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1. Document Scope 
 
This section describes this document’s purpose, its context within the overall GENI 
document tree, the set of related documents, and this document’s revision history.  
 
 

1.1 Purpose of this Document  
The goal of this document is to incrementally track, revise, and extend the security 
design of the GENI control frameworks and the related projects while identifying the 
key security decisions and implementations within each control framework and their 
impact on the design of the control framework, related projects, and federation 
efforts. Further we also plan to include detailed discussions of the security aspects of 
many spiral 2 prototypes and integration efforts.  

Some of this material is drawn from the Spiral 1 Security Architecture documents.  
 

1.2 Context for this Document 

1.3 Related Documents  
The material in this document is drawn from the following documents listed below.  
 
Document ID  Document Title and Issue Date 
GENI-SE-SY-
SO-02.0 

“GENI System Overview”, September 29, 2008. 
http://www.geni.net/docs/GENISysOvrw092908.pdf 

GDD 06-10  “Towards Operational Security for GENI," by Jim Basney, Roy Campbell, 
Himanshu Khurana, Von Welch, GENI Design Document 06-10, July 2006. 
http://www.geni.net/GDD/GDD-06-10.pdf 

GDD 06-23 "GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI 
Design Document 06-23, Distributed Services Working Group, September 
2006. 
http://www.geni.net/GDD/GDD-06-23.pdf 

SANS  SANS Institute- Glossary of Security Terms. 
http://www.sans.org/resources/glossary.php 

GENI-SE-CF-
PLGO-01.2 

PlanetLab GENI Control Framework Overview  
http://groups.geni.net/geni/attachment/wiki/PlanetLabGeniControlFramewo
rkOverview/011409%20%20GENI-SE-CF-PlanetLabGENIOver-01.2.pdf 

GENI-SE-CF-
PRGO-01.3 

ProtoGENI Control Framework Overview 
http://groups.geni.net/geni/attachment/wiki/ProtoGeniControlFrameworkOv
erview/011409%20%20GENI-SE-CF-ProtoGENIOver-01.3.pdf 

GENI-SE-CF-
ORGO-01.2 

ORCA GENI Control Framework Overview 
http://groups.geni.net/geni/attachment/wiki/OrcaGeniControlFrameworkOv
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erview/011409%20%20GENI-SE-CF-ORCAGENIOver-01.2.pdf 
GENI-SE-CF-
RQ-01.3 

GENI Control Framework Requirements 
http://groups.geni.net/geni/attachment/wiki/GeniControlFrameworkRequire
ments/010909b%20%20GENI-SE-CH-RQ-01.3.pdf 

GDD 06-24 "GENI Distributed Services," by Thomas Anderson and Amin Vahdat, 
GENI Design Document 06-24, Distributed Services Working Group, 
November 2006. 
http://www.geni.net/GDD/GDD-06-24.pdf 

N/A "GMC Specifications," edited by Ted Faber, Facility Architecture Working 
Group, September 2006. 
http://www.geni.net/wsdl.php 

GDD 06-23  
 

"GENI Facility Security," by Thomas Anderson and Michael Reiter, GENI 
Design Document 06-23, Distributed Services Working Group, September 
2006. http://www.geni.net/GDD/GDD-06-23.pdf 

GDD 06-10  
 

"Towards Operational Security for GENI," by Jim Basney, Roy Campbell, 
Himanshu Khurana, Von Welch, GENI Design Document 06-10, July 2006. 
http://www.geni.net/GDD/GDD-06-10.pdf 

N/A “Slice Based Facility Architecture,” Draft v1.02, November 3, 2008, by 
Larry Peterson, et.al.   
http://svn.planet-lab.org/attachment/wiki/GeniWrapper/sfa.pdf  

N/A SHARP:  An Architecture for Secure Resource Peering, 2003, by Yun Fu, 
Jeffrey Chase, et.al. 
 http://www.cs.ucsd.edu/~vahdat/papers/sharp-sosp03.pdf  

N/A Sharing Networked Resources with Brokered Leases, 2006, by David Irwin, 
Jeffrey Chase, et.al. http://portal.acm.org/citation.cfm?id=1267377 

N/A ORCA Technical Note:  Guests and Guest Controllers, 2008, by Jeff Chase 
http://www.cs.duke.edu/nicl/pub/papers/control.pdf  

N/A  ORCA references: 
 http://nicl.cod.cs.duke.edu/orca/ 

N/A ORBIT Testbed Software Architecture: Supporting Experiments as a 
Service Maximilian Ott, Ivan Seskar, Robert Siraccusa, Manpreet Singh 
http://www.orbit-lab.org/wiki/Orbit/Documentation/Publications 

N/A ORBIT Measurements Framework and Library (OML): Motivations, 
Design, Implementation, and Features, Manpreet Singh, Maximilian Ott, 
Ivan Seskar, Pandurang Kamat 
http://www.orbit-
lab.org/attachment/wiki/Orbit/Documentation/Publications/final-oml-
paper.pdf 

N/A Overview of the ORBIT Radio Grid Testbed for Evaluation of Next-
Generation Wireless Network Protocols D. Raychaudhuri, I. Seskar, M. Ott, 
S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu and M. Singh   
http://www.orbit-
lab.org/attachment/wiki/Orbit/Documentation/Publications/Orbit_WCNC_0
5_final.pdf 

N/A GENI Engineering Conference III – Presentations  
http://groups.geni.net/geni/wiki/CFWGGEC3 
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N/A  DETER Federation Daemon (fedd) 
http://fedd.isi.deterlab.net/  

N/A  Access Control for Federation of Emulab-based Network Testbeds, Ted 
Faber and John Wroclawski, In Proceedings of the CyberSecurity 
Experimentation and Test (CSET) Workshop, San Jose, (July 2008) 
http://www.usenix.org/events/cset08/tech/full_papers/faber/faber.pdf 

N/A A DETER Federation Architecture, Ted Faber, John Wroclawski, Kevin 
Lahey, Proceedings of the DETER Community Workshop on Cyper 
Security Experimentation and Test, Boston, MA, (August 2007). 
http://www.usenix.org/events/deter07/tech/full_papers/faber/faber.pdf 

WJ03a Automated Trust Negotiation Technology with Attribute-based Access 
Control, W. Winsborough and J. Jacobs, In Proceedings of the DARPA 
Information Survivability Conference and Exposition, 2003, Vol. 2 pp 60-
62, April 22-24, 2003. 

