11) Add rules to process incoming descriptors in XML files, and store info in iCAT (3-4 weeks).
a. Parse four metadata.xml files: project.xml, experiment.xml, step.xml and artifact.xml using schemas defined in the MDOD schema document. We will develop rule(s) (e.g. parseMDODxml.r) to parse each of them and save the metadata in iCAT. This effort takes 1-2 weeks.
b. Populate the metadata.xml file recursively. This requires the development of a rule that copies the metadata.xml recursively to all the subdirectories and parses them accordingly. For example,
irule –f parseMDODxmlR.r /home/user/experiment_alpha/collect_measurements/step,xml
will use parseMDODxml.r to parse step.xml and save it in iCAT as metadata associated with user/experiment_alpha/collect_measurements. In addition, it recursively copies the file to all subdirectories and applies parseMDODxml.r. This example suggests implementing a new rule (parseMDODxmlR.r). How to use it is to be decided. For example, an icommand can be implemented. Alternatively we can append this rule to the rule chains of icommands such as iput. However, there are different ways that a user can put the metadata.xml into iRODS. In addition to `iput metadata.xml’, the user could do `iput –r directory’, where the directory contains metadata.xml. In the latter case, the rule needs to compare each file name it puts into iRODS against the five possible metadata.xml file names to decide whether it should be parsed. The latter case also makes the recursive application of metadata.xml difficult because within the directory, metadata.xml files may have different behaviors: some need to be populated into subdirectories; others do not. One solution to this could be to include a field in metadata.xml to indicate whether this metadata.xml should be recursively applied or not. The rule parsMDODxml.r that recursively applies metadata.xml to subdirectories is an extension of task 1.a; it will take 1 week to finish. The best way to integrate the rule into icommands is to be decided.
Note: when a metadata.xml is populated into subdirectories, if the file name already exists, a number will be appended. For example, if step.xml exists, step.xml inherited from parent will be changed to step[2].xml.
c. Manage changes. We will implement a rule that monitors the metadata.xml in iRODS. If metadata.xml is modified, the rule will be triggered to re-parse it and update the metadata in iRODS. Users can use various ways to modify metadata.xml. For example, the user can do `icp –f metadata.xml directory/’ to overwrite the existing metadata.xml using a local version; or the user can do `irsync metadata.xml directory/metadata.xml’ to update it. We need to intercept all these possible ways to make sure the metadata in iCAT is consistent with the metadata.xml file. This work will take 1 week.

12) Add rules to move object to public archive directory, and manage any changes (3-5 weeks)
a. Implement parser for archive.xml. This requires parsing Datacite, which we are not familiar with. We expect this effort will take 2-3 weeks.
b. Provide update policies. `icp –f and irsync’ should not be allowed. Once data are archived, they are read-only and only admin can change the permission. In order to remove archived data, the user has to ask the admin to do it. Instead of overwriting the old file, we will implement a rule that will append a timestamp and/or version number to the file name. This policy requires a new rule that takes 1-2 weeks to develop.

13) Integrate archive service with handle service (1 month)
a. Currently the Java registerHandle method has been wrapped into an iRODS mico-service. There are more: deleteHandle, resolveHandle, modifyHandle, etc. Wrapping all handle system API methods into iRODS takes 2 weeks.
b. C API is obsolete but still possible to use because it is the tightest way to integrate. We have integrated the registerHandle function into iRODS. However, we had to resolve some conflict between iRODS and Handle System’s C API because the C API uses an external openssl library. Integrating more functions into iRODS may require resolving more conflicts and we are not sure this is indeed of interest because the Java API probably can satisfy all the user requirements. Therefore we decide to delay this implementation until we finish the Java API integration. .
c. Manage the handle uniqueness. It is iRODS zone’s responsibility to guarantee the uniqueness of a handle. One solution is to use the hash of the iRODS logical name as the handle suffix. However, there are some corner cases need to be considered, such as handling handle collisions and server/network failures. The handle registration will be done after data is put into iRODS and if for some reason the registration fails; iRODS will redo it periodically until it succeeds. This effort takes 2 weeks.

14) Provide interface to iRODS that allows GENI Experimenter Portal to create iRODS user accounts

Previous goals:
	1.	First goal: A structured place to store all of the objects for an experiment, with descriptors (metadata), that is easy to access, with short to medium term storage, and the ability to search. (Note: this goes well beyond just measurement data objects.)
Done.

	2.	Second goal: A separate long-term archive, with controlled access from the outside world, using a DOI (handle) as a persistent identifier
Working on the integration between iRODS and Handle system.
	3.	Third goal: Include most of the functionality provided Measurement Data Archive (MDA) prototype, built by CNRI.
According to the MDA prototype document prepared by CNRI, the functionality provided includes
	a. separation of user workspace from long-term archive
Done.
	b. user workspace is Linux based allowing SMB/SFTP/SSH access
Done
	c. user workspace can be searched and queried (using handles) using repository tools and processes
Done
	d. archive is implemented by another instance of Digital Object Repository with its own storage
	 e. web interface to workspaces that can search data using keywords or timestamps
Done
	 f. API support for SMB/HTTP
Waiting for true REST. The RESTful interface is delay because of the debate whether it should strictly follow the standard. Previously, iRODS tries to use the Post HTTP method to achieve many goals but according to the standard, this not truly RESTful, although many REST implementations are following the same method. True REST interface is deemed to be more secure, which is a big concern for us. Therefore we think we need a true REST.

	4.	Establish multiple federated iRODS services, starting at
RENCI and UMass Amherst, and operate for GENI users (experimenters) (GEC14)
Done.
	5.	Establish persistent accounts for each user, use icommands
to store and retrieve measurement data objects for each user in a storage service (GEC14)
Done.
	6.	Establish authentication for each user based on certificates, and also proxy (delegated) certificates. (GEC15)
Done

	7.	Establish directory structure in storage service for each user to accommodate multiple experiments, and directory structure for each experiment (consider "bag") to include all objects (artifacts) associated with that experiment, including one or more descriptors (metadata) within XML files (following the GENI descriptor schema) (GEC15)
Done. The structure is described in the GSAS document as well as the metadata schemas (GENI ObjectDescriptor Schema). Bagit iRODS rule is already there.
	8.	Provide multiple interfaces (including icommand, restful http, and web) to allow authenticated user to view, search and curate their objects (artifacts) (GEC15)
Waiting for true REST.

	9.	Provide interface to allow user to define an object to be archived (where the object may range from a large directory to a single file), include a descriptor (following the GENI descriptor schema), assign a persistent Digital Object Identifier (DOI, or "handle"), and decide when to push it to archive service. (GEC16)
Partially done and need more discussions on the policies.
	10.	Establish an archive service that provides long-term and reliable storage, with access via a DOI from the global handle service, with access following a local policy included in archived object. (Include at least two policies: give the object to anyone, or give the object only to its owner.) (GEC17)
Need more discussions on the deployment. The two policies are easy. More policies can be added incrementally.
