

G E N I

Global Environment for Network Innovations

Aggregate Manager API

Document ID: GENI-SE-CF-AMAPI-01.0

September 1, 2010

Prepared by:
The GENI Project Office

BBN Technologies
10 Moulton Street

Cambridge, MA 02138 USA

Issued under NSF Grant CNS-0741315

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 2 of 29

TABLE OF CONTENTS

1	 DOCUMENT SCOPE.. 4	
1.1	 PURPOSE OF THIS DOCUMENT ... 4	
1.2	 CONTEXT FOR THIS DOCUMENT .. 4	
1.3	 RELATED DOCUMENTS ... 4	

1.3.1	 National Science Foundation (NSF) Documents ... 5	
1.3.2	 GENI Documents ... 5	
1.3.3	 Standards Documents ... 5	
1.3.4	 Other Documents.. 5	

1.4	 DOCUMENT REVISION HISTORY.. 6	
2	 GENI OVERVIEW .. 7	
3	 INTRODUCTION.. 8	
4	 DESIGN ... 8	

4.1	 SSL ... 9	
4.2	 XML-RPC .. 9	

5	 RELATIONSHIP TO SFA... 10	
6	 SAMPLE API SOFTWARE IMPLEMENTATION ... 10	
7	 API OPERATIONS.. 11	

7.1	 COMMON ELEMENTS ... 11	
7.1.1	 Slice URN... 11	
7.1.2	 Array of Credentials and semantics.. 11	
7.1.3	 Return values .. 12	

7.2	 GETVERSION... 12	
7.2.1	 Arguments .. 12	
7.2.2	 Return value.. 12	

7.3	 LISTRESOURCES.. 12	
7.3.1	 Arguments .. 12	
7.3.2	 Return value.. 13	

7.4	 CREATESLIVER ... 13	
7.4.1	 Arguments .. 13	
7.4.2	 Return value.. 14	

7.5	 DELETESLIVER.. 14	
7.5.1	 Arguments .. 14	
7.5.2	 Return value.. 15	

7.6	 SLIVERSTATUS.. 15	
7.6.1	 Arguments .. 15	
7.6.2	 Return value.. 15	

7.7	 RENEWSLIVER .. 16	

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 3 of 29

7.7.1	 Arguments .. 16	
7.7.2	 Return value.. 17	

7.8	 SHUTDOWN ... 17	
7.8.1	 Arguments .. 17	
7.8.2	 Return value.. 17	

8	 USE CASES ... 17	
8.1	 EXAMPLE 1: SLIVER CREATION .. 17	
8.2	 EXAMPLE 2: SLIVER RENEWAL... 18	
8.3	 EXAMPLE 3: SLIVER DELETION... 18	

9	 FEDERATION... 18	
9.1	 MECHANICS .. 19	

10	 IDENTIFIERS (URNS) ... 19	
10.1.1	 Public Identifiers .. 19	
10.1.2	 Example translations: ... 20	

10.2	 USAGE.. 20	
10.3	 AUTHORITY STRING... 20	
10.4	 TYPE .. 21	
10.5	 NAME... 21	

11	 CERTIFICATES .. 21	
11.1	 FORMAT ... 21	
11.2	 HIERARCHY.. 21	

12	 CREDENTIALS... 22	
12.1	 SIGNATURES .. 23	
12.2	 CREDENTIAL VALIDATION ... 23	
12.3	 IMPLEMENTATION .. 24	

13	 PRIVILEGES ... 25	
14	 FUTURE PLANS... 26	
15	 APPENDIX A: SAMPLE GENI API CERTIFICATE.. 26	
16	 APPENDIX B: CHAINED IDENTITY CERTIFICATE .. 27	
17	 REFERENCES... 29	

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 4 of 29

1 Document Scope

This section describes this document’s purpose, its context within the overall GENI document tree,
the set of related documents, and this document’s revision history.

1.1 Purpose of this Document
This document describes a programming interface, known as an API, for allowing GENI

experimenters to contact aggregates of GENI resources to learn what resources are available and
present requests for resource reservations. The GENI Aggregate Manager API is a common API for
reserving disparate resources from multiple GENI aggregates. Prior to this API, each control framework
specified a unique interface between aggregates and experimenters. The GENI Aggregate Manager API
specifies a set of functions for reserving resources and describes a common format for certificates and
credentials to enable compatibility across all aggregates in GENI.

1.2 Context for this Document
Figure 1-1 below shows the context for this document within GENI’s overall document tree.

Figure 1-1. This Document within the GENI Document Tree.

1.3 Related Documents
The following documents of exact date listed are related to this document, and provide background

information, requirements, etc., that are important for this document.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 5 of 29

1.3.1 National Science Foundation (NSF) Documents

Document ID Document Title and Issue Date
N / A

1.3.2 GENI Documents

Document ID Document Title and Issue Date
GENI-SE-SY-TS-UC-LC-01.0 Lifecycle of a GENI Experiment

GENI-SE-SY-RQ-01.9 GENI System Requirements (DRAFT)

GENI-SE-CF-RQ-01.3 GENI Control Framework Requirements (DRAFT)

GENI-SE-CF-PLGO-01.2 PlanetLab GENI Control Framework Overview (DRAFT)
GENI-SE-CF-PRGO-01.3 ProtoGENI Control Framework Overview (DRAFT)

GENI-SE-CF-ORGO-01.2 ORCA GENI Control Framework Overview (DRAFT)

GENI-SE-SY-SO-02.0 GENI System Overview

GENI-INF-PRO-S1-OV-1.12 GENI Spiral 1 Overview

1.3.3 Standards Documents

Document ID Document Title and Issue Date
ISO 8601 Data elements and interchange formats – Information interchange –

Representation of dates and times, December 2004
RFC 1421 Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption

and Authentication Procedures, February 1993
RFC 1950 ZLIB Compressed Data Format Specification version 3.3, May 1996

RFC 2818 HTTP Over TLS, May 2000

RFC 3151 A URN Namespace for Public Identifiers, August 2001
RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile, April 2002
RFC 3339 Date and Time on the Internet: Timestamps, July 2002

RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2, August 2008

1.3.4 Other Documents

Document ID Document Title and Issue Date
SFA v1.0.1 Slice-Based Facility Architecture, August 8, 2008

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 6 of 29

1.4 Document Revision History
The following table provides the revision history for this document, summarizing the date at which

it was revised, who revised it, and a brief summary of the changes. This list is maintained in
chronological order so the earliest version comes first in the list.

Revision Date Revised By Summary of Changes

01.0 9/1/10 T. Mitchell Initial draft

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 7 of 29

2 GENI Overview

The Global Environment for Network Innovations (GENI) is a novel suite of infrastructure now
being designed to support experimental research in network science and engineering.