 

1.4 Document Revision History  
 
Revision No Date Revision By Summary of Changes 
0.1 Jan 31 2010 Alefiya Hussain Initial Draft 
0.2 March 14 2010 Stephen Schwab Revised, Posted for GEC7 
 

 

2. The GENI Security Architecture 
 
This section discusses the GENI security architecture as interpreted by the authors 
within the framework promulgated by the GENI Project Office (GPO). Given the 
spiral rapid prototyping model employed by the GENI community to create working 
end-to-end prototypes and to reach consensus on requirements and design choices for 
the long-term GENI efforts, a security architecture is necessarily a fluid, evolving set 
of concepts and ideas. This document attempts to serve a critical role in the GENI 
ecosystem, by (1) capturing the essential elements of the security issues posed by 
GENI; (2) tracking the evolution of thinking regarding problems, solutions, and 
future challenges within the context of the development and prototyping spiral 
projects; and (3) documenting a succinct set of guidelines, policies, and mechanisms 
that are appropriate to offer as pragmatic design choices in the context of GENI. 
  

2.1 Terminology and Overview  
 

The GENI testbed initiative is an exciting development for networking architecture, 
protocols and service design as the infrastructure enables long-running realistic 
experimentation that allows end users to opt-in to test the proposed experimental 



7 

systems. Thus GENI has more sophisticated security requirements than the traditional 
Internet architecture. 

 
It is worth considering for a moment how securing GENI differs from securing “the 
Internet”.  Ideally, one might pre-suppose that GENI and the Internet are both built 
out of elements (e.g. end-systems and network gear, a.k.a. boxes) that speak various 
protocols and are configured to do so by local or remote operators.   At this level of 
abstraction, all that is needed is a means to authenticate individual operators and 
authorize their various commands and configuration changes on each box, plus 
incorporation of sufficiently robust security features within each distinct protocol 
layer, e.g. secure ARP, secure routing, secure naming, secure transport, secure QoS, 
etc. 

 
From this viewpoint, all the problems of Internet security are “merely” because of the 
inertia of maintaining backwards compatibility with the installed base, deployed 
protocols, and customary organization and configuration of the existing Internet.  If 
only we had a clean-slate network deployment, everything could be revisited and 
done securely.  Since GENI could be such a clean-slate network deployment, 
according to this line of reasoning, it is straightforward to design in all the necessary 
authentication, authorization and security protocols and assure ourselves of an ideal, 
trustworthy system. 

 
Unfortunately, the situation is not so simple.  GENI, while affording the possibility to 
create a clean-slate network architecture within an experimental slice, bootstraps 
itself using clearinghouses, control frameworks, component managers and slice and 
management authorities that rely heavily on Internet protocols.  So while GENI may 
not always be tied to the Internet architecture forever, during the prototyping spirals 
at least, GENI security must consider all the insecurities inherited from the Internet. 
(As an aside, deploying GENI entirely above a collection of encrypted VPN tunnels is 
feasible – but probably not sufficient to enable the sorts of user opt-in experiments 
that are desirable.) 
 
Moreover, it is far from clear that the state-of-the-art in network security would be 
sufficient to build and deploy, at the scale envisioned for GENI, a suite of protocols 
and complementary authentication and authorization technology to enable a cost-
constrained, trustworthy GENI ecosystem.  For example, corporate and government 
PKI and authenticated identity rollouts are notoriously expensive and difficult to 
maintain – can GENI drive down the cost to manage such a large scale authentication 
and authorization system, without compromising on security goals? 
 
Additionally, GENI’s key strategy is growth via federation which allows 
incorporating existing facilities into the overall GENI ecosystem and adding new 
technologies as they mature, thus allowing GENI to be nimble and not commit to a 
single technology at the start. However, this strategy will cause heightened concerns 
from users and network operators about security as enforcing security properties in 
such an environment is difficult, particularly since the requesters and resources will 
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typically be managed by different authorities and may have different authorization 
mechanisms. 
 
Some of the most challenging aspects of securing GENI networks concern the 
authentication support for authorization. Authorization decisions require the 
authentication of the entity making a request. Authentication normally implies the use 
of cryptographic techniques. But the application of existing cryptographic techniques 
to the GENI networks environment presents certain challenges. 
 
The identification of the principal itself in the GENI networks may be challenging. 
Current Internet interactions are typically client-server, where the explicit individual 
identity of the client and server are important. However, in a GENI network if we 
move away from individual identities to attribute based identities and access control 
(X.509 Attribute Certificates, KeyNote and PolicyMaker) the aspects of the 
principal's attributes that are important may change radically as it interacts with 
different components in the GENI network. This is a stark change from the traditional 
Internet client-server model where both have a common understanding of the 
identities or attributes that are important. For example, within the principal's network, 
the individual's identity or company role may be important. But beyond the 
immediate network of the principal, it is not likely that the individual identity of the 
end user will be important. Aggregate security attributes will be more likely to be 
used, which may be labels, groups, etc. Furthermore, the aggregate attributes may 
themselves differ in different domains. Consequently, there may be multiple and 
varying principal identities or attributes that are important. 
 
Also, secure protocols often rely on a well-defined notion of end-system address as a 
pre-requisite for negotiating and establishing an authenticated communication 
channel.  If a GENI slice can re-define the very abstraction of end-system address, it 
may be difficult to reuse older authentication protocols in a secure manner.  
 
The GENI project office envisioned a centralized entity called the clearinghouse that 
could serve as a central catalog of all GENI resources where a researcher  can search 
for the resources he needs, authenticate himself, reserve a sliver on them, and start to 
experiment using some from of GENI money or GENI points. This vision of the 
clearinghouse as a GENI portal is extremely powerful as it provides the researcher 
with a clean and familiar interface to assemble complex experiments using a vast 
range technologies across various testbeds. The GENI money could be assigned to a 
researcher based on a vetting process and allows the process to be more objective and 
reward based possibly on the researcher's past GENI history. 

2.2 The Threat Model 
  
GENI's scale, widespread deployment, and visibility will make it an inviting target 
for attack and thus careful attention must be paid to security in its design. In our view, 
security considerations need to permeate every control framework and interface to be 
defined in GENI. The text in this section is drawn from GDD 06-23 and discussions 
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at previous GENI Engineering Conferences. We begin with a diagram that illustrates 
how to frame our thinking about GENI and the threats facing the system. 

 

 
Figure 1. GENI Threats. The illustration presents rings of threats.  At the center is the infrastructure 
with the greatest privilege.  Working outwards are rings including GENI researchers, opt-in users 
making use of GENI experimental slices, and finally outsiders. 
 

