Page 1 of 55

GENI Storage and Archive Service (GSAS):
Configuration of Service, Structure of Directories and Files, and Use Cases

After review on 102412 with Giridhar
Revised 112612
Revised 122112
Revised 122712 after review with Giridhar, Jeanne on 122112
Revised 022213 after discussions with Shu about BagIt
Revised 041913 after review with Giridhar, Shu and Jeanne on 030813
Revised 041913 after review with Giridhar on 032013 at GEC16
Revised 041913 to include mods sent by Giridhar on 041813
Revised 042613 after discussion with Giridhar on 042513
Revised 042913 after review with Giridhar, Shu and Jeanne on 042913
Revised 050713 to change title

Prepared by: Shu Huang, Giridhar Manepalli, Jeanne Ohren and Harry Mussman

Table of Contents
1. Goals	4
1.1 Goals for GENI Storage and Archive Service	4
1.2 Goals for GENI ObjectDescriptor Schema	5
1.3 Use of “DataCite Schema for the Publication and Citation of Research Data”	5
2. Configuration of GENI Storage and Archive Service based on iRODS	6
Issue 2.1: How are persistent accounts established for each user in iRODS?	8
Issue 2.2: How are storage capacity limits established and enforced for each IRODS user? Are older objects (artifacts) flagged for removal?	8
Issue 2.3: How are archive capacity limits established and enforced for each IRODS user? Are older objects (artifacts) flagged for removal?	8
3. Use Cases to Store, Curate, Archive and Retrieve Experiment Objects in the GSAS	9
4. Structure of Directories and Files in the GSAS	12
4.1 Range of Structures	12
4.2 User Structure 1	12
4.3 User Structure 2	12
4.4 User Structure 3	13
4.5 Public Structure 1	13
4.6 User Structure 2a	14
4.7 User Structure 3a	16
5. Access to Structure in GSAS	20
5.1 From a User’s Experiment Management Environment	20
5.2 From a Service Acting on Behalf of the User	20
Issue 5.1: Where is the proxy certificate created? How is the proxy certificate transferred to the service?	21
Issue 5.2: What happens if the proxy certificate expires? Is the user notified? How can they load an updated proxy certificate?	21
Issue 5.3: How is the target information transferred to the service?	21
Issue 5.4: How is the iticket transferred to the service?	22
Issue 5.5: What happens if the iticket certificate expires? Is the user notified? How can they load an updated proxy certificate?	22
Issue 5.6: How is all of this target information transferred to the service agent?	22
5.3 Assuring a Unique experiment_name	23
5.4 Assuring a Unique file_name (or directory_name)	23
6. Adding Descriptors (Metadata)	27
6.1 Inserting metadata.xml Files into a User’s Directories	27
Issue 6.1: Need to establish rules if there is a discrepancy in descriptors.	29
Issue 6.2: Need to establish rules for changing or removing metadata.xml files.	29
6.2 User Structure 2a with Descriptors	29
6.3 User Structure 3a with Descriptors	33
7. Searching Structure in GSAS	38
Issue 7.1: When using a browser in the Experiment Management Environment (or elsewhere) to view artifacts (files and directories) in the GSAS, how will the associated descriptors (metadata) will be displayed?	38
8. Creating a Bag and .tar File	39
8.1 Example 2a-1: bag a Dataset Directory	39
8.2 Example 2a-2: bag an Experiment Directory	43
Issue 8.1: After the bag and .tar file have been created and used, is there some cleanup that should be done?	45
Issue 8.2: After changes have been made to directories and files, what is the process for recreating the bag and .tar file?	45
9. Archiving an Object	46
9.1 Preparing to Archive an Object	46
9.2 Example 2a-1: Archiving a Dataset Directory	47
9.3 Example 2a-2: Archiving an Experiment Directory	49
9.4 Example 2a-3: Archiving a Journal Article	50
9.5 Updating an Archived Object	52
10. Overview of v1.2 GENI ObjectDescriptor Schema	53
Issue 10.1: Is there a way to derive the descriptors in an archive.xml file from descriptors in the other types of metadata.xml files, or at least an initial set of descriptors for the archive.xml file?	55

[bookmark: _Toc355698697]
1. Goals

[bookmark: _Toc355698698]1.1 Goals for GENI Storage and Archive Service

[bookmark: _Toc346029653]1. A structured place to store all of the objects (artifacts) for an experiment, with descriptors (metadata), that is easy to access, with short to medium term storage, and the ability to search. (Note: this goes well beyond just measurement data objects.)
[bookmark: _Toc346029654]	2. A separate long-term archive, with controlled access from the outside world, using a DOI (handle) as a persistent identifier
[bookmark: _Toc346029655]3. Include most of the functionality provided by the Measurement Data Archive (MDA) prototype, built by CNRI.
[bookmark: _Toc346029656]	4. Establish multiple federated iRODS services, starting at RENCI and UMass Amherst, and operate for GENI users (experimenters).
[bookmark: _Toc346029657]	5. Establish persistent accounts for each user, and use icommands to store and retrieve objects (artifacts) for each user in the storage service.
[bookmark: _Toc346029658]	6. Establish authentication for each user based on username/password, certificates, or proxy (delegated) certificates.
[bookmark: _Toc346029659]	7. Establish a directory structure in the storage service for each user to accommodate multiple experiments, and a directory structure for each experiment to include all objects (artifacts) associated with that experiment, including one or more descriptors (metadata) within .xml files (following the GENI ObjectDescriptor Schema).
[bookmark: _Toc346029660]	8. Provide multiple interfaces (including icommand and web) to allow an authenticated user to view, search and curate their objects (artifacts).
[bookmark: _Toc346029661]	9. Provide an interface to allow a user to define an object (artifact) to be archived (where the object (artifact) may range from a large directory to a single file), include a descriptor (following the GENI ObjectDescriptor Schema), assign a persistent Digital Object Identifier (DOI, or "handle"), and decide when to push it to archive service.
[bookmark: _Toc346029662]	10. Establish an archive service that provides long-term and reliable storage, with public access via a DOI from the global handle service.
	11. Include a search function in the archive service, so that an outside user can search for and then retrieve an object, but allow the object’s owner to disable search, so that an outside user needs the DOI of the object to retrieve it.

[bookmark: _Toc355698699]1.2 Goals for GENI ObjectDescriptor Schema

12. Useful for all types of objects, not just MeasurementData objects.
13. Keep it simple, with the minimum number of mandatory fields.
14. Where possible, values for fields should be automatically generated by Experiment Management Tools.

[bookmark: _Toc355698700]1.3 Use of “DataCite Schema for the Publication and Citation of Research Data”

15. When an object (artifact) is archived in the Archive Service with public access from the outside world via the Internet, use a DOI (handle) as a persistent identifier, and include descriptors (metadata) that follows DataCite Schema (ref)

[bookmark: _Toc355698701]
2. Configuration of GENI Storage and Archive Service based on iRODS

[image:]
Figure 1. GENI Storage and Archive Service (GSAS) configuration.