This new research challenges us to understand networks broadly and at multiple layers of
abstraction from the physical substrates through the architecture and protocols to networks of people,
organizations, and societies. The intellectual space surrounding this challenge is highly
interdisciplinary, ranging from new research in network and distributed system design to the theoretical
underpinnings of network science, network policy and economics, societal values, and the dynamic
interactions of the physical and social spheres with communications networks. Such research holds
great promise for new knowledge about the structure, behavior, and dynamics of our most complex
systems – networks of networks – with potentially huge social and economic impact.

As a concurrent activity, community planning for the suite of infrastructure that will support NetSE
experiments has been underway since 2005. This suite is termed the Global Environment for Network
Innovations (GENI). Although its specific requirements will evolve in response to the evolving NetSE
research agenda, the infrastructure’s conceptual design is now clear enough to support a first spiral of
planning and prototyping. The core concepts for the suite of GENI infrastructure are as follows.

• Programmability – researchers may download software into GENI-compatible nodes to

control how those nodes behave;
• Virtualization and Other Forms of Resource Sharing – whenever feasible, nodes implement

virtual machines, which allow multiple researchers to simultaneously share the infrastructure;
and each experiment runs within its own, isolated slice created end-to-end across the
experiment’s GENI resources;

• Federation – different parts of the GENI suite are owned and/or operated by different
organizations, and the NSF portion of the GENI suite forms only a part of the overall
‘ecosystem’; and

• Slice-based Experimentation – GENI experiments will be an interconnected set of reserved
resources on platforms in diverse locations. Researchers will remotely discover, reserve,
configure, program, debug, operate, manage, and teardown distributed systems established
across parts of the GENI suite.

As envisioned in these community plans, the GENI suite will support a wide range of experimental

protocols, and data dissemination techniques running over facilities such as fiber optics with next-
generation optical switches, novel high-speed routers, city-wide experimental urban radio networks,
high-end computational clusters, and sensor grids. The GENI suite is envisioned to be shared among a
large number of individual, simultaneous experiments with extensive instrumentation that makes it easy
to collect, analyze, and share real measurements.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 8 of 29

3 Introduction

The GENI Aggregate Manager API is a common API for reserving disparate resources from
multiple GENI aggregates. Prior to this API, each control framework specified a unique interface
between aggregates and experimenters. The GENI Aggregate Manager API specifies a set of functions
for reserving resources and describes a common format for certificates and credentials to enable
compatibility across all aggregates in GENI.

This API has been implemented in multiple control frameworks, and will serve as the basis for
ongoing integration among GENI control frameworks and tools. Using this document, new GENI-
interoperable aggregate managers, tools, and clearinghouses may be built.

This API is based in large part on the Slice-Based Facility Architecture (SFA) version 1.0.1 [1].
Many of the concepts and terms used in this document are defined in the SFA document. Readers of
this document are encouraged to also read that document, and its successors, for framing, background
information and definitions.

This document describes the GENI Aggregate Manager API. Sections 4 and 5 provide background
information and framing for the API. Section 6 describes the sample implementation of the API
available for download and experimentation. Section 7 describes the API operations in detail and
Section 8 describes common experimenter use cases. Section 9 provides an overview of how aggregates
can join with other GENI services. Sections 10 - 13 describe the API building blocks in detail. These
are the supporting elements that enable interoperability of aggregates, clients, and clearinghouses. The
document closes with a brief discussion of possible future directions in Section 14.

4 Design

One goal of GENI is to facilitate national scale networking experiments that utilize resources across
many administrative domains. As a first step, the GENI community has identified an initial API for
aggregates that allows aggregates to federate with multiple clearinghouses and provides a common API
between experimenters and aggregates.

The GENI Aggregate Manager API is a limited set of operations that were common between the
PlanetLab [2] and ProtoGENI [3] projects. These particular frameworks were chosen because they were
the most mature and they both exposed similar SFA derived interfaces. The API attempts to reconcile
the different design decisions that PlanetLab and ProtoGENI made by specifying a minimal common
set of operations that are sufficient to create meaningful experiments across aggregates. Further, the
API specifies common certificate and credential formats to enable user authentication and privilege
verification.

This document notes the key technical decisions made during the API’s design. Our decisions were
guided by the desire to follow common standards, allow for future growth, and to minimize the
necessary changes to PlanetLab and ProtoGENI.

Figure 4-1 shows how we expect the API will be used in practice. GENI experimenters will interact
with a software client. This client, in turn, communicates with a GENI clearinghouse to create a slice,
receive a slice credential and learn what aggregates are available. The API between client and
clearinghouse is not standardized as of this writing. A client must use the native protocol of the
clearinghouse it is contacting. After creating a slice, the client software uses the GENI Aggregate
Manager API to interact with aggregates on behalf of the experimenter. The experimenter, via the

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 9 of 29

client, can learn what resources are available, reserve a set of resources by creating a sliver, and return
the resources to the available set by deleting the sliver when they are done.

4.1 SSL
GENI API implementations must use Secure Socket Layer (SSL) [RFC 5246] for authentication

and encryption of all communications between clients and aggregates. Currently, only the client must
be verified to the aggregate, and not vice-versa. SSL provides this identification in a broadly supported
and readily implemented communications infrastructure.

It is important to resource providers that they be able to identify the experimenter who is
responsible for the use of their resources. This identification forms the basis for tracing actions and
auditing resource use. Because clients are acting on behalf of a human, they must pass a certificate that
identifies that individual to the aggregate. It is preferred that all experimenters use certificates that are
protected by a password to avoid inappropriate use of their GENI identity.

SSL was chosen as the authentication mechanism for GENI because of its broad availability, its
relatively simple configuration, and its existing use in ProtoGENI and PlanetLab. Other authentications
mechanisms, like Shibboleth [4], may be explored in future revisions.

4.2 XML-RPC
XML-RPC [5] over HTTPS [RFC 2818] is used as the invocation mechanism for GENI API

operations. XML-RPC is a remote procedure call mechanism that uses HTTP for transport and XML as
the encoding. XML-RPC is readily secured by SSL, can be used from a variety of programming
languages and was already in use by both ProtoGENI and PlanetLab. These factors combined to make a
compelling rationale for adopting XML-RPC over HTTPS as the invocation mechanism for the GENI
API.

Figure 4-1. The GENI Aggregate Manager API in use.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 10 of 29

5 Relationship to SFA

The GENI Aggregate Manager API is intended to be compatible with the SFA. It also serves as a
concrete implementation of a key interface within the SFA: the interface between experimenters and
resources.

As the SFA continues to grow, we expect that this API will continue to track the SFA and grow
with it. We also anticipate agreement upon additional GENI APIs based on other interfaces specified in
the SFA. We believe that GENI will be one of many SFA-compatible network experimentation
testbeds.

6 Sample API Software Implementation
The GENI Aggregate Manager API has been implemented at PlanetLab and ProtoGENI, and the

source code for those implementations is available in those codebases. The GPO has also written a
reference implementation of this API and an example client called Omni. This reference code can be
used to further explain the semantics of the API, to test the interoperability of new tools and services, to
provide examples of certificate and credential verification, and can be used as a framework for new
development. This code is called the GENI Control Framework (gcf) and is available at
http://www.geni.net (in the GENI API section of the GENI wiki).