In terms of modeling threats, the GENI Infrastructure includes Clearinghouses, 
Control Frameworks, Component Managers, Aggregate (Component) Managers, 
Slice and Management Authorities, and everything else that supplies resources or 
facilitates the management of users or resources within the GENI ecosystem.  This is 
the base layer of GENI, analogous in some ways to an operating system, albeit 
different in other respects.  We include threats to this infrastructure within the center 
ring – namely the privileged GENI operators who interact with the various GENI 
elements, and the software running on all these GENI elements. (Without loss of 
generality, we have labeled this control framework software, but for clarity state that 
potentially any software running on a GENI element that is part of the infrastructure 
is a threat, e.g. if any GENI operator or software running on a GENI infrastructure 
element is malicious or compromised, then there are serious consequences for the 
portion of the GENI ecosystem within their (or its) purview.) 

 
As we work outwards, GENI slices, including the GENI researchers, the software 
running within that slice, and the networking behavior including traffic implemented 
within that slice is a potential threat.  Ideally, the consequences would be less serious 
if a threat at this level attacks GENI than a threat at the infrastructure level.  Threats 
at this level should be eliminated once the slice is terminated. A goal of our security 
architecture is to ensure that this situation actually occurs in practice, when GENI 
control frameworks are deployed and operated in the real world.  
 
Continuing outwards, opt-in users, with even less privileges should pose an even 
lower risk to GENI if they turn out to be malicious.  We consider the users’ network 
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traffic, and the users’ software also to be at this threat level.  Note that the users’ 
software may be executing on their end-system, and might be supplied by the GENI 
Researcher, might be part of their standard OS and application suite, or may be a 
combination of both.  Since the software can act with all the powers wielded by the 
GENI opt-in users, it must be considered indistinguishable from the GENI opt-in 
users, at least in terms of what threat it may pose within our model.  Lastly, GENI is 
of course connected to the Internet, including whatever endemic Internet malware and 
traffic is present. 
 
Considering this threat model, we recognize that there are three broad classes of 
attacks that must be addressed by the GENI Security Architecture and by its 
operational procedures.  First, external attacks may be launched by outsiders on the 
GENI infrastructure, either as a denial-of-service attack, or simply to gain control of 
GENI resources.  Second, and related, we need to contain and prevent the impact of 
accidentally or maliciously misbehaving GENI experiments on the outside world; 
similarly, we must limit the impact of attackers posing as legitimate GENI 
researchers.  Third, we need a level of isolation between experimental slices, so that 
GENI cannot be surreptitiously or intentionally used by one researcher to disrupt 
another slice.   We discuss these three types of attacks in this section by providing a 
list of specific threats that the GENI security architecture must address.     
 
For the moment, we are deferring consideration of a fourth threat, that of a malicious 
insider within the GENI infrastructure itself, and instead consider this set trustworthy.  
While GENI will initially have a small community of operators and sites, and rely on 
non-technical means to address this issue, we believe that as GENI scales and 
federates with large numbers of other systems, this threat will need to be re-evaluated.  
 
The threats are listed according to one estimate as to the relative frequency of that 
particular type of problem; for example, accidentally misbehaving experiments are 
likely to be a somewhat frequent occurrence on a platform designed to support 
experimental investigation, while determined attacks against the GENI software are 
relatively less likely, but more serious.  Fortunately, many of the same technical 
solutions can be applied to both root causes.  Note that the threats we list below are 
not intended to be completely mutually exclusive: systematic attacks against GENI 
may combine multiple elements, and thus the facility needs to be able to deal with all 
of these types of problems simultaneously. 
 

• Containing runaway experiments that cause unwanted traffic.  
Experience with past control frameworks such as PlanetLab and 
Emulab suggests that unintentional misbehaving experimental code will 
be a common occurrence on GENI.  We believe a process is needed to 
assign and enforce specific, minimal privileges appropriate to each 
experiment in addition to limiting experimental behavior such that all 
unwanted traffic can be eliminated from the network once the 
experiment slice is terminated.. Hence a novice user’s mistake will not 
have global consequences on the Internet. This would require a rapid 
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“kill switch” to enable operations staff to quickly suspend the 
misbehaving experiment .   

• Isolating runaway experiments that disrupt the execution environment 
for other experiments within GENI, e.g., by exhausting disk space or 
file descriptors.  These issues can be handled by providing stronger 
isolation between experiments and by monitoring shared resources for 
unexpected usage patterns. The GENI facility must also ensure that 
hosting organizations are not put at significant risk for contributing 
resources to GENI, and the GENI effort must take measures to 
convince hosting organizations that problems are rare and dealt with 
promptly. 

• Containing the misuse of an experimental service by an end user, for 
example, one example experimental service conceived for GENI is to 
run a virtual ISP supporting a novel internal architecture.  Such an 
experimental ISP might be used by a malicious user to launder illegal 
packets.  We expect this set of concerns to be addressed by establishing 
GENI-wide standards for experiments offering packet delivery services 
(or their equivalent) to end users.  For example, GENI might require 
that an experimental ISP provide basic monitoring or tracing tools for 
law enforcement enquires.  

• Preventing and detection of theft or corruption of an experimenter’s 
credentials to use GENI.  Unfortunately, it is well-known within the 
security community that users are often careless with the keys used for 
authentication, if only because key compromises are silent until it is too 
late.  Carefully calibrating privileges to match the experimenter’s 
sophistication is one avenue (e.g., users likely to be careless with their 
keys would be given more limited privileges); another is to use 
technical means discussed in subsequent sections to make it more 
difficult for attackers to gain access to user keys. Also, since end host 
corruptions are endemic on the Internet today, we need to make it easy 
for the GENI operations staff to revoke and replace end user keys and 
privileges after such break-ins.  Even so, this is perhaps the most likely 
avenue for malicious attacks against GENI. 

• Denial of service attacks against the GENI infrastructure.  GENI should 
fail “off” to avoid providing an avenue for an attacker to take control, 
and then use denial of service to prevent the operations staff from 
taking countermeasures.  Technically, this can be accomplished by 
requiring privileges to be frequently refreshed.   

• Direct attacks against vulnerabilities in the GENI management software.  
GENI is a complex distributed system, and therefore special care must 
be taken to avoid vulnerabilities in its implementation.  One step is the 
explicit modeling of trust relationships between GENI components as 
described below.  Another important step is to observe that the software 
development processes adopted for GENI software are critical to the 
security of the GENI facility.   
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• Privacy of experimental data and the privacy of management policy.  
Preventing unauthorized access to information stored in GENI can be 
accomplished using the flexible access control architecture described 
later in the document.  However, preventing all forms of information 
leakage while an experiment is running is an open research challenge.  