The GENI Storage and Archive Service (GSAS) is a structured place to store all of the objects for an experiment (not just measurement data objects), with descriptors (metadata), that is easy to access, useful for short to medium term storage, and that is searchable. Figure 1 summarizes the configuration of the GSAS. The configuration, development and deployment of the GSAS are detailed in a separate document (REF1).
The GSAS is based on the integrated Rule-Oriented Data System (iRODS), developed to manage data objects for large science projects (https://www.irods.org/index.php/IRODS:Data_Grids,_Digital_Libraries,_Persistent_Archives,_and_Real-time_Data_Systems).
For the GENI project, it is expected that multiple federated iRODS services will be established, starting at RENCI and UMass Amherst, and operated for GENI users (experimenters).
	Persistent accounts are established for each user (mechanism TBD), and each user has a (logical) home directory. A user is authenticated based on a username/password, a user certificate and/or a proxy (delegated) certificate, following the Grid Security Infrastructure (GSI) (http://www.globus.org/security/overview.html) methodology.
An authenticated user interacts with the iRODS icommand interface using an iclient, to create directories and to store and retrieve files (representing objects), in a manner analogous to commands in a Unix file system. A user is expected to establish a directory structure in iRODS to accommodate multiple experiments, and a directory structure for each experiment to organize and include all of the objects (artifacts) associated with that experiment.
An authenticated user can also interact with iRODS via a web interface to view, search and curate their directories and files. Searching is done by the iRODS CATalog (iCAT) system, which gathers information on each stored directory or file. As a user creates directories and loads files, they are expected to add descriptors (metadata) as XML files. (This follows the approach introduced by CNRI in the earlier prototype of the GENI Storage and Archive Service.) As these files are loaded into iRODS, customized iRODS “rules” will extract the descriptor information and pass it to iCAT, so that searches can be based on the information included in the descriptors.
The iRODS system also provides a single, separate public directory for use as a public archive, with public access from the Internet, via the Global Handle Resolution Service, using a Digital Object Identifier (DOI, or "handle") as a persistent identifier.
	An authenticated user can use an icommand to push a file representing an “archived object” to the public archive directory, along with an archive.xml descriptor file (following the GENI ObjectDescriptor Schema) that includes a persistent Digital Object Identifier (DOI, or "handle").
	In the public directory, the file representing the “archived object” is identified by its DOI.
	As the archive.xml descriptor file is pushed to the public directory, a customized iRODS rule extracts the descriptive information and passes it to iCAT, so that searches in the public directory can be based on the information included in the descriptors. There is an option for the user to disable the search function, so that an outside user needs the DOI of the object to retrieve it.
	A user is expected to retain a copy of the file representing an “archived object” within their own home directory, so that they can update it, and then push an updated file to the public directory, where it retains the original DOI.
Of course, a user can retain a copy of the file representing an “archived object” within their own home directory , and never push it to the public directory, if they do not wish to share it with the public.
	The archived object may start with a single file contained within the user’s home directory, or it may include all of the structure and contents of a directory contained within the user’s home directory.
To archive a directory, the user uses the iRODS “bagit” rule; this rule creates a “bag”, which is a directory structure that includes all of the structure and contents in the subject directory plus additional index files. The rule also creates a separate tar file of the “bag”, and this is the file that is archived. When the tar file associated with a bag is retrieved, the original directory structure and all included objects can be reconstituted.
	For example, the user may choose to bag a directory containing all of the measurements associated with a given experiment, and these can be then used by another researcher who wishes to analyze the measurements. Or, the user may also choose to bag all of the directories and files associated with an experiment, and these can then used by the original user or another user to repeat the experiment.
[bookmark: _Toc355698702]Issue 2.1: How are persistent accounts established for each user in iRODS?
[bookmark: _Toc355698703]Issue 2.2: How are storage capacity limits established and enforced for each IRODS user? Are older objects (artifacts) flagged for removal?
[bookmark: _Toc355698704]Issue 2.3: How are archive capacity limits established and enforced for each IRODS user? Are older objects (artifacts) flagged for removal?

[bookmark: _Toc355698705]
3. Use Cases to Store, Curate, Archive and Retrieve Experiment Objects in the GSAS

The GENI Storage and Archive Service (GSAS) is used by GENI experimenters to store, curate, archive and retrieve files representing experiment objects (artifacts). In addition, it is used by outside researchers to retrieve files representing experiment objects that have been placed in a public archive by GENI experimenters. Figure 2 summarizes seven expected use cases to store, curate, archive and retrieve files representing experiment objects by GENI experimenters and by outside researchers.

[image:]

Figure 2. Use cases to store, curate, archive and retrieve files representing experiment objects in the GSAS.

In Use Case 1, a GENI experimenter uses tools in the Experiment Management Environment to create directories and store files in the GSAS using an iclient that interfaces with the icommand interface on the iRODS server, using icommands analogous to the commands addressing a Unix file system. As a user creates directories and loads files, they are expected to add descriptors (metadata) as XML files; these are used by the iRODS CATalog (iCAT) system, which gathers information on each stored directory or file. Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate and its associated private key.
In Use Case 2, a service acting on behalf of a GENI experimenter stores an object in the GSAS using an iclient that interfaces with the icommand interface on the iRODS server. For example, a service that collects measurement results may store a measurement data object after an experiment is completed; this object could be one file or it could be a directory containing multiple files. In Option 1, authentication of the service is done based on a proxy certificate, following the Grid Security Infrastructure (GSI) (http://www.globus.org/security/overview.html). The service holds a proxy certificate created from the experimenter’s user certificate, plus its associated private key. The iRODS server is configured to allow GSI authentication using proxy certificates. In Option 2, the authenticated experimenter has requested an iticket from the icommand interface on the iRODS server, and has passed it to a client in the service acting on behalf of a GENI experimenter. This service is itself an authenticated iRODS user, authenticated by holding a user certificate, and its associated private key. The authenticated service stores an object in the experimenter’s files in iRODS by using iput to the target directory, and by referencing the identifier in the iticket it received from the experimenter.
In Use Case 3, a GENI experimenter uses a browser in the Experiment Management Environment (or elsewhere) to view, search and curate objects (artifacts) in the GSAS, using its web interface. Searching is done using the iRODS CATalog (iCAT) system, which has gathered information on each stored directory or file. The user is able to view the descriptors (metadata) associated with each object (artifact). Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate and its associated private key.
In Use Case 4, a GENI experimenter uses tools in the Experiment Management Environment to create a bag from a selected directory in the GSAS plus its associated tar file, using an iclient that interfaces with the icommand interface on the iRODS server and invokes the irule command for “bagit”. The tar file holds all of the structure (directories and files) in the bag, and is a convenient way for the experimenter to hold all of that information in one object. Given the tar file, the original selected directory, including all contents, can be recreated. Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate, and its associated private key.
In Use Case 5, a GENI experimenter uses tools in the Experiment Management Environment to copy a tar file or other type of file (representing an object) in the GSAS from their home directory to the public archive directory, so that it can be shared with others. This is done using an iclient that interfaces with the icommand interface on the iRODS server, and calls a custom irule command for “archive”. As an experimenter pushes an object to the public archive directory, they are expected to add a descriptor (metadata) XML file for use by the iCAT system, so that searches in the public directory can be based on the information included in the descriptors. Optionally, the GENI experimenter can mark the descriptor to disable public searches. Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate, and its associated private key.
In Use Case 5b, a GENI experimenter uses tools in the Experiment Management Environment to copy an updated tar file or other type of file (representing an object) in the GSAS from their home directory to the public archive directory, to update an earlier version of their file that is being shared with others. This is done using an iclient that interfaces with the icommand interface on the iRODS server, and calls a custom irule command for “update_archive”. Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate, and its associated private key.
In Use Case 6, a GENI experimenter uses tools in the Measurement Analysis Environment (or another environment) to retrieve an object from the GSAS, such as a measurement data object; this object could be one file or it could be a directory containing multiple files. It does this using an iclient that interfaces with the icommand interface on the iRODS server, using commands analogous to a those addressing a Unix file system. Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate, and its associated private key.
In Use Case 7, an outside researcher uses a browser to search for and then retrieve a file representing an object in the public directory of the GSAS, identified by a handle, via the public web interfaces on the Global Handle System and the GSAS. If the option has been set to disable public searcher for an object, it can still be retrieved if the outside researcher knows its DOI (handle). No authentication of the outside researcher is required.