This package, known as 'gcf', provides a simple Python [6] 2.6 implementation of the Aggregate
Manager API. Developers can use gcf to understand in practice how to generate and validate URNs
(Section 10), certificates (Section 11), and credentials (Section 12). See the included README.txt for
dependencies and usage instructions.

The gcf codebase includes top-level documentation, optional Eclipse IDE project files, and a source
tree. That source has 5 main scripts:

• gen-certs.py generates identity certificates
• gam.py runs the Reference Aggregate Manager
• gch.py runs the gcf test Clearinghouse
• omni.py is the Omni client
• client.py is a test script for testing API implementations

The library code is split into two python packages: ‘geni’ and 'sfa'. The SFA code is imported from
the larger SFA library provided by PlanetLab. It includes code to create and verify certificates,
credentials, and URNs. The geni package contains code written by the GPO which includes the servers,
utility functions and the Omni client. Specific files that might be useful for reference include:

• src/gen-certs.py provides a single file that generates GENI compatible identity certificates
for a clearinghouse, aggregate manager and user(s)

• src/geni/am.py implements the reference Aggregate Manager showing the semantics of the
API operations, how credentials are verified and a trivial implementation of resource
management via the API. The same file includes the AggregateManagerServer, which
demonstrates how an XML-RPC server can be created in Python over SSL.

• src/geni/ch.py implements the reference Clearinghouse. It generates user and slice
credentials for use with any GENI API compatible Aggregate Manager.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 11 of 29

• src/geni/util is a Python package that contains helper functions to create and verify URNs,
certificates, and credentials. It also includes an XML-RPC over SSL client.

The final component of gcf is the Omni client (src/omni.py). Omni demonstrates the use of the
Aggregate Manager API from a client or experimenter perspective. It is a command-line tool that can
obtain user and slice credentials from multiple frameworks (currently PlanetLab, ProtoGENI, and GCF)
and subsequently interact with aggregates that support the GENI API. Omni communicates with
clearinghouses via their native APIs because those protocols have not been standardized. A plug-in
architecture allows future expansion to new clearinghouse APIs. Omni translates the RSpecs of each
known aggregate type into a common language (omnispec) to simplify the display of resources to the
user. Omni can be used by experimenters to reserve resources across multiple aggregates or by
developers to test new implementations of this API. It can serve as an inspiration or as a starting point
for more fully featured clients.

7 API Operations

7.1 Common elements
Many of the API operations have common parameters that are consistently used. For example,

when operations target a slice, they accept a slice_urn argument. When operations require privileges
they accept an array of credentials indicating the privileges that the experimenter has on the slice.

7.1.1 Slice URN
When API functions operate on a slice, a URN (a GENI identifier) is used to specify the slice. The

format of URNs is detailed in Section 9. The slice URN is needed so that the aggregate can match the
slice name against the provided slice credentials.

The use of the slice URN as an argument to API operations implies that all of the resources
reserved within an aggregate are part of one sliver, and those resources are manipulated as a group, not
individually. They can be renewed together and given up (deleted) together, but not separately. The
Aggregate Manager API could be enhanced in the future to allow multiple slivers within an aggregate
so that individual resources or distinct sets of resources could be acted upon independently.

7.1.2 Array of Credentials and semantics
Credentials denote a set of privileges that an actor has on a target object. For instance, a credential

might grant Alice the control privilege on Slice Alpha. In this case, Alice is the actor, control is the
privilege, and Slice Alpha is the target. Credentials are cryptographically signed so that they cannot be
forged. See Section 12 for more information about credentials. In the API, credentials are formatted as
strings and are passed in an array.

The API functions require that at least one credential in the array:
• Specifies the correct target (usually a slice)
• AND specifies the correct subject (usually the experimenter)
• AND contains appropriate privileges for the operation
• AND is signed by a valid authority for the target
• AND has not expired.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 12 of 29

7.1.3 Return values
When API functions complete successfully they return values as documented below. All of the

return types are standard XML-RPC types. When API functions encounter errors they return XML-RPC
faults. These faults are generally handled through an exception handling mechanism on the client side.
Clients of the Aggregate Manager API should handle these exceptions when invoking API operations.

7.2 GetVersion
Return the version of the GENI Aggregate Manager API supported by this aggregate.

struct GetVersion()

This operation is similar to ProtoGENI's GetVersion operation. The SFA specification does not
include this operation.

7.2.1 Arguments
None.

7.2.2 Return value
The result is an XML-RPC struct with at least the following members:

{
 int geni_api;
}

geni_api

An integer indicating the revision of the Aggregate Manager API that an aggregate supports.
The current version of the API is 1 (one).

Implementations can add additional members to the struct as desired. The prefix ‘geni_’ is reserved
for members that are part of this API specification. Implementations should choose an appropriate
prefix to avoid conflicts. Candidates for addition to this struct include an RSpec version number for
example.

7.3 ListResources
Return information about available resources, or return resources allocated to a slice.

string ListResources(string credentials[],
 struct options)

This operation is similar to ProtoGENI's DiscoverResources operation and to the SFA's
GetResources operation (sec. 6.2.4).

7.3.1 Arguments
credentials[]

An array of credentials. At least one credential must be valid for this operation (signed by a
valid GENI certificate authority either directly or by chain, and not expired).

options

An XML-RPC struct containing members indicating the set of resources the caller is interested
in or the format of the result. In addition to the members specified below, callers can pass
additional members that specific aggregate manager implementations might honor. The prefix

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 13 of 29

‘geni_’ is reserved for members that are part of this API specification. Implementations should
choose an appropriate prefix to avoid conflicts.

The following members are available for use in the options parameter. All aggregate managers are
required to implement these options.

{
 boolean geni_available;
 boolean geni_compressed;
 string geni_slice_urn;
}

geni_available

An XML-RPC boolean value indicating whether the caller is interested in all resources or
available resources. If this value is true, the result should contain only available resources. If
this value is false both available and allocated resources should be returned. The Aggregate
Manager is free to limit visibility of certain resources based on the credentials parameter.

geni_compressed

An XML-RPC boolean value indicating whether the caller would like the result to be
compressed. If the value is true, the returned resource list will be compressed according to RFC
1950.

geni_slice_urn

An XML-RPC string indicating that the caller is interested in the set of resources allocated to
the slice named by this URN. If no resources are allocated to the indicated slice by this
aggregate, an empty RSPEC should be returned.

7.3.2 Return value
The return value is always a string. If geni_compressed is unspecified or set to false the return value

will be an advertisement RSPEC in text format. If geni_compressed is specified and set to true the
return value will be a string whose contents are base 64 encoded [RFC 1421] compressed advertisement
RSPEC. Clients must first base 64 decode the string, then uncompress the decoded result.