 
 

2.3 The Trust Model  
 
The GENI Security Architecture will assume that the common security practices will 
be in place. For example, it is important to actively manage all GENI hardware, e.g., 
to proactively keep all operating system software up to date with known security 
patches.  This means that any changes GENI makes to host software is minimal, so 
that patches can be applied quickly.  Another important step is that components 
should be configured with the minimal number of open ports.  Also, it is important to 
instrument the GENI hardware to discover problems quickly, that is, enabling 
continuous monitoring for anomalous node behavior by GENI operations.  (This is of 
course made more complicated by the fact that the experimental architectures and 
services running on top of GENI may be by their very nature, anomalous!)  Once 
anomalous behavior is detected, it is imperative that it is analyzed and fixed rapidly. 
The emergence of trusted computing hardware and the integrity measurement 
architectures should provide a mechanism for GENI operations staff to reset every 
node in GENI to a known, good state.  
 
As stated in the earlier GENI Facility Security document, GDD 06-23:  

 
Additionally, the GENI security architecture also assumes good software 
development processes are used for all software that is deployed on the 
GENI facilities. It is well-known that poor software quality is the source 
of numerous types of serious security vulnerabilities in practice (e.g., 
buffer overflows and format-string vulnerabilities).  We believe it is 
imperative that sound software development processes be adopted by the 
GENI community so as to eliminate, to the extent practicable, these types 
of vulnerabilities.  While specifying software development processes is 
outside the scope of this document, an example might be that all GENI-
defined interfaces and protocols be adopted only after an open, public 
review of potential security vulnerabilities, that changes to interfaces be 
made only through a similar formal process, and that conformance tests be 
generated (ideally, automatically) from a formal specification of the 
interface.  We also suggest, where practical, all GENI software should be 
implemented to be type-safe, using tools such as CCured or languages 
such as Java. In cases where type-safety is impractical, as in modifications 
to an existing operating system implemented in C, standard practices such 
as software verification tools and test suites can be used to reduce the 
likelihood of vulnerabilities.  We also believe that serious consideration 
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should be given to requiring that source code produced for GENI be made 
public, so as to allow for independent security analysis.  However, we do 
not believe it is a cost-efficient use of GENI resources to require every 
aspect of the management software to be robust to arbitrary malicious 
attacks by privileged insiders (so-called Byzantine attacks).  Rather, we 
intend to rely on detection, confinement and resetting to a known good 
state to correct intrusions when they occur. 

 
A GENI researcher should not have to trust all the nodes, network environments, and 
other end users of the GENI network. There are few ways to assure the researcher that 
their data will be protected from attacks (exposure, unauthorized use or modification) 
by the node or the network environment where the data is processed in the clear. The 
researcher may apply end-to-end cryptographic protections against these attacks and 
not make the node privy to the cryptographic keying material, so that the data is never 
represented in clear-text on the node. While end-to-end cryptographic protection 
limits the damage that the node can cause to the data, it also limits the network 
services that can be performed. When considering protection against unauthorized 
access, or use attacks on the end user's data from other end users or slices in the 
infrastructure, the situation is a bit more reassuring. The nodes in the GENI 
environment can provide enforcement of the researcher’s authorization policy, as 
long as they have the ability to authenticate the principals associated with each 
experiment and are provided the researcher’s policy.  However, note that in both 
cases, we are ultimately driven toward a model of explicit trust – researchers need the 
flexibility to explicitly describe which resources in the GENI substrate they trust, and 
to what degree, because technical means alone can not ensure that all substrate 
resources are trustworthy. 
 
Similarly, it should not be necessary for the components or component managers to 
trust the rest of the GENI substrate that it is connected to.  It would certainly be 
unwise to design the system so that it must trust all researchers and all adjoining 
interconnected GENI components. The GENI architecture grants the Component 
Manager (CM) the authority to start and manage slices locally. All requests from the 
CM for slice services will be on the behalf of the experimenter to provide services for 
an experiment. The component implicitly trusts the CM to adhere to the authorization 
and access control policies when requesting services. A component owner pre-
establishes resource allocation policies regarding how the component's resources are 
assigned to GENI researchers.  In summary, explicit models of trust, represented by 
entities within the GENI ecosystem, seem necessary to provide for local decision 
making over a large set of components and their owners. 

 
In this version of the GENI security architecture we have focused on identifying and 
documenting the authorization and the authentication enforcements within the various 
clusters and related projects. These ideas are further explored in the subsequent sections.  
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3. The GENI Control Frameworks  
In this section we discuss the various control frameworks that are part of GENI, 
focusing primarily on the security aspects and challenges we will face when they are 
intergrated with the other projects. For completeness, we include a brief description 
of the operational aspects of the control frameworks. This section borrows heavily 
from the following documents: GENI Control Framework Requirements GENI-SE-
CF-RQ-01.3, ProtoGENI Control Framework Overview GENI-SE-CF-PRGO-01.3, 
PlanetLab Control Framework Overview GENI-SF-CF-PLGO-01.2, ORCA GENI 
Control Framework Overview GENI-SE-CF-ORGO-01.2, ORBIT talks and TIED 
talks at GECs. 

 

3.1 ORCA 
Point of Contact: Jeff Chase (chase@cs.duke.edu) 
 
Open Resource Control Architecture (ORCA) is a software framework and open-source 
platform to manage a programmatically controllable shared substrate. It can be viewed as 
a service-oriented resource control plane hosting diverse computing environments 
(guests) on a common pool of networked hardware resources such as virtualized clusters, 
storage, and network elements.  
 
An Orca deployment is a dynamic collection of interacting control servers (actors) that 
work together to provision and configure resources for each guest according to the 
policies of the participants. The actors represent various stakeholders in the shared 
infrastructure: substrate providers, resource consumers (e.g., GENI experimenters), and 
brokering intermediaries that coordinate and federate substrate providers and offer their 
resources to a set of consumers. Orca is based on the foundational abstraction of resource 
leasing. A lease is a contract involving a resource consumer, a resource provider, and one 
or more brokering intermediaries. Each actor may manage large numbers of independent 
leases involving different participants. 
 