[bookmark: _Toc355698706]
4. Structure of Directories and Files in the GSAS

[bookmark: _Toc355698707]4.1 Range of Structures

Each user (experimenter) utilizes a hierarchical structure for the user’s directories and files in the GSAS, but they are free to pick a structure from a wide range of possible structures. Here are three possible user structures that range from more to less hierarchy.

[bookmark: _Toc355698708]4.2 User Structure 1

user (home_directory)

	project (directory)

		experiment (directory)

			step (directory)

				artifact.ext (file) 		
				
				artifact (directory)
					artifact.ext (file)

[bookmark: _Toc355698709]4.3 User Structure 2

user (home_directory)

	experiment (directory)

		step (directory)

			artifact.ext (file) 		
				
			artifact (directory)
				artifact.ext (file)

[bookmark: _Toc355698710]4.4 User Structure 3

user (home_directory)

	experiment (directory)

		artifact.ext (file) 		
				
		artifact (directory)
			artifact.ext (file)

[bookmark: _Toc355698711]4.5 Public Structure 1

The public portion of the GSAS typically has no hierarchy.

public (home directory)
artifact.ext (file)

[bookmark: _Toc355698712]4.6 User Structure 2a

Here is an example user structure with medium hierarchy, divided first by experiment, and then by step within the experiment. In some steps, some artifacts (files or directories) are identified by run, with a run_number, e.g., request_respec-0001 for Run = 1.

user_1 (home directory)

experiment_Alpha (directory)					Experiment = Alpha

		plan (directory) 						Step = plan
	
		get_resources (directory) 					Step = get_resources

		
			request_rspec-0001.xml (file)			Run = 1

			request_rspec-0002.xml (file) 			Run = 2

			manifest_rspec-0001.xml (file) 			Run = 1				

			manifest_rspec-0002.xml (file) 			Run = 2				

		configure_resources (directory) 				Step = configure_resources

			instrument_script-0001.py (file) 			Run = 1				

		orchestrate_experiment (directory) 			Step = orchestrate_experiment

			orchestrate_script-0001.rb (file) 			Run = 1					

		collect_measurements (directory) 				Step = collect_measurements
			measurements_dataset-0001 (directory) 		Run = 1
				mongo.tar					Typical files from a GEMINI tools DB
				metadata.unis					
				topology.unis
				
 			
			measurements_dataset-0002 (directory) 		Run = 2
				mongo.tar					Typical files from a GEMINI tools DB
				metadata.unis
				topology.unis

			measurements_dataset-0003 (directory) 		Run = 3
				mongo.tar					Typical files from a GEMINI tools DB
				metadata.unis
				topology.unis

			measurements_dataset-0004 (directory) 		Run = 4
				mongo.tar					Typical files from a GEMINI tools DB							metadata.unis
				topology.unis

		analyze_measurements (directory) 			Step = analyze_measurements

			analysis_results-0001 (directory) 			Run = 1
artifact.ext (file)
…
artifact.ext (file)

			analysis_results-0002 (directory) 			Run = 2
artifact.ext (file)
…
artifact.ext (file)

			analysis_results-0003 (directory) 			Run = 3
artifact.ext (file)
…
artifact.ext (file)

		document_experiment (directory) 				Step = document_experiment

			journal_article _x (directory)
artifact.ext (file)
…
artifact.ext (file)
				ver_1_ text.pdf
				ver_2_ text.pdf

		journal_article _y (directory) 				

artifact.ext (file)
…
artifact.ext (file)
				ver_1_ text.pdf
				ver_2_ text.pdf
				ver_3_ text.pdf

	
experiment_Beta (directory) 					Experiment = Beta

[bookmark: _Toc355698713]4.7 User Structure 3a

Here is an example user structure with low hierarchy, divided only by experiment.
Some artifacts (files or directories) are identified by run, with a run_number, e.g., request_respec-0001 for Run = 1.

user_1 (home directory)

experiment_Alpha (directory)					Experiment = Alpha

		request_rspec-0001.xml (file)				Run = 1

		request_rspec-0002.xml (file) 				Run = 2

		manifest_rspec-0001.xml (file) 				Run = 1				

		manifest_rspec-0002.xml (file) 				Run = 2				

		instrument_script-0001.py (file) 				Run = 1				

		orchestrate_script-0001.rb (file) 				Run = 1					

		measurement_dataset-0001 (directory) 			Run = 1
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis					
			topology.unis
				
 			
		measurement_dataset-0002 (directory) 			Run = 2
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis
			topology.unis

		measurement_dataset-0003 (directory) 			Run = 3
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis
			topology.unis

		measurement_dataset-0004 (directory) 			Run = 4
			mongo.tar						Typical files from a GEMINI tools DB						metadata.unis
			topology.unis

		analysis_results-0001 (directory) 				Run = 1
artifact.ext (file)
…
artifact.ext (file)

		analysis_results-0002 (directory) 				Run = 2
artifact.ext (file)
…
artifact.ext (file)

		analysis_results-0003 (directory) 				Run = 3
artifact.ext (file)
…
artifact.ext (file)

		journal_article _x (directory)
artifact.ext (file)
…
artifact.ext (file)
			ver_1_ text.pdf
			ver_2_ text.pdf

	journal_article _y (directory) 				
artifact.ext (file)
…
artifact.ext (file)
			ver_1_ text.pdf
			ver_2_ text.pdf
			ver_3_ text.pdf

	
experiment_Beta (directory) 					Experiment = Beta

[bookmark: _Toc355698714]
5. Access to Structure in GSAS

[bookmark: _Toc355698715]5.1 From a User’s Experiment Management Environment

In Use Case 1, a GENI experimenter uses tools in the Experiment Management Environment to create directories and store files in the GSAS using an iclient that interfaces with the icommand interface on the iRODS server, using icommands analogous to the commands addressing a Unix file system.