7.4 CreateSliver
Allocate resources to a slice. This operation is expected to start the allocated resources

asynchronously after the operation has successfully completed. Callers can check on the status of the
resources using SliverStatus.

string CreateSliver(string slice_urn,
 string credentials[],
 string rspec,
 struct users[])

This operation is similar to ProtoGENI's CreateSliver operation and to the SFA's CreateSlice
operation (sec. 6.2.1).

7.4.1 Arguments
slice_urn

The URN of the slice to which the resources specified in the rspec argument will be allocated.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 14 of 29

credentials

An array of credentials. At least one credential must be a valid slice credential for the slice
specified in slice_urn. Aggregates should ensure that the expiration time of the slice does not
exceed the expiration time of the slice credential used to perform this operation.

rspec

A request RSPEC (plain text, uncompressed) containing the resources that the caller is
requesting for allocation to the slice specified in slice_urn. These are expected to be based on
resources returned by a previous invocation of ListResources.

users

An array of user structs, which contain information about the users that might login to the sliver
that the AM needs to know about. Each struct must include the key 'keys', which is an array of
strings and can be empty. The struct must also include the key 'urn', which is the user’s URN
string. The users array can be empty. For example:

[
 {
 urn: urn:publicid:IDN+geni.net:gcf+user+alice
 keys: [<ssh key>, <ssh key>]
 },
 {
 urn: urn:publicid:IDN+geni.net:gcf+user+bob
 keys: [<ssh key>]
 }
]

7.4.2 Return value
The return value is a manifest RSPEC indicating the resources that were allocated to the slice. The

result RSPEC may contain additional information about the allocated resources.

7.5 DeleteSliver
Delete a sliver by stopping it if it is still running, and then deallocating the resources associated

with it. This call will stop and deallocate all resources associated with the given slice URN.
boolean DeleteSliver(string slice_urn,
 string credentials[])

This operation is similar to ProtoGENI's DeleteSliver operation and to the SFA's DeleteSlice
operation (sec. 6.2.3).

7.5.1 Arguments
slice_urn

The URN of the slice whose sliver should be deleted.

credentials

An array of credentials. At least one credential must be a valid slice credential for the slice
specified in slice_urn.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 15 of 29

7.5.2 Return value
Returns true on success and false on failure. If the result is failure the aggregate administrator

should be notified so that the sliver's resources can be reclaimed administratively.

7.6 SliverStatus
Get the status of a sliver - from configuring to ready (for use) or (allocation) failed.

struct SliverStatus(string slice_urn,
 string credentials[])

This operation is similar to ProtoGENI's SliverStatus operation. The SFA specification does not
include this operation.

7.6.1 Arguments
slice_urn

The URN of the slice for which the sliver status is requested.

credentials

An array of credentials. At least one credential must be a valid slice credential for the slice
specified in slice_urn.

7.6.2 Return value
Returns an XML-RPC struct upon successful completion. The struct is of the following form:

{
 geni_urn: <sliver URN>
 geni_status: ready
 geni_resources: [{ geni_urn: <resource URN>
 geni_status: ready
 geni_error: ''},
 { geni_urn: <resource URN>
 geni_status: ready
 geni_error: ''}
]
}

The top level members of the returned struct pertain to the sliver as a whole. These members are:
geni_urn

The URN of the sliver as a string.

geni_status

A string indicating the status of the sliver. Possible values are shown in Table 7-1. More
detailed information can be found in the value of the geni_resources member described below.

Value Definition

configuring At least one resource is being configured and none have failed.

ready All resources in the sliver are ready.

failed At least one resource in the sliver has failed.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 16 of 29

unknown The state of the sliver is not one of the known states.

Table 7-1: Sliver status values.

geni_resources

An array of structs. Each struct in the array gives the status of a resource in the sliver.

The members of the geni_resources struct(s) are as follows:
geni_urn

The URN of the resource as a string.

geni_status

A string indicating the status of the resource. Possible values are:

Value Definition

configuring The resource is being configured and is not yet ready for use.

ready The resource is ready.

failed The resource has failed.

unknown The state of the resource is not one of the known states.

Table 7-2: Resource status values.

geni_error

A free form string. The aggregate manager should set this to a string that could be presented to
a researcher to give more detailed information about the state of the resource if its status is
failed.

7.7 RenewSliver
Renews the resources in a sliver, extending the lifetime of the slice.

boolean RenewSliver(string slice_urn,
 string credentials[],
 string expiration_time)

This operation is similar to ProtoGENI's RenewSlice operation. The SFA specification does not
include this operation.

7.7.1 Arguments
slice_urn

The URN of the slice that is to have its sliver renewed.

credentials

An array of credentials. At least one credential must be a valid slice credential for the slice
specified in slice_urn.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 17 of 29

expiration_time

A string in RFC 3339 format indicating the expiration_time desired by the caller. Note these
times, per the RFC, must be in or relative to UTC. This time must be less than or equal to the
slice duration in the slice credential. In other words, at least one supplied (slice) credential must
still be valid at the desired new expiration time for this call to succeed.

7.7.2 Return value
Returns true on successful completion, false otherwise. It is assumed that the caller will have

already extended the lifetime of the slice credential with the appropriate slice authority prior to calling
RenewSliver.

7.8 Shutdown
Perform an emergency shut down of a sliver. This operation is intended for administrative use. The

sliver is shut down but remains available for further forensics.
boolean Shutdown(string slice_urn,
 string credentials[])

This operation is similar to ProtoGENI's Shutdown operation. The SFA specification does not
include this operation.

7.8.1 Arguments
slice_urn

The URN of the slice is to have its sliver shut down.

credentials

An array of credentials. At least one credential must be a valid slice credential for the slice
specified in slice_urn or a valid administrative credential with sufficient privileges.

7.8.2 Return value
Returns true on success, false otherwise.

8 Use Cases
This section provides examples of how an experimenter might interact with the GENI API to

perform typical tasks. The examples (provided below) assume that the experimenter has first contacted
a GENI Clearinghouse and created a slice. A slice, in this context, is an empty container for slivers. No
resources are requested or allocated when a slice is created. When an experimenter creates a slice she
receives a slice credential. The slice credential indicates that the experimenter has been granted a set of
privileges on the newly created slice. The slice also has an expiration date, encoded in the slice
credential, indicating how long the slice is valid. See Section 11 for details on credentials.

8.1 Example 1: Sliver Creation
When an experimenter wants to allocate resources to her slice, she creates a sliver on a GENI

aggregate. This task involves several GENI API operations:
1. The experimenter, via her client, invokes the GetVersion operation on the aggregate to

determine what version of the API the aggregate implements. In the future, the result might
dictate what other calls are possible on the aggregate.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 18 of 29

2. The experimenter invokes ListResources to ask the aggregate what resources it has and which
are available for use. The returned list is called an advertisement RSPEC and is in whatever
format the aggregate chooses, but typically XML [7] or RDF [8]. Note that the result may be
compressed. The experimenter will use this result to decide which available resources she
wants to request.