The Orca actor protocol operates on five kinds of objects: slices, leases, slivers, pools, 
and principals. Each object is named by a unique identifier, which is an RFC 4122 GUID. 
Each object has an attached property list of named attributes. The properties are passed to 
actors and plugins that operate on the object, which may add to the property list or 
modify it in well-defined ways. Each actor maintains state pertaining to the leases it 
knows about. Each lease is initiated by a service manager or slice manager (SM), and 
must be approved (ticketed) by a broker and granted by an aggregate manager (AM). The 
GUID for an object is assigned by the actor that creates it. Slices may also have user-
assigned symbolic names for convenience.  
 
An actor determines what rights to assign to a principal based on security assertions 
attached to endorsements it receives for that principal’s public key. There are three types 
of security assertions of interest:  
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1) Security Attributes. A security attribute is a property of the principal that may be 
queried by an authorization policy. Example: “This principal is one of Chase’s 
students.” Attributes are a general basis for Attribute-Based Access Control 
(ABAC). In an implementation integrating Shibboleth deployments, a primary 
role of Shibboleth Identity Providers (IdPs) is to certify attributes for an 
authenticated identity.  

2) Delegations. A principal may delegate a subset of its rights to another principal by 
issuing an endorsement specifying the rights to be delegated. A delegation chain 
rooted in a trust anchor is proof that the endorsed principal has specific rights.  

3) Resource Contracts. Resource server actors (brokers and authorities) may 
delegate specific rights to specific resources at specific times to a specific 
principal by issuing resource contracts (tickets or leases) to that principal. This 
class of endorsements includes tickets and leases in SHARP-derived systems such 
as Orca. 

 
Every operation is requested on behalf of some principal (the subject) and operates on an 
object. The authorization policy approves or denies each requested operation based on the 
subject, the object, and the nature of the operation. Orca as an architecture supports 
flexible authorization policies in the resource servers (authorities or AMs and brokers), 
based on external endorsing trust anchors such as IdPs, Slice Authorities, Management 
Authorities, GENI facility management, etc. An actor may receive endorsements, 
credentials, and delegations attached to a request, or it might fetch them on demand using 
some form of distributed storage and recovery service. Orca provides a bare-bones 
authorization policy based on simple ACL rules. 
 
Figure 2 summarizes the identity and authentication processes within ORCA. The GENI 
ORCA control framework includes (is slated to include?) one or more Identity Providers, 
based on Shibboleth technology, which vouch for principals. They provide attributes for 
certain principals, for example, researchers. The user creates an identity by acting from a 
server utilizing a browser or acting from a server utilizing a set of helper tools, such as 
the Experiment Control Tools.  
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Figure 2. Identity and Authentication Mechanisms within ORCA 

 
An important point to note about ORCA based on Shibboleth and Shirako philosophies, 
is that any kind of service provider does not really care about identity, but only security 
attributes associated with the identity and endorsed by an identity provider. Actual real 
identity is just one possible attribute but is not necessarily required. ORCA envisions that 
ultimately GENI may require binding identities to the real world identity, but it may not 
be necessary to mandate it. Early binding of identity could complicate the acceptable 
levels of indirection within GENI. For example, Jeff Chase in his comments on the CF 
Requirement document states “if Duke says the operation is being done on behalf of a CS 
faculty member, but does not say who, and an abuse is committed, is it sufficient to 
allow/require the institution to divulge identity only after the fact, that is, after evidence 
of the abuse has been presented?”  
 
The ORCA GENI control framework, authorization and access control are currently 
based on digitally signed messages (WS-Security) and the Java Cryptography 
Architecture (e.g., keystore files). Access control is through tickets issued by the domain 
authorities to brokers who are responsible for delegating control over resources as shown 
in Figure 9. Every actor is identified by a GUID and possesses a keypair for 
authentication. Each actor has access to a registry of the GUIDs and public keys of other 
actors that are known to it. Actors sign their messages with their private keys, and 
authenticate messages based on their knowledge of the sender's public key. 
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Figure 3: Slice Creation process in ORCA 
 
 

3.2 ORBIT 
Point of Contact: Ivan Seskar (seskar@winlab.rutgers.edu) 
 

Open Access Research Testbed for Next-Generation Wireless Networks (ORBIT) 
radio grid testbed is developed for scalable and reproducible evaluation of next-
generation wireless network protocols. The ORBIT testbed consists of an indoor radio 
grid emulator for controlled experimentation and an outdoor field trial network for 
end-user evaluations in real-world settings. 
 
Orbit uses the login account information along with public and private keys for 
identification and authentication within the testbed. Once a user is authorized, they 
are permitted to control all aspects of their experiment and to access all the 
experiment data files.  

 

3.3 ProtoGENI 
Point of Contact: Rob Ricci (ricci@flux.utah.edu) 
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ProtoGENI is essentially a control framework that is based on the Emulab production 
systems and subsystems enhanced for the unique challenges faced in the GENI 
environment. The design is based on the knowledge that all entities that ProtoGENI 
will authenticate have unique global identifiers. ProtoGENI implements a single 
Public Key Infrastructure (PKI) server which covers authentication of all registries, 
aggregates and principals. This PKI provides all necessary certificates, and allows 
verification to be done using a limited number of root certificates. Since it is in a 
prototype state, it assumes the number of trusted "roots" will be small and can 
exchange root SSL certificates out of band to populate a certificate directory that can 
be used for verifying client certificates when they are presented as shown in Figure 4. 
The ProtoGENI GID consists of a UUID and Human Resolvable Name (HRN) all 
implemented in the DN of the SSL certificate. The SSL certificate is issued by home 
Emulab that authenticates the entity in GENI. The DN also includes the email address 
of the users. 
 
Authentication of the entity is done by the clearing house, on basis of the SSL 
certificate that is signed by the home Emulab. Authentication implies no permissions, 
the SSL certificate just indicates the identity of the entity.  

 
 

 
Figure 4: Identity and Authentication Mechanisms in ProtoGENI. 

 
 
ProtoGENI is currently transitioning from the UUID-based identifiers to URN-based 
identifiers specifically to separate out identity and authentication. Each principal 
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object in ProtoGENI will have a unique URN associated with it. The authority that 
issued the URN may issue certificates binding authentication material to that URN, 
that is for example supply the object's public key for authenticating the SSL session. 
With the identity and authentication functions separated, a service S will authenticate 
that "the requester is user  Joe in the assertion" that is the assertion will contain Joe's 
identifier (his URN), and additionally Joe will present an authentication certificate 
that will essentially say "Joe's URN (the same one that was in the credential) is 
associated with public key X". The authentication certificate must be signed by the 
authority that issued Joe's URN. Service S will then challenge Joe to be sure he has 
the associated private key. 
  