1) The User is authenticated with either of these options:
		a) user_1 username/password
		b) user_1 user certificate, while holding private key

2) A target must be configured into iclient held by the User. For example:
a) url: iRODS_server_101
b) home directory: user_1
c) current working directory (CWD): (typically) experiment_Alpha (User Structure 3)

	3) Then, the User can access the target in the GSAS using the iclient.

Note that, for each User, each experiment_name (i.e., experiment_Alpha) must be unique. If this were not true, artifacts from experiments could be overwritten or be mixed together. See Section 5.3 (below) for options to assure unique experiment_names

[bookmark: _Toc355698716]5.2 From a Service Acting on Behalf of the User

In Use Case 2, a service acting on behalf of a GENI experimenter stores an object (artifact) in the GSAS using an iclient that interfaces with the icommand interface on the iRODS server. For example, a service that collects measurement results may store a measurement data object after an experiment is completed; this object could be one file or it could be a directory containing multiple files. There are two options for authentication:

In Option 1, authentication of the service is done based on a proxy certificate, following the Grid Security Infrastructure (GSI) (http://www.globus.org/security/overview.html).

1) The Service is authenticated with:
		a) user_1 proxy certificate, created from the experimenter’s user certificate, plus its associated private key. while holding associated private key

2) A target must be configured into iclient in the Service. For example:
a) url: iRODS_server_101
b) home directory : user_1
c) current working directory (CWD): (typically) experiment_Alpha (User Structure 3)

	3) Then, the iclient in the Service can act on behalf of the user, and write to the target in the GSAS.

Note that when a Service uses a script to write a file (or make a directory and write a file), the file (or directory) names must be unique, and yet it is desirable if the script does this in an automatic fashion. See Section 5.4 (below) for options to assure unique file (or directory) names.
[bookmark: _Toc355698717]Issue 5.1: Where is the proxy certificate created? How is the proxy certificate transferred to the service?
[bookmark: _Toc355698718]Issue 5.2: What happens if the proxy certificate expires? Is the user notified? How can they load an updated proxy certificate?
[bookmark: _Toc355698719]Issue 5.3: How is the target information transferred to the service?

In Option 2, the authenticated experimenter has requested an iticket from the icommand interface on the iRODS server, and has passed it to an agent in the service acting on behalf of a GENI experimenter. This service is itself an authenticated iRODS user, authenticated by holding a user certificate, and its associated private key. The authenticated service stores an object in the experimenter’s files in iRODS by using iput to the target directory, and by referencing the identifier in the iticket it received from the experimenter.

1) The User is authenticated with either of these options:
		a) user_1 username/password
		b) user_1 user certificate, while holding private key

	2) The User decides on the target, for example:
a) current working directory (CWD): experiment_Alpha (User Structure 3)

	3) The authenticated User requests an iticket from iRODS with a target of their current working directory, and a limited time period:
		a) request iticket: target of user_1, CWD; expires in 2 days; returned: string xxxxxxxxx

4) The authenticated User passes the iticket to the Service agent, on behalf of the User:
	a) For use by Service agent, on behalf of user_1
		b) iticket: string xxxxxxxxx; target of user_1, CWD; expires in 2 days

5) The User must configure the target into iclient within Service, and this must match the target in the iticket. For example, the Service agent iclient is set to:
a) url: iRODS_server_101
b) home directory: user_1
c) current working directory (CWD): (typically) experiment_Alpha (User Structure 3)

	6) The Service agent iclient can now act on behalf of the user, and write to the target in the GSAS.

Note that when a Service uses a script to write a file (or make a directory and write a file), the file (or directory) names must be unique, and yet it is desirable if the script does this in an automatic fashion. See Section 5.4 (below) for options to assure unique file (or directory) names.

[bookmark: _Toc355698720]Issue 5.4: How is the iticket transferred to the service?
[bookmark: _Toc355698721]Issue 5.5: What happens if the iticket certificate expires? Is the user notified? How can they load an updated proxy certificate?
[bookmark: _Toc355698722]Issue 5.6: How is all of this target information transferred to the service agent?

[bookmark: _Toc355698723]5.3 Assuring a Unique experiment_name

For a given User, each experiment_name (i.e., experiment_Alpha) must be unique. If this were not true, artifacts from experiments would be overwritten or be mixed together.

Possible methods to assure unique experiment_names:
	1) Rely upon user (experimenter) to pick a unique name.
	2) During an early step of the experiment, concatenate an experiment_name with an index that is guaranteed to change with time.	

For example, method 2 this is similar to the method proposed to separate datasets in a shared OML server; in that method (ref), the index can be a Unix timestamp (e.g., 2654111326).
Then, the complete name would be: experiment_Alpha-2654111326
This has the advantage in that it would follow the method used in a shared OML server, and the complete name could simply be carried forward.
	Also, by simply comparing the timestamp values, it is easy to determine which version of experiment_Alpha followed another.

[bookmark: _Toc355698724]5.4 Assuring a Unique file_name (or directory_name)

When a Service uses a script to write a file (or make a directory and write a file), the file (or directory) names must be unique, and yet it is desirable if the script does this in an automatic fashion.

Assume User Structure 3:

user_1 (home directory)

experiment_Alpha (directory)					Experiment = Alpha

		request_rspec-0001.xml (file)				Run = 1

		request_rspec-0002.xml (file) 				Run = 2

		manifest_rspec-0001.xml (file) 				Run = 1				

		manifest_rspec-0002.xml (file) 				Run = 2				

		instrument_script-0001.py (file) 				Run = 1				

		orchestrate_script-0001.rb (file) 				Run = 1					

		measurement_dataset-0001 (directory) 			Run = 1
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis					
			topology.unis
				
 			
		measurement_dataset-0002 (directory) 			Run = 2
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis
			topology.unis

		measurement_dataset-0003 (directory) 			Run = 3
			mongo.tar						Typical files from a GEMINI tools DB
			metadata.unis
			topology.unis

		measurement_dataset-0004 (directory) 			Run = 4
			mongo.tar						Typical files from a GEMINI tools DB						metadata.unis
			topology.unis

Assume that the target configured into Service agent iclient includes:
a) url: iRODS_server_101
b) home directory : user_1
c) current working directory (CWD): experiment_Alpha

Here are three methods to assure unique file (or directory) names:

	Method 1: Include a numerical index in the file or directory name, start with a known value, and increment it after each write:

Assume that when the Service agent is initialized, the target is configured into iclient, and the index is set to 0001.