3. The experimenter invokes CreateSliver to request a set of resources. The resource list passed
with the invocation is called a request RSPEC, and is similarly in XML or RDF format,
depending on the Aggregate. This operation returns a list of resources that were allocated to the
sliver. The returned list is called a manifest RSPEC. This RSPEC tells the experimenter how
her request was (or was not) fulfilled. The Aggregate may not have had as many nodes
available as were requested, or may be able to specify particular machine names for the
allocated nodes.

4. The experimenter invokes SliverStatus one or more times to determine the status of the
resources that are part of the sliver. As the aggregate allocates and configures the resources,
their status changes to Ready, indicating that the experimenter is free to begin using them, in
whatever way the aggregate makes available. The API does not specify how the experimenter
accesses or further configures the resources once they are allocated.

8.2 Example 2: Sliver Renewal
If the experimenter is not done with her experiment when the expiration date is approaching, she

may want to renew her sliver. When an experimenter wants to extend the lifetime of a sliver associated
with a slice she must first renew the slice with the clearinghouse. This operation should result in the
experimenter receiving a slice credential with an updated and extended expiration date. It is then
necessary to renew each sliver associated with the slice at each aggregate that contributes resources to
the slice.

1. The experimenter invokes the GetVersion operation on the aggregate to determine what
version of the API the aggregate implements (allowing her client to tailor future calls as
needed).

2. The experimenter invokes the RenewSliver call with the slice_urn and new credentials to
extend the lease on resources allocated to the sliver. The return value is true if the resources
were successfully renewed. Then she can continue her experiment.

8.3 Example 3: Sliver Deletion
When an experimenter is finished with resources at an aggregate she can delete them from the slice.

This makes those resources available to other experimenters.
1. The experimenter invokes the GetVersion operation on the aggregate to determine what

version of the API the aggregate implements.
2. The experimenter invokes the DeleteSliver to relinquish the resources associated with a slice.

9 Federation
The GENI API facilitates the federation of GENI clearinghouses. Federated clearinghouses can

share resources between their respective users. Federation is possible because of the standardized
certificate and credential formats specified by this API, the use of the common API functions by
experimenters to reserve resources from aggregates, and the explicit acceptance of federated root
certificates by Aggregate Managers. Negotiating access policies remains a challenge that is beyond the
scope of the API.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 19 of 29

9.1 Mechanics
In order to federate with a clearinghouse an aggregate must share its XML-RPC endpoint (host

name/IP address and TCP port) with the clearinghouse and must install the clearinghouse's root
certificate to enable communication with its members. The XML-RPC endpoint is the hostname and
port on which the XML-RPC server listens for connection requests. The clearinghouse is expected to
publish a directory or listing of its federated aggregates.

Each clearinghouse is also expected to publish its root certificate. Aggregates that want to federate
with a given clearinghouse must download and install the root certificate in order to accept and verify
users and slice credentials issued by that clearinghouse. An aggregate is free to federate with any
number of clearinghouses.

By installing a clearinghouse's root certificate an aggregate can communicate with all
experimenters who possess a valid certificate issued by that clearinghouse. Aggregates implicitly trust
whatever vetting process the clearinghouse performs on its members. Aggregates may choose to
enforce additional local policy before fulfilling requests.

There is currently no established mechanism in the GENI API for distributing root certificates or
for distributing certificate revocation lists.

10 Identifiers (URNs)

GENI identifies objects (be it a researcher, resource, clearinghouse, sliver, slice, or aggregate
manager) are identified by a Uniform Resource Name (URN) [RFC 2141]. GENI URNs are encoded
Public Identifiers [9], and thus follow RFC 3151, "A URN Namespace for Public Identifiers". The
general format of a GENI URN is: urn:publicid:IDN+<authority string>+<type>+<name>.
This format is adapted from the ProtoGENI URN format [10], which in turn is adapted from the GMOC
GENI URN proposal [11]. All sections of the URN are mandatory. Note that additional '+' characters
are allowed in the <name> section. URNs should be unique.

10.1.1 Public Identifiers
GENI URNs are in the URN namespace for Public Identifiers. As such, each GENI URN is of the

form: urn:publicid:{transcribed-public-identifier}. RFC 3151 describes how public identifiers are
transcribed to URNs (which involves collapsing whitespace and replacing certain characters with %
encoded values).

The public identifier section of a GENI URN must begin with "IDN" to indicate that it uses an
Internationalized Domain Name (see RFC 3151 for details). When transcribed, this means that all GENI
URNs begin with "urn:publicid:IDN+".

To transcribe a Public Identifier to a URN use the following rules (as specified by RFC 3151):

From Transcribe to
Leading and trailing whitespace trim

whitespace collapse to a single '+'

'//' ':'
'::' ';'

'+' '%2B'

":' '%3A'

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 20 of 29

'/' '%2F'

';' '%3B'
''' '%27'

'?' '%3F'

'#' '%23'

'%' '%25

Table 10-1: Public identifier to URN translation.

10.1.2 Example translations:

Public ID GENI URN
IDN plc//princeton authority sa urn:publicid:IDN+plc:princeton+authority+sa

IDN gcf//gpo//gpolab user joe urn:publicid:IDN+gcf:gpo:gpolab+user+joe

IDN gcf//gpo//gpolab node switch 1 port 2 urn:publicid:IDN+gcf:gpo:gpolab+node+switch+1+port+2

Table 10-2: Example URN Translations.

10.2 Usage
In the GENI API, URNs are used to name slices (as seen in arguments to GENI API calls), to

identify users, and to label resources. URNs are also used in GENI certificates (to bind public keys to
identifiers) and in Credentials (to grant permissions to source identifiers on target identifiers).

10.3 Authority String
Authority strings represent resource namespaces. For instance, 'plc' is the overall PlanetLab

namespace and 'plc.princeton' and 'plc.bbn' are specific namespaces for the Princeton and BBN
PlanetLab sites. The authority string format is 'toplevelauthority:sub_authority1:...:sub_authority_n’.

Only entities with URNs of type 'authority' are allowed to sign credentials for a namespace (except
in the case of delegation).

For example, a ProtoGENI Clearinghouse with URN like ‘protogeni:utah....’ cannot issue a slice
credential giving a user privileges on a PlanetLab slice (with urn ‘plc:princeton....’). Only PlanetLab
can grant rights over PlanetLab slices.

This means that all users and slices whose certificates are issued by a given Clearinghouse, will
have a common format, eg:

Urn:publicid:IDN+<Clearinghouse name>+<user or slice>+<username or
slicename>

Aggregate Managers with certificates issued by the same clearinghouse should share the base name,
such that the clearinghouse can be an authority over the Aggregate Manager name. For example:

urn:publicid:IDN+geni.net:gpo+authority+sa

can be an authority over the Aggregate Manager
urn:publicid:IDN+geni.net:gpo:bbntest1+authority+am

But it could not be an authority over the Aggregate Manager
Urn:publicid:IDN+geni.net:bbntest1+authority+am

Because geni.net:gpo is not a prefix of geni.net:bbntest1.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 21 of 29

10.4 Type
The <type> string indicates the type of the object being identified. Table 10-3 contains a list of type

names in current use, along with a description of each. It is desirable that aggregate implementations
use common names for GENI elements, but there is presently no registry for URN type names.
Implementations should try to reuse existing names in use by other aggregates where possible.