Authorization in the ProtoGENI system is initiated by the exchange of credentials that 
facilitate resource authorization and access control by aggregates as shown in Figure 
3. The credentials are certified by the appropriate authorities (slice or aggregate 
managers) and objects (aggregates, components and slivers) to give them some 
intrinsic value.  These are then certified by an authority or object by signing the token 
using its own private key, followed by signatures from its responsible authorities, up 
to the root authority. In the current implementation, there is always only one 
signature. The Public Key Infrastructure (PKI) that is used to authenticate principals 
provides all of the keys and other structure to sign and verify credentials. The 
aggregate that receives this token can then verify it using a set of root certificates.  
 
The slice in ProtoGENI currently is defined as a set of slivers spanning the home 
Emulab facility along with the project and users associated with the project. The users 
are authorized and have access to the slivers so that they can run an experiment on the 
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Figure 6. Authorization during Slice Creation in ProtoGENI 

Figure 5 outlines the slice creation process; the register stage consisting of steps 1-3 where a slice 
exists in name only and is bound to a project and users; the instantiate stage consisting of stages 4-6 
where a slice is initialized on a set of components and resources are assigned to it and finally the 
activate stage consisting for stages7-8, where the slice is booted and the experiment is active on behalf 
of the user. 
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Figure 6. Authorization during Slice Creation in ProtoGENI 

 
 

The ProtoGENI suite thus uses certificates and credentials to authenticate entities. 
This approach combines identity and authentication mechanisms.  
 

3.4 PlanetLab GENI  
Point of Contact: Scott Baker (smbaker@gmail.com) 

    Andy Bavier (acb@cs.princeton.edu) 
 

PlanetLab is a system that allows researchers to conduct experiments on hosts located 
at various locations around the world, by providing a global research network that 
supports the development of new network services, distributed storage, network 
mapping, peer-to-peer systems, distributed hash tables, and query processing. The 
PlanetLab prototype is based on the geniwrapper module. The current implementation 
consists of PlanetLab Central (PLC) that bundles together an aggregate manager, a 
slice manager, and a registry server. Individual PlanetLab nodes correspond to 
components and run a component manger. The PlanetLab prototype maintains all 
authoritative state at PLC. Individual nodes maintain only cached state that will be 
updated when a node fails or reboots.  

  
PlanetLab also implements a single Public Key Infrastructure (PKI) server which 
covers authentication of all registries, aggregates and principals. This PKI provides 
all necessary certificates. The GID consists of a UUID and Human Resolvable Name 
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(HRN) implemented in the subject-alt-name field of the SSL certificate. The SSL 
certificate is issued by the authority that is responsible for the entity. It authenticates 
the entity in GENI by signing the certificate as shown in Figure 7: Identity and 
Authentication mechanisms in PlanetLab. The geniwrapper (http://svn.planet-
lab.org/wiki/GeniWrapper) uses two crypto libraries: pyOpenSSL and M2Crypto to 
implement the necessary cryptographic functionality and the X.509 certificates, while 
public-private key pairs are implemented by the Keypair class. 

 
 

 
Figure 7: Identity and Authentication mechanisms in PlanetLab 
 
 

All subsequent actions in the PlanetLab prototype contain a credential that consists of 
the GID of the caller, which in turn contains the public key of the caller. The PLC 
ensures that this public key matches the public key that is being used to decrypt the 
HTTPS connection’s session key, thus ensuring the caller must possess the private 
key that corresponds to the GID and hence authenticating the user.  
 
Authorization in the PlanetLab system is initiated by the exchange of credentials that 
facilitate resource authorization and access control by aggregates. Figure 8: 
Authorization during Slice creation process in PlanetLabFigure 8 shows the slice 
creation process in PlanetLab.  

 



23 

Aggregate 
Manager

4. GetTicket: the ticket is defined by a 5-
tuple, (GIDCaller , GIDObject, Attribs, Rspec, 
Delegate) . The GetTicketoperation is 
completed by the AMGID

Slice 
Authority

PlanetLabCentral

1.  Verify user credentials and authorize him to 
perform slice creation 

3. Request Ticket: User selects 
components, creates Rspec. If 
request is granted, the AM 
signs the request and returns 
a ticket

5. Redeem Ticket: User 
redeems the ticket causing 
the sliver to be created. The 
Rspecdefines the resources 
bound to the slice. 

7 Start Sliver: User requests 
sliver to be brought  to 
running state

Compute Cluster

Network

Storage

Measurement
Component 
Manager

2.List Resources: On behalf of 
the user, the SM calls each 
peer AM to learn of available 
resources. 6. SM maintains a database of 

all slices created with the 
resources used. 

Registries

Slice & User Registry

Resource
Status
Service

 
Figure 8: Authorization during Slice creation process in PlanetLab 

 
Once a user credentials are validated by the slice manager, the user can initiate the 
slice creation by invoking the GetTicket operation. A ticket in PlanetLab is a five-
tuple consisting of (GIDCaller, GIDObject, Attributes, RSpec, Delegate) where 
GIDCaller is the GID of the principal performing the operation, GIDObject is the 
GID of the slice to which the ticket is bound, attributes is the set of PlanetLab 
attributes and RSpec is the set of resources bound to the slice. Once the ticket is 
generated for the user, it can then be redeemed at the respective aggregate managers.  
 
In PlanetLab users invoke the sfi command to manage their slices. sfi manages a set 
of credentials on behalf of the user to invoke various slice or registry operations. 
There are essentially three types of credentials: user credential that enables retrieving 
information in the registry, the slice credential to control and terminate the slice, and 
if the user also serves as PI for a research organization, an authority credential that 
authorizes him to register nodes, slices, and users in the registry. Typically there is 
one  user and authority credential, there may be multiple slice credentials.  

 
 

4. The Federated Suites  

4.1 TIED  
Point of Contact: Ted Faber (faber@isi.edu) 
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Trial Integration Environment built on DETER (TIED) is a testbed based on Emulab 
software that is specifically enhanced for security research by providing test suites, 
methodologies and tools for network security tests. TIED allows on-demand creation 
of experiments spanning multiple independently controlled facilities enabling 
federated experiments to create a coherent distributed environment, manage federated 
resources by applying appropriate security mechanisms, and provide a unified 
runtime environment to the researcher and experiment. The TIED federator (fedd) 
translates experiment requirements encoded in a canonical experiment description 
language and maps them to a federated experiment across multiple testbeds 
transparently for the experimenter.  