This is the approach shown above for manifest_respec (file) and for dataset (directory):

		manifest_rspec-0001.xml (file) 				Run = 1				

		manifest_rspec-0002.xml (file) 				Run = 2				

		measurement_dataset-0001 (directory) 			Run = 1
 			
		measurement_dataset-0002 (directory) 			Run = 2

		measurement_dataset-0003 (directory) 			Run = 3

		measurement_dataset-0004 (directory) 			Run = 4

	Method 2: Include a numerical index in the file or directory name that is known to change with time, e.g., Unix_timestamp:

		manifest_rspec-2654111326.xml (file) 			Run = 1				

		manifest_rspec-2654122314.xml (file) 			Run = 2				

		measurement_dataset-2654155609 (directory) 		Run = 1
 			
		measurement_dataset-2654166708 (directory) 		Run = 2

		measurement_dataset-2654188423 (directory) 		Run = 3

		measurement_dataset-2654199123 (directory) 		Run = 4

This timestamp in this method gives an easy way to identify and order the files (or directories), but the exact timestamp is then needed to retrieve a specific file, which requires the user to search and then pick the desired file (or directory).

	Method 3: Have iRODS apply a suffix (x) to the filename when there is a repeated write, starting with (2), and then increment it after each additional write:

		manifest_rspec.xml (file) 					Run = 1				

		manifest_rspec(2).xml (file) 				Run = 2				

		measurement_dataset (directory) 				Run = 1
 			
		measurement_dataset(2) (directory) 			Run = 2

		measurement_dataset(3) (directory) 			Run = 3

		measurement_dataset(4) (directory) 			Run = 4

The suffix in this method gives an easy way to identify and order the files (or directories), but the suffix is then needed to retrieve a specific file, which requires the user to search and then pick the desired file (or directory).

Note that when it is decided to use Method 1 or Method 2, it is always desirable to enable Method 3. Then, if an index is not properly incremented, iRODS will apply the suffix to distinguish the written files (directories).
[bookmark: _Toc355698725]
6. Adding Descriptors (Metadata)

[bookmark: _Toc355698726]6.1 Inserting metadata.xml Files into a User’s Directories

To add descriptors, the user (experimenter) inserts metadata.xml files into directories.
Per the v1.2 GENI ObjectDescriptor Schema, there are five types of metadata.xml files, that each provide information for a limited context. These are the default names of these metadata.xml files:

project.xml
experiment.xml
step.xml
artifact.xml
archive.xml

	In a user’s structure with hierarchy, such as User Structure 1, there is typically a one-to-one mapping between directories and types of metadata.xml files. For example:

	User Structure 1
project (directory)			project.xml
		
experiment (directory)		experiment.xml
		
step (directory)			step.xml
			
artifact (directory)			artifact.xml		

In user structures with less hierarchy, multiple types of metadata.xml files can be inserted into certain directories. For example:

	User Structure 2
experiment (directory)		project.xml		
experiment.xml
		
step (directory)			step.xml
			
artifact (directory)			artifact.xml

	User Structure 3
experiment (directory)		project.xml, 		
experiment.xml
		
artifact (directory)			step.xml 	
artifact.xml

	User Structure 3 (alternate, where only one type of metadata.xml file (artifact.xml) needs to be associated with an artifact (directory or file))
experiment (directory)		project.xml, 		
experiment.xml
step.xml 	
		
artifact (directory)			artifact.xml

	There are two possible cases:

	Case 1: If a metadata.xml file is inserted into a directory with its default name (e.g., experiment.xml), the descriptive information it provides applies to that directory, and also to all subdirectories and to all included files.
As a user (experimenter) inserts a metadata.xml file into a directory, a custom rule in iRODS transfers the information to iCAT, so that directories and files may be searched based on the descriptors.
More than one type of metadata.xml files can be inserted into a single directory, and descriptive information from all are transferred to iCAT.

Case 2: If a metadata.xml file is inserted into a directory with a name that includes the name of a file in the directory, (e.g., mongo-artifact.xml in a directory with mongo.tar), the descriptive information it provides applies only to that file.
When a user (experimenter) inserts the filename-metadata.xml file into a directory, a custom rule in iRODS transfers the information to iCAT, so that the file with filename.ext (e.g., mongo.tar) may be searched based on the descriptors.
More than one type of filename-metadata.xml files can be inserted into a directory, for association with a filename.ext; the descriptive information from all are transferred to iCAT for filename.ext.

[bookmark: _Toc355698727]Issue 6.1: Need to establish rules if there is a discrepancy in descriptors.
[bookmark: _Toc355698728]Issue 6.2: Need to establish rules for changing or removing metadata.xml files.

Note that when a metadata.xml file is chnaged using an iclient, it is convenient to use the irsync command.

[bookmark: _Toc355698729]6.2 User Structure 2a with Descriptors

Here is the Example User Structure 2a, with representative metadata.xml included, using both default names and artifact-specific names.

user_1 (home directory)

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		plan (directory)
			step.xml						Step = plan
	
		get_resources (directory)
			step.xml						Step = get_resources; slice = yyyy
		
			request_rspec-0001.xml (file)
			request_rspec-0001-step.xml			Run = 1
			request_rspec-0001-artifact.xml			Artifact = request_rspec

			request_rspec-0002.xml (file)
			request_rspec-0002-step.xml			Run = 2
			request_rspec-0002-artifact.xml			Artifact = request_rspec

			manifest_rspec-0001.xml (file) 					
			manifest_rspec-0001-step.xml			Run = 1
			manifest _rspec-0001-artifact.xml			Artifact = manifest_rspec

			manifest_rspec-0002.xml (file) 							
			manifest _rspec-0002-step.xml			Run = 2
			manifest _rspec-0002-artifact.xml			Artifact = manifest_rspec

		configure_resources (directory) 		
			step.xml						Step = configure_resources

			instrumentize_script-0001.py (file)				
			instrumentize_scripte-0001-step.xml		Run = 1
instrumentize_scripte-0001-artifact.xml		Artifact = instrumentize_script

		orchestrate_experiment (directory) 	
			step.xml						Step = orchestrate_experiment

			orchestrate_script-0001.rb (file) 								
			orchestrate_script-0001-step.xml			Run = 1
			orchestrate_script-0001-artifact.xml		Artifact = orchestrate_script

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

			measurement_dataset_0001 (directory) 		
				step.xml					Run = 1
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar
metadata.unis					
				topology.unis
				
 			
			measurement_dataset_0002 (directory) 			
				step.xml					Run = 2
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

			measurement_dataset_0003 (directory) 			
				step.xml					Run = 3
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

			measurement_dataset_0004 (directory) 			
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements

			analysis_results_0001 (directory) 			
				step.xml					Run = 1
				artifact.xml					Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

			analysis_results_0002 (directory) 			
				step.xml					Run = 2
				artifact.xml					Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

			analysis_results_0003 (directory) 		
				step.xml					Run = 3
				artifact.xml					Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

		document_experiment (directory) 				
			step.xml 						Step = document_experiment

			journal_article _x (directory)
				artifact.xml					Artifact = journal_article_fileset
				artifact.ext (file)
…
artifact.ext (file)
				ver_1_ text.pdf
				ver_1_ text-artifact.xml			Artifact = journal_article_text
				ver_2_ text.pdf
				ver_2_ text-artifact.xml			Artifact = journal_article_text

			journal_article _y (directory)
				artifact.xml					Artifact = journal_article_fileset
				artifact.ext (file)
…
artifact.ext (file)
				ver_1_ text.pdf
				ver_1_ text-artifact.xml			Artifact = journal_article_text
				ver_2_ text.pdf
				ver_2_ text-artifact.xml			Artifact = journal_article_text
				ver_3_ text.pdf
				ver_3_ text-artifact.xml			Artifact = journal_article_text