Type name Description

user A GENI experimenter.

authority A signing authority.

slice A slice.

sliver A sliver.

Table 10-3: GENI URN type names.

10.5 Name
The <name> string can be any valid transcribed public id. Use this field to ensure the entity (e.g.,

user, slice, or resource) is uniquely identified.
Note: For ProtoGENI compatibility, slice credentials must be signed by an authority with name

"sa", e.g., urn:publicid:IDN+gcf:gpo+authority+sa.

11 Certificates
Certificates are used to authenticate actors in the GENI API.
The GENI Aggregate Manager API uses X.509 v3 identity certificates to bind public keys to

identifiers (URNs). Only the holder of the private key that signed the certificate can act as the principal
named by the URN.

In the GENI API, these certificates are used for both server side authentication and client side
authentication in SSL connections (actually HTTPS). They are also used to identify the subject and
target of credentials.

11.1 Format
A GENI certificate is an X.509 v3 [RFC 3280] certificate that specifies a GENI identifier (URN) in

the X.509 v3 subjectAltName extension. The certificate is stored in PEM [RFC 1421] format. The
GENI identifier (URN) is placed in URI format and begins with: 'URI:urn:publicid:IDN+'. The
certificate's Common Name (CN) values for the Issuer and Subject are not specified by the GENI
specifications and can be any valid common name. An example GENI certificate that uses a dotted
notation for the common names can be seen in Appendix A.

11.2 Hierarchy
Certificate authority (CA) hierarchies are supported. In a CA hierarchy, a root CA can create

normal certificates as well as intermediate CA certificates. Intermediate CAs are able to issue
certificates that are verified by following the chain from the certificate to the intermediate CA's
certificate to the root certificate. Typically, the verifier will only have the root CA's certificate installed
for verification, and the intermediate CA's certificates is appended to the certificates it issues (called

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 22 of 29

PEM chaining). In the certificate listed in the appendix, the following lines declare that the subject is an
intermediate CA:

 X509v3 Basic Constraints: critical

 CA:TRUE

Since Aggregates and Clearinghouses are likely to only have the root CA's certificate installed, and
not the intermediate CA certificates, all certificates signed by an intermediate CA should be chained. A
chained certificate is simply a certificate that appends the issuer's certificate to the end of the file. For
instance, if A is a root CA cert, B is an intermediate CA cert, and C is an end-user certificate, then C's
chained certificate is:

C

B

A (optional)

An example chained certificate which shows the user cert, the intermediate CA cert, and the root
CA cert (in that order from top to bottom) in chained PEM format can be seen in Appendix B.

12 Credentials
Credentials are used to authorize actions (where certificates authenticate and URNs identify).

Credentials specify the privileges of an actor (the subject of the credential) on an object (the target of
the credential). For instance, a slice credential gives an experimenter (the subject) privileges to allocate
and remove resources from a slice (the target). The credential format that the GENI AM API uses is
ProtoGENI's credential [12]. The GENI AM API adds some additional privileges (see Section 13) for
PlanetLab compatibility.

Credentials can be delegated to other subjects. For instance a slice credential can be delegated from
one experimenter to another. Since credentials assign privileges, this means that one user can assign
some or all of their privileges to others.

GENI Credentials are signed XML containing:
• Type can be one of 'privilege', 'ticket', and 'capability'. The GENI AM API is only concerned

with privilege credentials.
• Serial is a value specified by the issuer, and can be any string.
• UUID is unused.
• Owner GID, which is a PEM format X.509 certificate, containing the owner (entity the

credential is being made for)'s URN in the Subject Alt Name field. See Section 10. Note that
this may be a chained certificate.

• Owner URN to identify the owner (entity whose permissions are being specified). See Section
9.

• Target GID, an X.509 certificate identifying the target (e.g., a slice)
• Target URN naming the target. Note that the signer of the credential must either have the same

URN as the target, or be an authority over the target URN’s namespace. See Section 9.
• Expiration date in ISO 8601 format when the credential becomes invalid (in or relative to

UTC)
• List of privileges. See Section 12.
• Signature of the issuer of the credential. The issuer should be an authority over the Target's

namespace. IE a ProtoGENI clearinghouse cannot issue credentials giving permissions over a
PlanetLab slice.

• Credential Format per the schema described below.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 23 of 29

• Parent If the credential is a delegated credential then the original credential is placed within its
parent tag.

12.1 Signatures
The credential is signed using the XML Signature specification [13]. Implementations must be able

to read and/or write credentials that conform to the XML Signature specification. The xmlsec software
package [14] is one example of a software package that can be used to read and write compliant
credentials. If a credential is delegated, then the owner creating the new (delegated) credential signs the
new credential and the original signature and the new signature are placed in the <Signatures> section.
An example credential appears below.

<?xml version="1.0"?>

<signed-credential>
 <credential xml:id="ref0">
 <type>privilege</type>

 <serial>8</serial>
 <owner_gid>certificate here</owner_gid>
 <owner_urn>urn:publicid:IDN+plc:gpo:site2+user+alice</owner_urn>

 <target_gid>certificate here</target_gid>
 <target_urn>urn:publicid:IDN+plc:gpo:site2+slice+alpha</target_urn>
 <uuid/>

 <expires>2012-07-14T19:52:08</expires>
 <privileges>
 <privilege>

 <name>resolve</name>
 <can_delegate>true</can_delegate>
 </privilege>

 <privilege>
 <name>embed</name>
 <can_delegate>true</can_delegate>

 </privilege>
 </privileges>
 </credential>

 <signatures>
 signature information here
 </signatures>

</signed-credential>

12.2 Credential Validation
Credentials must be internally valid, as well as valid for the operation being requested.
Internal credential validation requires:

• All of the signatures are valid and that the issuers trace back to trusted roots.

• The XML matches the credential schema.

• The issuer of the credential is the authority for the target's URN.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 24 of 29

• All of the certificates presented in the credential are valid.

• The credential is not expired.

• If the credential has been delegated, also verify that:

o The type of the child and parent are the same

o Expiration of child is no later than parent

o Expiration of child is no later than current time

o The signature over the child credential is valid and signed by the subject of the
parent credential

o Any assigned privileges are a subset of parent privileges and the <can_delegate>
bit is set to 1 in the parent for each delegated privilege.

Credentials are verified in the context of the operation being requested. A credential is verified as
permitting an operation only if:

• The credential's subject matches the XML-RPC caller. IE the credential is giving permissions to
the same entity making the call.

• The credential's target matches the specified target URN in the call. IE the credential is giving
permissions over the entity that the caller is trying to act on.