Each users, projects and testbeds has a globally unique name. Typically in Emulab, 
projects are created by users within projects and those attributes determine what 
resources can be accessed. TIED generalized this idea into a testbed, project, user 
triple that is used for access control decisions. A requester identified as ("DETER", 
"proj1", "faber") is a user from the DETER testbed, proj1 project, user faber. 
Testbeds contain projects and users, projects contain users, and users do not contain 
anything. Testbeds make decisions about access based on these three level names. For 
example, any user in the "emulab-ops" project of a trusted testbed may be granted 
access to federated resources. It may also be the case that any user from a trusted 
testbed is granted some access, but that users from the emulab-ops project of that 
testbed are granted access to more kinds of resources. TIED also defines federation 
identifiers. They are 160-bit SHA-1 hash of the public key to avoids collisions when 
federating. A triple name can be replaced by a fedid as follows (fedid:1234, “proj1”, 
“faber). Figure 6 shows identification and authentication in TIED. Basically, 
authentication is at the home testbed, using priv-pub key pairs as shown below.  



25 

 
Figure 9: Identification and Authentication in TIED 

 

Authorization and access control within the TIED control framework is managed at 
the project level, that is, projects control resource access, each user’s project 
membership level determines access to project resources as shown in Figure 7.  Once 
a fedd has decided to grant a researcher access to resources, it implements that 
decision by granting the researcher access to an Emulab project with relevant 
permissions on the local testbed. The Emulab project to which the fedd grants access 
may exist and contain static users and resource rights, may exist but be dynamically 
configured by fedd with additional resource rights and access keys, or may be created 
completely by fedd. Completely static projects are primarily used when a user wants 
to tie together his or her accounts on multiple testbeds that do not bar that behavior, 
but do not run fedd.   

Whether to dynamically modify or dynamically create files depends significantly on 
testbed administration policy and how widespread and often federation is conducted. 
In Emulabs projects are intended as long-term entities, and creating and destroying 
them on a per-experiment basis may not appeal to some users. However, static 
projects require some administrator investment per-project. The TIED authorization 
framework is built on the assumptions that the federated testbeds will be 
decentralized with alliances changing frequently. However, it is also necessary to 
support multiple trust models, (for example, hierarchical PKI, PGP web of trust) and 
explicit decision making in TIED-based testbed federations.  
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Figure 10: Authorization during experiment creation in TIED 

 
TIED is currently prototyping attribute based access control as it will allow fine grain 
control along with support to scale to thousands of users and experiments in TIED. 
Essentially in the current prototype, a principal’s identity is established by local 
authorities using local techniques, principal’s attributes are determined locally and 
established by digitally signed credentials. The attributes and rules then drive a 
reasoning engine that determines authorization decisions. 

ABAC facilitates authorization decisions by providing rules under which actors in the 
system, called principals, prove that they have certain attributes necessary for 
accessing resources. Which attributes are required for a given resource is a matter of 
policy outside the system. ABAC can represent delegation of various forms in 
scalable and separable ways that can be reasoned about formally. In ABAC, 
principals can be an individual (researcher, user) or larger authority (GPO, 
university). Principals can use a range of systems to authenticate themselves. A 
principal can be the subject of authorization decisions and have attributes asserted 
about it by other principals.  

An attribute is a property of a principal created by the assertion of another principal. 
The University of Southern California (a principal) may assert that Ted Faber (a 
principal) is a staff member (attribute). The attributes are scoped by principal, that is 
if USC asserts Ted Faber is staff, that is one attribute, if ISI also asserts that Ted 
Faber is staff that is a second attribute. Assertions are represented as a digitally signed 



27 

statement, called a credential. A given principal may also assert rules about how 
attributes relate. The GPO may assert that all USC GENI staff are also GPO 
prototypers. That delegates authority to USC to add to GPO prototypers. In this case 
the delegated attribute (GPO prototypers) is given to principals who also possess the 
delegating attribute (USC GENI). Finally, a principal may delegate at one remove. 
The GPO may assert that any NSF PI (any principal that the NSF has asserted a PI 
attribute about) can designate a principal as a GENI user and that user will be a GPO 
GENI user. The NSF can affect GPO GENI users by creating or deleting PIs; that is, 
by adding or removing assertions that a particular principal is a PI. Individual PIs can 
also directly designate local GENI users that are also GPO GENI users as above.  

In this case, the delegated attribute (GPO GENI user) is delegated to principals who 
possess a one (or more) of a set of attributes (P GENI user for many P). That set is 
defined in terms of an authorizer attribute (NSF PI). Any principal with the authorizer 
attribute can assign the delegated attribute by assigning their local version of the 
delegating attribute (P GENI user where P has the NSF PI attribute). This links the 
authorizer attribute to the delegating attributes, and is often called a linked attribute. 
Each of these delegations is expressed as an ABAC credential: a signed assertion that 
can be used in a proof. Because each of these is a signed assertion of a fact or 
delegation of authority, connecting them in following the rules above corresponds to 
collecting those signed credentials, which establishes a trust relationship. ABAC 
credentials allow principals to negotiate directly about what they consider adequate 
proof.  

Until an authorization decision needs to be made, all of these credentials can be kept 
locally and brought together to make the decision. Principals can also pass them 
around so  they are available when needed. For example, when the NSF designates a 
PI, it may send that PI the signed attribute so that the PI can use it in authorization 
requests.  

 

4.2 PlanetLab Fed  
Point of Contact: Larry Petterson (llp@cs.princeton.edu) 
 

This effort will integrate PlanetLab (PLC), PlanetLab Europe (PLE), PlanetLab Japan 
(PLJ)-along with other testbeds in Korea, Brazil, Europe, Japan, and the US-into an 
international federated research infrastructure. They will deploy and use the 
federation mechanisms developed as part of the PlanetLab cluster and focus on the 
policy issues that arise when autonomous organizations federate their networks 
together. 
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5. Other projects with Security Requirements in Spiral 2  

GENI is being designed and prototyped by the research community, with project 
management and system engineering provided by the GENI Project Office (GPO). 
Each GENI spiral lasts for a 12 month phase. Spiral I’s primary goal was to develop, 
integrate, and attempt to operate very rudimentary, end-to-end working prototypes, as 
rapidly as possible, then co-evolve them with the community’s evolving research 
vision. Several new projects are starting in Spiral 2 to fill in several critical “missing 
pieces,” including: security requirements and architecture, experiment workflow tools 
and user interfaces, and prototypes for instrumentation and measurement. Additional 
projects will build upon Spiral 1 achievements to date, including support for 
international and commercial federations and several early “shakedown” experiments 
that will prove critical in guiding system design. This section discusses ten projects 
that SECARCH has closely looked at at this stage in Spiral 2 and their security 
implications.  