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

[bookmark: _Toc355698730]6.3 User Structure 3a with Descriptors

Here is the Example User Structure 3a, with representative metadata.xml included, using both default names and artifact-specific names.

user_1 (home directory)

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		request_rspec-0001.xml (file)
		request_rspec-0001-step.xml				Step = get_resources; slice = yyyy; run = 1
		request_rspec-1-artifact.xml				Artifact = request_rspec

		request_rspec-0002.xml (file)
		request_rspec-0002-step.xml				Step = get_resources; slice = yyyy; run = 2
		request_rspec-0002-artifact.xml				Artifact = request_rspec

		manifest_rspec-0001.xml (file) 					
		manifest_rspec-0001-step.xml				Step = get_resources; slice = yyyy; run = 1
		manifest _rspec-0001-artifact.xml				Artifact = manifest_rspec

		manifest_rspec-0002.xml (file) 							
		manifest _rspec-0002-step.xml				Step = get_resources; slice = yyyy; run = 2
		manifest _rspec-0002-artifact.xml				Artifact = manifest_rspec

		instrumentize_script-0001.py (file)				
		instrumentize_script-0001-step.xml			Step = configure_resources; run = 1
instrumentize_script-0001-artifact.xml			Artifact = instrumentize_script

		orchestrate_script-0001.rb (file) 								
		orchestrate_script-0001-step.xml				Step = orchestrate_experiment; run = 1
		orchestrate_script-0001-artifact.xml			Artifact = orchestrate_script

		measurement_dataset_0001 (directory) 		
			step.xml						Step = collect_measurements; run = 1
			artifact.xml						Artifact = measurement_dataset, GEMINI tools
			mongo.tar						
			metadata.unis					
			topology.unis
				
 			
		measurement_dataset_0002 (directory) 			
			step.xml						Step = collect_measurements; run = 2
			artifact.xml						Artifact = measurement_dataset, GEMINI tools
			mongo.tar						
			metadata.unis
			topology.unis

		measurement_dataset_0003 (directory) 			
			step.xml						Step = collect_measurements; run = 3
			artifact.xml						Artifact = measurement_dataset, GEMINI tools
			mongo.tar						
			metadata.unis
			topology.unis

		measurement_dataset_0004 (directory) 			
			step.xml						Step = collect_measurements; run = 4
			artifact.xml						Artifact = measurement_dataset, GEMINI tools
			mongo.tar						
			metadata.unis
			topology.unis

		analysis_results_0001 (directory) 		
			step.xml						Step = analyze_measurements; run = 1
			artifact.xml						Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

		analysis_results_0002 (directory) 			
			step.xml						Step = analyze_measurements; run = 2
			artifact.xml						Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

		analysis_results_0003 (directory) 		
			step.xml						Step = analyze_measurements; run = 3
			artifact.xml						Artifact = analysis_dataset
artifact.ext (file)
…
artifact.ext (file)

		journal_article _x (directory)
step.xml 						Step = document_experiment
			artifact.xml						Artifact = journal_article_fileset
			artifact.ext (file)
…
artifact.ext (file)
			ver_1_ text.pdf
			ver_1_ text-artifact.xml				Artifact = journal_article_text
			ver_2_ text.pdf
			ver_2_ text-artifact.xml				Artifact = journal_article_text

		journal_article _y (directory)
step.xml 						Step = document_experiment
			artifact.xml						Artifact = journal_article_fileset
			artifact.ext (file)
…
artifact.ext (file)
			ver_1_ text.pdf
			ver_1_ text-artifact.xml				Artifact = journal_article_text
			ver_2_ text.pdf				
ver_2_ text-artifact.xml				Artifact = journal_article_text
			ver_3_ text.pdf
			ver_3_ text-artifact.xml				Artifact = journal_article_text

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

[bookmark: _Toc355698731]
7. Searching Structure in GSAS

A GENI user (experimenter) uses a browser in the Experiment Management Environment (or elsewhere) to view, search and curate artifacts (files and directories) in the GSAS, using its web interface.

When using a browser in the Experiment Management Environment (or elsewhere) to view artifacts (files and directories) in the GSAS, the associated descriptors (metadata) will be displayed.

Searching is done based on the metadata stored in iCAT, which includes the descriptor information loaded using the metadata.xml file.

For Authorization of the GENI experimenter is done by username/password or by the experimenter holding a user certificate and its associated private key.

[bookmark: _Toc355698732]Issue 7.1: When using a browser in the Experiment Management Environment (or elsewhere) to view artifacts (files and directories) in the GSAS, how will the associated descriptors (metadata) will be displayed?
[bookmark: _Toc355698733]
8. Creating a Bag and .tar File

A GENI user (experimenter) uses tools in the Experiment Management Environment to create a bag from a selected source directory in the GSAS, plus its associated tar file, using an iclient that interfaces with the icommand interface on the iRODS server and invokes the irule command for “bagit”.

The tar file holds all of the structure (directories and files) in the bag, and this allows the user to hold all of that information in one file. Given the tar file, the original selected source directory can be recreated. Authorization of the GENI experimenter is done by username/password or by the experimenter holding a user certificate and its associated private key.

	The user may choose, for example, to bag a directory containing all of the measurements associated with a given experiment, and these can be used by another researcher who wishes to analyze the measurements. Or, the user may choose to bag all of the directories and files associated with an experiment, and these can then used by the original user or another user to repeat the experiment.

[bookmark: _Toc355698734]8.1 Example 2a-1: bag a Dataset Directory

Step 1: Pick source directory: dataset_4				NOTE: must start with a directory, not an artifact (file)

experiment_Alpha (directory)				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

	
			measurement_dataset-0004 (directory) 		S1: PICK: source directory
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements

Step 2: Insert destination directory: sourcedirectoryname -bagit

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

	
			measurement_dataset-0004 (directory) 		S1: PICK: source directory
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

dataset-4-bagit (directory) 				S2: INSERT: destination directory

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements

Step 3: Copy all applicable metadata.xml files into source directory 	NOTE: if this were not done, all of the metadata would not be reflected in the bag and the tar file, since bagit does not use the information in iCAT

	NOTE: if a 2nd step.xml file is to be written into the directory, it should be copied as step(2).xml, to avoid confusion with the first step.xml file.