• The privileges listed in the credential map to the operation permissions required to execute the
desired function.

• The credential itself is valid (per above).

12.3 Implementation
Credentials can be signed by ‘xmlsec1’, a program distributed with the xmlsec library. This

program will take an XML file that has a signature template appended to it and an xml:id attribute, and
sign the portion of the XML document designated by the same xml:id using the provided key. The
signature is placed within the appended signature template.

The signature template is the following (replace "ref0" with the xml:id of the XML section that is to
be signed):

<Signature xml:id="Sig_ref0" xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/>
 <Reference URI="#ref0">
 <Transforms>

 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature" />
 </Transforms>

 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 25 of 29

 <DigestValue></DigestValue>

 </Reference>
 </SignedInfo>
 <SignatureValue />

 <KeyInfo>
 <X509Data>
 <X509SubjectName/>

 <X509IssuerSerial/>
 <X509Certificate/>
 </X509Data>

 <KeyValue />
 </KeyInfo>
</Signature>

For example, this is a command to sign an XML file with a signature appendage:
xmlsec1 sign --node-id "Sig_ref0" --privkey-pem alice.pkey,alice.cert

template.xml > signed.xml

This is a command to verify the signature:
xmlsec1 verify --node-id "Sig_ref0" --trusted-pem intermediate_ca_cert --

trusted-pem root_ca_cert signed.xml

13 Privileges
Most GENI API operations require the experimenter to have specific privileges. The set of

privileges an experimenter has for a slice are encoded in the credential. The SFA outlines a candidate
set of privileges and the rationale behind privileges. PlanetLab and ProtoGENI use overlapping
terminology, but with slightly different semantics for the resulting operations. To achieve compatibility
between the two control frameworks for this API, the minimal necessary changes were made.

Operation Privileges
GetVersion None

ListResources *, authority, resolve
CreateSliver *, sa, embed, control

DeleteSliver *, sa, embed, control

SliverStatus *, sa, embed, control

RenewSliver *, sa, embed, control
Shutdown *, sa

Table 13-1: GENI credential privileges

ProtoGENI uses a special privilege, "*" (an asterisk) to denote "all privileges". The GENI API
adopted this special privilege to indicate that an experimenter can perform any GENI API operation.

The Table 13-1 lists the GENI API operations and the privileges (as embedded in credentials by the
issuing clearinghouse) that allow an experimenter to perform each operation. An experimenter needs

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 26 of 29

only one of the privileges associated with each operation in order to perform that operation. Note that
within PlanetLab and ProtoGENI, these privilege names may have additional specific meanings.

Further reconciliation or translation of privilege names remains a future task.

14 Future Plans
The GENI aggregate manager API is a first pass at GENI interoperability. It is expected to grow

and change over time to accommodate new technologies, resources, and tools based on community
contributions and feedback. Some potential modifications are outlined below:

• API Extensions
o Multiple slivers per slice at a single aggregate.
o UpdateSliver (modify the set of requested resources under the same slice name. May be

a synonym for CreateSliver)
o CreateSlivers (plural, a synonym for CreateSliver)
o StartSliver (After allocating resources, boot or start them. CreateSliver currently does

this. This operation would not be possible after Shutdown by users, only
administrators.)

o StopSliver (Currently done by DeleteSliver, this would stop a resource from running if
that is meaningful, without de-allocating the resources.)

o Tickets and delegating Privileges (GetTicket/RedeemTicket).
• Standardize ‘touchpoint’ formatting in RSpecs to support stitching.
• Shibboleth or other standard identity provider, as a database of users, and as an alternative to

certificates for authentication
• Attribute based access control or other mechanisms for managing authorization and federation

15 Appendix A: Sample GENI API certificate
This certificate was printed from the original pem format using the following command:

$ openssl x509 -in cert.pem -text

Note that this user certificate contains the user’s URN in the subjectAltName field, and the Issuer
and Subject CN are related but unspecified dotted-notation identifiers.

Certificate:

 Data:

 Version: 1 (0x0)

 Serial Number: 3 (0x3)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: CN=plc.gpo.site2

 Validity

 Not Before: Jun 10 17:15:29 2010 GMT

 Not After : Jun 9 17:15:29 2015 GMT

 Subject: CN=plc.gpo.site2.jkarlin

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (2048 bit)

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 27 of 29

 Modulus (2048 bit):

 00:bd:94:7a:7c:b7:76:c9:58:24:15:5d:e9:bf:06:

 12:63:d4:f2:47:c3:a0:4b:f0:06:eb:da:19:d6:7d:

 81:07:d5:7f:64:ad:a3:aa:32:ce:32:6d:ed:54:ca:

 a9:8e:61:9a:49:e8:db:a7:29:ff:7e:23:73:a5:fe:

 45:79:f4:e7:1b:5f:34:7c:43:89:a1:a8:76:41:0e:

 5a:66:e7:8f:28:9c:19:c0:54:21:fb:49:ca:60:d9:

 20:f0:c9:85:58:d3:93:30:5f:36:bb:c9:3e:44:ee:

 f0:3e:0f:4a:68:d2:77:33:48:2a:08:a7:e9:7c:41:

 21:5a:68:26:9c:f0:b6:3a:76:42:78:d9:dd:32:92:

 80:6c:4c:8c:fa:b9:45:38:2c:71:99:57:69:39:a3:

 75:3d:65:b7:02:64:cf:3d:9c:1c:90:b6:fe:3b:38:

 26:73:51:b7:6c:f7:0a:44:84:9c:35:58:88:78:3c:

 f8:47:19:65:df:b6:4d:dc:69:07:09:d1:14:19:08:

 14:a6:07:6e:19:de:5d:91:38:3b:7b:b8:4c:c9:a9:

 e9:b1:d7:8c:80:b6:87:95:7c:28:3e:28:b9:73:43:

 41:5c:55:ee:d0:d2:52:e1:cf:f3:f5:3e:7c:12:f7:

 0e:20:ee:26:4a:28:e3:b5:8b:e3:84:7c:d4:4e:e4:

 9a:31

 Exponent: 35 (0x23)

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA:TRUE

 X509v3 Subject Alternative Name:

 URI:urn:publicid:IDN+plc:gpo:site2+user+jkarlin

 Signature Algorithm: md5WithRSAEncryption

 82:39:3f:b2:1b:85:7c:18:32:13:ea:6d:32:47:e6:a4:df:5d:

 4e:48:7e:95:96:41:3e:b7:71:9a:f9:9c:5b:7a:f1:34:04:ca:

 c7:21:26:31:4c:77:8c:b6:57:6e:02:32:8c:84:9f:cf:4b:3e:

 65:d4:97:76:56:fd:5c:05:5d:02:63:ca:e2:48:dd:54:07:60:

 35:8a:04:6c:52:5e:a5:ea:f9:66:16:54:e8:7c:32:89:a7:e8:

 46:5e:af:ea:3b:d6:29:0f:45:e3:80:46:53:d8:e2:bd:9a:68:

