation Architecture	Flow Primitives

TransCloud Today

- Sites at
 - HP Labs, Palo Alto
 - UC San Diego
 - Northwestern
 - Kaiserslautern
- Tomorrow (*literally*!)
 - Amsterdam
- Connectivity provided by:
 - CAVEWave, StarLight, NetherLight, DFN, National Lambda Rail, Global Lambda Integrated Facility

- TransCloud Prototype Demonstration 1A
 - A Complex Query Is Initiated
 - Process Discovers Packages/Integrates Required Resources Resident At Multiple Sites, Across Multiple Domains, Including International (US Germany)
 - Query Is Executed Using Dynamically Instantiated Fabric
 - Result Is Produced

- TransCloud Prototype Demonstration 1B
 - Complex Query Number 1 Is Initiated
 - Process Discovers Packages/Integrates Required Resources Resident At Multiple Sites, Across Multiple Domains, Including International (US Germany)
 - Query 1 Is Executed
 - Result 1 Is Produced
 - Complex Query Number 2 Is Initiated
 - Process Discovers Packages/Integrates Required Resources Resident At Multiple Sites, Across Multiple Domains
 - Query 2 Is Executed
 - Result 2 Is Produced

- Results 1 and 2 are Combined Are Delivered

- TransCloud Transcoding
 - Demonstration of Converting New Technology Capability Into Practical Service (Using In Part Control Based on XML RPC)
 - Traditionally Digital Media Has Used Different Infrastructure For Different Edge Delivery Platforms
 - This Demonstration Shows the TransCloud Provides a Capability for Using One High Performance Distributed Environment for Transcoding For Multiple Platforms
 - Mobile Phones
 - Computers
 - Tablets
 - Tile Displays
 - Et Al -- Unlimited

How TransCoding Demonstration Works

cloud 1 •TransCloud: Set of Protocols, Standards, Management Software That Enables Interoperation of Distinct Cloud Resources

• TransCloud: Advanced Distributed Global Environment That Enables Dynamic Creation of Communication Services, Including Those Based On Rapid Migration of Virtual Network Cloud 3 and Cloud Resources

Transcoding Transcoding cloud 2 National LambdaRail Architecture Video Sources Switches

Demonstration 2

HP Labs OpenCirrus TransCloud

iCAIR Trans Cloud

Sponsored by the National Science Foundation

UCSD TransCloud

Kaiserslautern TransCloud

- GENI = An Indispensible Resource For Transcloud
 - GENI Standard (Slice-Based Federation Architecture) Is Key To Interoperation of Multiple Domain Clouds and Forms the Critical Federation Standard
 - Deep Network Programmability and Long-Distance L2 Networking Are Vital to Seamless Core Process and Data Migration
- Key Future Goals
 - Hosting Researchers On the TransCloud Platform
 - Providing Key Resources for e-Science, Network Science
 - Continuing Intercontinental Expansion of the TransCloud

Advancing TransCloud

- If You Are Interested In Using This Environment, Contact Us
- If You Would Like To Contribute Resources, Contact Us

TransCloud at GEC 10

• THANKS!

Questions????