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

	
			measurement_dataset-0004 (directory) 		S1: PICK: source directory
				project.xml					S3: COPY: Project = bbn_2013_001
				experiment.xml				S3: COPY: Experiment = Alpha
				step(2).xml					S3: COPY: Step = collect_measurements
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					Typical files from a GEMINI tools DB
				metadata.unis
				topology.unis

measurement _dataset-0004-bagit (directory) 	S2: INSERT: destination directory

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements

	

Step 4: Run bagit command, to fill out destination directory 		NOTE: tar file now contains all of the information in the
and create tar file 	bag		

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

	
			measurement _dataset-0004 (directory) 		S1: PICK: source directory
				project.xml					S3: COPY: Project = bbn_2013_001
				experiment.xml				S3: COPY: Experiment = Alpha
				step(2).xml					S3: COPY: Step = collect_measurements
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset
				mongo.tar					Typical files from a GEMINI tools DB
				metadata.unis
				topology.unis

measurement _dataset-0004-bagit (directory) 	S2: INSERT: destination directory
				(now includes entire bag structure)	S4: CREATE: entire bag structure

measurement _dataset-0004-bagit.tar	S4: CREATE: new tar file, that contains all of the information in the bag

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements
	

[bookmark: _Toc355698735]8.2 Example 2a-2: bag an Experiment Directory

Step 1: Identify source directory: experiment_Alpha			NOTE: must start with a directory, not a file

experiment_Alpha (directory)					S1: PICK: source directory				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

Step 2: Insert destination directory: experiment_Alpha -bagit

experiment_Alpha (directory)					S1: PICK: source directory				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

experiment_Alpha-bagit (directory)				S2: INSERT: destination directory

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

Step 3: Copy all applicable metadata.xml files into source directory 	NOTE: if this were not done, all of the metadata would not be reflected in the bag and the tar file, since bagit does not use the information in iCAT
Note: in this case, there is nothing to copy

experiment_Alpha (directory)					S1: PICK: source directory				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

experiment_Alpha-bagit (directory)				S2: MAKE: destination directory

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

Step 4: Run bagit command, to fill out destination directory 		NOTE: tar file now contains all of the information in the
and create tar file 								bag

experiment_Alpha (directory)					PICK: source directory				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

experiment_Alpha-bagit (directory)				S2: INSERT: destination directory
	(now includes entire bag structure)				S4: CREATE: entire bag structure

experiment_Alpha-bagit.tar	S4: CREATE: new tar file, that contains all of the information in the bag

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta

[bookmark: _Toc355698736]Issue 8.1: After the bag and .tar file have been created and used, is there some cleanup that should be done?

[bookmark: _Toc355698737]Issue 8.2: After changes have been made to directories and files, what is the process for recreating the bag and .tar file?

[bookmark: _Toc355698738]
9. Archiving an Object

 The iRODS system provides a separate public directory for use as a public archive, with access from the Internet, via the Global Handle Service, using a Digital Object Identifier (DOI or “handle”) as a persistent identifier

[bookmark: _Toc355698739]9.1 Preparing to Archive an Object

Case 1: If the object to be archived is a file, the user:
1) uses the local DOI (handle) minting service to assign a unique DOI to this file (representing an object);
2) adds a filename-archive.xml file, which includes the new DOI and descriptive information following the DataCite schema; and
3) uses an iclient that interfaces with the icommand interface on the iRODS server, and calls a custom irule command for “archive”, which pushes a copy of the file into the public directory, using the DOI as the filename, and loads all descriptive information from the filename-archive.xml file into iCAT for the public directory.

Case 2: If the object to be archived is a directory, the user archives the tar file created using the iRODS “bagit” rule.

In both cases, the user retains a copy of the “archived object” within their own home directory, for further use and updates.

The local DOI (handle) minting service assigns a unique DOI to a file with:
	A dedicated prefix for each GENI iRODS zone; currently there is only one GENI zone and prefix: 10510.3.0.1
	A suffix unique to each zone, which can be of any length. One way to generate a unique suffix is to use a non-repeating number, such as a Unix timestamp, or a hash of a Unix timestamp.

In the archive.xml file, the user specifies whether or not the object be found by an outside user searching the public directory iCAT. not, an outside user needs the object_identifier to retrieve the object.

	

[bookmark: _Toc355698740]9.2 Example 2a-1: Archiving a Dataset Directory

Step 1: use the local DOI (handle) minting service to assign a unique DOI to this file (representing a dataset object).

Step 2: pick .tar file to be archived, representing dataset_4.

Step 3: add a filename-archive.xml file, which includes the new DOI and descriptive information following the DataCite schema,

user_1 (home directory)

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		collect_measurements (directory) 				
			step.xml						Step = collect_measurements

	
			measurement_dataset-0004 (directory) 		PICK: source directory
				project.xml					COPY: Project = bbn_2013_001
				experiment.xml				COPY: Experiment = Alpha
				step(2).xml					COPY: Step = collect_measurements
				step.xml					Run = 4
				artifact.xml					Artifact = measurement_dataset, GEMINI tools
				mongo.tar					
				metadata.unis
				topology.unis

measurement_dataset-0004-bagit (directory) 	MAKE: destination directory
				(now includes entire bag structure)

measurement_dataset-0004-bagit.tar	CREATE: new tar file, that contains all of the information in the bag
	S2: PICK: file to be archived, representing dataset_4

measurement_dataset-0004-bagit-archive.xml	S3: ADD: includes new DOI and descriptive information
	for searching public directory

		analyze_measurements (directory) 		
			step.xml						Step = analyze_measurements
	
Step 4: use an iclient that interfaces with the icommand interface on the iRODS server, and call a custom irule command for “archive”, which pushes a copy of the file into the public directory, using the DOI as the filename, and loads all descriptive information from the filename-archive.xml file into iCAT for the public directory.

public (home directory)
10510.3.0.1/1111.tar	S4: NEW: file, and iCAT now includes all descriptor information that was in measurement_dataset-0004-bagit-archive.xml

	Note: Handle prefix 10510.3.0.1 is the prefix assigned to this GENI Zone.

The handle suffix (shown here as 1111) must be chosen to be unique. A random number (such as a timestamp), or a hash of a timestamp, could be chosen when the archive.xml file is first created.

[bookmark: _Toc355698741]9.3 Example 2a-2: Archiving an Experiment Directory

Step 1: use the local DOI (handle) minting service to assign a unique DOI to this file (representing a dataset object).

Step 2: pick .tar file to be archived, representing experiment_Alpha.

Step 3: add a filename-archive.xml file, which includes the new DOI and descriptive information following the DataCite schema,

user_1 (home directory)

experiment_Alpha (directory)					PICK: source directory				
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

experiment_Alpha-bagit (directory)				MAKE: destination directory
	(now includes entire bag structure)

experiment_Alpha-bagit.tar	CREATE: new tar file, that contains all of the information in the bag
S2: PICK: file to be archived, representing experiment_Alpha

experiment_Alpha-bagit-archive.xml	S3: ADD: includes new DOI and descriptive information for searching public directory

experiment_Beta (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Beta
						
	
Step 4: use an iclient that interfaces with the icommand interface on the iRODS server, and call a custom irule command for “archive”, which pushes a copy of the file into the public directory, using the DOI as the filename, and loads all descriptive information from the filename-archive.xml file into iCAT for the public directory.

public (home directory)
10510.3.0.1/2222.tar	S4: NEW: file, and iCAT now includes all descriptor information that was in experiment_Alpha-bagit-archive.xml

	Note: Handle prefix 10510.3.0.1 is the prefix assigned to GENI.