 2a:9e:52:72:6a:3b:2c:40:8a:79:6a:1f:df:34:ed:20:cc:c8:

 7f:2b

16 Appendix B: Chained Identity Certificate
This is a sample of a chained X509v3 identity certificate.

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 28 of 29

-----BEGIN CERTIFICATE-----

MIICpTCCAg4CAQMwDQYJKoZIhvcNAQEEBQAwGDEWMBQGA1UEAxMNcGxjLmdwby5z

aXRlMjAeFw0xMDA2MTAxNzE1MjlaFw0xNTA2MDkxNzE1MjlaMCAxHjAcBgNVBAMT

FXBsYy5ncG8uc2l0ZTIuamthcmxpbjCCASAwDQYJKoZIhvcNAQEBBQADggENADCC

AQgCggEBAL2Ueny3dslYJBVd6b8GEmPU8kfDoEvwBuvaGdZ9gQfVf2Sto6oyzjJt

7VTKqY5hmkno26cp/34jc6X+RXn05xtfNHxDiaGodkEOWmbnjyicGcBUIftJymDZ

IPDJhVjTkzBfNrvJPkTu8D4PSmjSdzNIKgin6XxBIVpoJpzwtjp2QnjZ3TKSgGxM

jPq5RTgscZlXaTmjdT1ltwJkzz2cHJC2/js4JnNRt2z3CkSEnDVYiHg8+EcZZd+2

TdxpBwnRFBkIFKYHbhneXZE4O3u4TMmp6bHXjIC2h5V8KD4ouXNDQVxV7tDSUuHP

8/U+fBL3DiDuJkoo47WL44R81E7kmjECASOjejB4MA8GA1UdEwEB/wQFMAMBAf8w

ZQYDVR0RBF4wXIYrdXJuOnB1YmxpY2lkOklETitwbGM6Z3BvOnNpdGUyK3VzZXIr

amthcmxpboYtdXJuOnV1aWQ6MDllM2I1ZTEtNzdjMy00OTRkLTk0YWYtZWQ3YjRj

YWY2YmJkMA0GCSqGSIb3DQEBBAUAA4GBAII5P7IbhXwYMhPqbTJH5qTfXU5IfpWW

QT63cZr5nFt68TQEyschJjFMd4y2V24CMoyEn89LPmXUl3ZW/VwFXQJjyuJI3VQH

YDWKBGxSXqXq+WYWVOh8Momn6EZer+o71ikPReOARlPY4r2aaCqeUnJqOyxAinlq

H9807SDMyH8r

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIICFTCCAX4CAQMwDQYJKoZIhvcNAQEEBQAwEjEQMA4GA1UEAxMHcGxjLmdwbzAe

Fw0xMDA2MTAxNzE1MjhaFw0xNTA2MDkxNzE1MjhaMBgxFjAUBgNVBAMTDXBsYy5n

cG8uc2l0ZTIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKfMXAqlXrR3+EfW

UOY2SCjbSd11+oKbj8RUkp3Axjnm02Wo5pOTrLSaFhORARcmtvsxyfNn6rEYBCJ0

T+oNAC5HwSRFBpWKiRtW43+iRO9RQaxFo6rsBem65AuZZC3V2jXMvPmI9DCmcibF

1v4rN3kTGw6WnC3joswqPnFcgolBAgMBAAGjejB4MA8GA1UdEwEB/wQFMAMBAf8w

ZQYDVR0RBF4wXIYrdXJuOnB1YmxpY2lkOklETitwbGM6Z3BvOnNpdGUyK2F1dGhv

cml0eStzYYYtdXJuOnV1aWQ6M2I1YjMyNjctY2MzZC00MmE1LTg3ZmEtYjJjMTY5

ODgyOWIzMA0GCSqGSIb3DQEBBAUAA4GBAGVnGyuPaQdvqr5sydIdxVcbG9Vo+RoN

weTaG8eU7oQNjeBp4IwgJkC++EKYudCcG6JIl2LiensB6mTYmkvf8GPIbTKDwCdj

UWKOoez+EiWNZl7PQDgq/wXKn54VctMuyJesFYaVoztIy8ngYIQRJPqsHQdE1suC

zgNeDVgGkGsz

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIIB+DCCAWECAQMwDQYJKoZIhvcNAQEEBQAwEjEQMA4GA1UEAxMHcGxjLmdwbzAe

Fw0xMDA2MTAxNzE1MjhaFw0xNTA2MDkxNzE1MjhaMBIxEDAOBgNVBAMTB3BsYy5n

cG8wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAJtvhZx43pjyYronJHqdoqxq

7ir8nxOtOHxWKnTLYCPGSK2W1AxUljeTbTu0QI22kzlqNnVHw6iigTS1jr9uVr0Z

ic5CtNPajt4kpcF6dFfIo7D+V10XJqy6uU++kkZ5qFt503KBMELm2pSiedrwIvxh

MEdErlAL99fAfsAGIMFZAgMBAAGjYzBhMF8GA1UdEQRYMFaGJXVybjpwdWJsaWNp

GENI Aggregate Manager API GENI-SE-CF-AMAPI-01.0 September 1, 2010

 Page 29 of 29

ZDpJRE4rcGxjOmdwbythdXRob3JpdHkrc2GGLXVybjp1dWlkOjNjY2NkNWM4LTEw

ODItNDU5OS04MTY4LTU1YTA5NjA3MjM4OTANBgkqhkiG9w0BAQQFAAOBgQBkufkv

HW3EooAEBz5LWnCCEZf0qR6o9cR9r8ZnkczoShgEPdEfnYBtQGE5a3kt5RXJvPKJ

iGsg/eWBYpUfsEcwFDYzIxoHNH/rmxgwy6mItIQ90dQNdVYLvXEhtrya+3dkVhPa

qhhEfubmtMeptqr40vuXaioWnBlY3CDRO88sew==

-----END CERTIFICATE-----

17 References
[1] Peterson, Larry. "Slice-Based Facility Architecture version 1.01." www.cs.princeton.edu. 8 Aug.

2008. Web.
[2] "PlanetLab." www.planet-lab.org.
[3] "ProtoGENI." www.protogeni.net.
[4] "Shibboleth." http://shibboleth.internet2.edu/.
[5] "XML-RPC." www.xmlrpc.com.
[6] "Python." www.python.org.
[7] "XML." www.w3.org.
[8] "RDF." www.w3.org.
[9] "Formal Public Identifiers." www.wikipedia.org.
[10] "URNs." www.protogeni.net. 25 May 2010.
[11] Viecco, Camilo. "Proposal: Use of URN's as GENI Identifiers (Version 0.3, Draft)."

gmoc.grnoc.iu.edu.
[12] "Credentials." www.protogeni.net. 9 June 2010.
[13] "XML Signature Syntax and Processing (Second Edition)." www.w3.org. 10 June 2008
[14] "XML Security Library." http://www.aleksey.com/xmlsec/.