The handle suffix (shown here as 2222) must be chosen to be unique. A random number (such as a timestamp), or a hash of a timestamp, could be chosen when the archive.xml file is first created.

[bookmark: _Toc355698742]9.4 Example 2a-3: Archiving a Journal Article

Step 1: use the DOI (handle) minting service to assign a unique DOI to this file

Step 2: add a filename-archive.xml file, which includes the new DOI and descriptive information following the DataCite schema,

Step 1: use the local DOI (handle) minting service to assign a unique DOI to this file.

Step 2: pick file to be archived, representing journal_article_x.

Step 3: add a filename-archive.xml file, which includes the new DOI and descriptive information following the DataCite schema,

user_1 (home directory)

experiment_Alpha (directory)
		project.xml							Project = bbn_2013_001
		experiment.xml						Experiment = Alpha

		document_experiment (directory) 				
			step.xml 						Step = document_experiment

			journal_article _x (directory)
				artifact.xml					Artifact = journal_article_fileset
				artifact.ext (file)
…
artifact.ext (file)
				ver_1_ text.pdf
				ver_1_ text-artifact.xml			Artifact = journal_article_text
ver_2_ text.pdf	S2: PICK: file to be archived, representing journal_article_x
				ver_2_ text-artifact.xml			Artifact = journal_article_text
ver_2_ text-archive.xml	S3: ADD: includes new DOI and descriptive information for searching public directory
	
Step 4: use an iclient that interfaces with the icommand interface on the iRODS server, and call a custom irule command for “archive”, which pushes a copy of the file into the public directory, using the DOI as the filename, and loads all descriptive information from the filename-archive.xml file into iCAT for the public directory.

public (home directory)
10510.3.0.1/3333.tar	S4: NEW: file, and iCAT now includes all descriptor information that was in ver_2_text-archive.xml

	Note: Handle prefix 10510.3.0.1 is the prefix assigned to GENI.

The handle suffix (shown here as 3333) must be chosen to be unique. A random number (such as a timestamp), or a hash of a timestamp, could be chosen when the archive.xml file is first created.

[bookmark: _Toc355698743]9.5 Updating an Archived Object

A GENI experimenter uses tools in the Experiment Management Environment to copy an updated .tar file or other type of file (representing an object) in the GSAS from their home directory to the public archive directory. Only the owner of the file is given write permission in the public directory.
At the same time, the associated archive.xml file may be updated., but the DOI (handle) remains the same.
All versions of the file are retained in the public directory, but the latest version is the one shared with others.
Updating a file is done by a User with an iclient that interfaces with the icommand interface on the iRODS server, and calls a custom irule command for “update_archive”.
Authentication of the GENI experimenter is done by username/password or by the experimenter holding a user certificate, and its associated private key.
[bookmark: _Toc355698744]
10. Overview of v1.2 GENI ObjectDescriptor Schema

The v1.2 GENI ObjectDescriptor Schema is described with an .xsd file at http://groups.geni.net/geni/wiki/GSAS#a3GENIObjectDescriptorSchema. An overview is presented here.
This schema is the culmination of many discussions within the GENI Instrumentation and Measurement (I&M) working group, and by the authors of this document.
It is intended to be useful for all types of objects, not just MeasurementData objects.
A principal goal was to keep it simple, with the minimum number of mandatory fields, and, where possible, to have values for fields automatically generated by Experiment Management Tools.
Also, when a file (representing an object) is archived with public access, a DOI (handle) is used as a persistent identifier, and descriptors (metadata) are included that follow the DataCite Schema. The DataCite Schema is described at http://www.dlib.org/dlib/january11/starr/01starr.html and http://groups.geni.net/geni/wiki/GSAS#a4DataCiteSchema. The DataSite Schema was chosen since it was established to describe research results that are made available in the public domain.

Storage Service for user a, in zone y, on iRODS server 101:
Implicit: hierarchical structure of directories, artifact files, and associated metadata files
Implicit: permission by user within zone to read/write
Explicit: artifact files always in a directory (name/path, date last modified, size)
Explicit: metadata.txt files always in a directory (name/path, date last modified, size), so that they are associated with the directory or with individual artifact files

Multiple schemas, each for a specific context:
	project.xml
experiment.xml
	step.xml
	artifact.xml
	archive.xml

Key:	mandatory [M]
optional [O]

Note: GENI-specific fields noted; others are generic

project.xml file:
	GENI_project_identifier [M]
Project title fields [M]: (title [M]; keywords [O]; abstract [O]; notes [O])
	PI fields [M]: (individual [M]; organization [M]); optional multiple entries
	Project date/time interval fields [O]: (start [M]; end [M]); optional multiple entries

experiment.xml file:
	GENI_experiment_identifier [M]
Experiment title fields [M]: (title [M]; keywords [O]; abstract [O]; notes [O])
	Experimenter fields [M]: (individual [M]; organization [M]); optional multiple entries
	Experiment date/time interval fields[O]: (start [M]; end [M]); optional multiple entries	

step.xml file:
	Step_type fields: (primary [M, follows controlled vocabulary]; secondary [O])
	Step_sequence_identifier [M]
Step title fields [M]: (title [M]; keywords [O]; abstract [O]; notes [O])
Step date/time interval fields [O]: (start [M]; end [M]); optional multiple entries
	GENI_resource fields: [O] (GENI resource type [M, follows controlled vocabulary]; GENI_resource_identifier [M]); optional repeat 						
Note: Step_sequence_identifier should be used to indicate the position of this step in the sequence of all steps, e.g., run=1 and step=5
Note: GENI_slice_identifier should be included as a GENI_resource_identifer in at least one step.xml file

artifact.xml file:
	Artifact_type fields: (primary [M, follows controlled vocabulary]; secondary [O]; version [O])
Artifact_name fields [M]: (name [M]; keywords [O]; abstract [O]; notes [O])
	Artifact_interpretation fields: (description [M]; link_to_read_me.txt [O]; version [O]; link_to_interpretation_resource [O])
	Artifact_attributed_to fields [O]: (project [O]; individual [O]; organization [O]; reference [O]; link [O]; date/time received [O])

archive.xml file:
	Object_identifier [M]	(DataCite 1)					Note: Starts with all 9’s, before first archive
Object_date_last_archived [M] 					Note: Starts with all 9’s, before first archive
Object_available_public = Y/N [M]					Note: Starts with N, before first archive
Object_searchable_public = Y/N [M]	Note: Indicates whether object be found by search on public side; if not, need Object_identifier to retrieve it.
	Object_creator [M]	(DataCite 2)		
	Object_title [M]	(DataCite 3)		
	Object_publisher [M]	(DataCite 4)		
	Object_publicationYear [M]	(DataCite 5)
		
	Object_subject [O]	(DataCite 5)		
	
	through
		
	Object_description [O]	(DataCite 17)		

[bookmark: _Toc355698745]Issue 10.1: Is there a way to derive the descriptors in an archive.xml file from descriptors in the other types of metadata.xml files, or at least an initial set of descriptors for the archive.xml file?

042913 v1.2 GENI ObjectDescriptor Schema

image2.emf

image1.emf