 

5.1 Embedded Real Time GENI 
Point of Contact: TBD 
 

The Embedded Real Time Measurement Framework for GENI includes the 
technology to support cross-layer communications, specifically, the ability to 
incorporate a diverse set of real-time measurements in networking protocols. They are 
targeting architectural experimentations across diverse heterogeneous technologies by 
supporting real-time cross-layer communications and measurements. The objective is 
to develop networking capabilities within the GENI infrastructure that enable deeper 
exposure of cross-layer information and user access to real-time measurements. 
 
They have developed a set of specifications for enabling real-time measurements 
within the substrate and specifications for networking protocols based on the GENI 
requirements for real-time user-accessed cross-layer measurements is also currently 
under development. They identify a set of specifications for the implementation of a 
unified and integrated measurement framework called UMF, which is the Unified 
Measurement Framework, with the goal of limiting the hardware and software 
overhead and complexity associated with accessing measurement data. 
 
They have developed a measurement framework based on GENI real-time 
measurement requirements and other resources within the GENI prototyping 
activities.  It discusses the number of software architectures dedicated to network 
measurements which could serve as an interface between a unified measurement 
framework (UMF), the control framework, and the GENI experimenter. Their 
prototype assess several network management protocols and data exchange formats 
for exchanging measurement and control information between the substrate's 
performance monitors and the UMF,  and between the UMF and the GENI control 
frameworks. 
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The UMF serves as a means for gathering physical layer measurements and 
conveying the data to the GENI researchers in an aggregated, unified way. They have 
also evaluated the corresponding networking protocol and management languages 
that will be essential in our implementation of the UMF. They have joined the ORCA 
Cluster (D) and plan to integrate UMF within the ORCA-BEN aggregate. This will 
enable real-time measurement experimentation using the existing networking 
elements (NEs) embedded in the BEN metro-area optical network. 
 
In the scope of Spiral 2, the first major task is to design an implementation of the 
UMF that can be integrated within the ORCA Cluster. However, this design should 
be general enough such that it can be easily extended to other GENI control 
frameworks in the future. Thus ERM uses the NetFPGA Cube, which is an integrated 
system composed of a general purpose processor, in addition to the proprietary 
NetFPGA hardware. The UMF comprises of both a software component (run on the 
general purpose processor), as well as a hardware component (run on NetFPGA card).  

5.1.1 ERM integration with ORCA 

The main goal of the UMF is to present a uniform view and an abstraction of the 
measurement capabilities within a substrate and make them accessible to, and 
sliceable by, a control framework. As such, the UMF is required to interface with 
both the GENI control framework, as well as to a set of NEs within the GENI 
network substrate. Figure 4 shows an architectural flowchart of how the UMF 
interfaces specifically to the ORCA control framework and its NEs. The green dotted 
lines depict the flow of measurement commands, such as the signal monitoring 
commands, downstream from the ORCA control framework, through the UMF, down 
to the underlying NEs. The blue solid lines show the flow of retrieved measurement 
data from the NEs, up to the UMF and the ORCA control framework to be processed 
or stored. 
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Figure 11. ERM Integration with ORCA--BEN 

 
The UMF interfaces with the ORCA control framework via the integrated 
measurement framework (IMF). The ORCA control framework is in charge of 
managing the network resources and allocating slices of the available resources to the 
GENI researchers. ORCA receives the measurement data from the IMF and can 
choose to store it locally, or send it to the GENI users’ external tools for further 
processing, or storage. The IMF is also responsible for interfacing the UMF to the 
Services Integration, controL, and Optimization (SILO) framework, which is an 
infrastructure for a non-layered internetworking architecture in which complex 
communication tasks are accomplished by combining functional blocks in a 
configurable manner. The cross-layered experimentation capability of SILO can be 
combined with the unified measurement capability of UMF to enable substrate 
measurement as a service in a custom protocol stack (i.e. a silo).  
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The first UMF prototype is implementing using the NetFPGA Cube, which is an 
integrated system composed of a general purpose processor, in addition to the 
proprietary NetFPGA hardware. The UMF comprises of both a software component 
(which runs on the general purpose processor), as well as a hardware component 
(which runs on the NetFPGA card). Next we outline the functionalities of the 
software and hardware components along with the security implications. 
 
The software component of the UMF is responsible for interfacing with the IMF and 
sends measurement command information to the UMF, for example, slice allocation 
information, ID of NE to make the measurement, a measurement metric and rate such 
as power, bit-error rate (BER), final destination of the retrieved measurement data for 
processing or storage (ORCA, SILO, User tools, or UMF) 
 
Thus the IMF is in charge of interfacing with the ORCA and SILO frameworks, and 
the applications running on them. It then communicates with the UMF which 
measurement metric the higher level applications wish to retrieve and what NE to use. 
Then, the UMF is responsible for actually interfacing with all available NEs, by 
sending vendor specific commands to them and receiving measurements from them. 
Once the UMF SW receives the measurement information from the NEs, it can store 
it locally or forward it up to the ORCA, SILO, or User tools for processing and/or 
storage. This design provides flexibility of design and may make it easier to secure as 
the prototype evolves to include other control frameworks. This design, however, still 
faces the same challenges in terms of access control, privacy, and security of 
measurement data.  
 
The UMF HW is implemented in a specialized NetFPGA to provide timing-sensitive 
processing. If the measurement command information sent to the UMF HW by the 
UMF SW specifies a measurement to be made only once, then there is no time 
sensitivity, the vendor-specific measurement command sent from the UMF SW can 
be directly forwarded to the actual NE. However, if the measurement metric update 
rate is some fixed time interval, then the UMF HW will be in charge to keeping count 
of this time interval while repeatedly sending out the measurement command to the 
actual NE. The UMF HW will also manage or  store the upward flow of measurement 
data should the NE be set to stream measurement information. Upon receiving the 
retrieved measurement data from the NE, the UMF HW can directly process the data 
and control/actuate some local hardware using the special I/Os available to the 
NetFPGA (such as GPIO, Ethernet, Serial, etc). This is only done if it is specified that 
the UMF HW should perform the processing. Otherwise, the UMF HW forwards the 
retrieved measurement data upstream for processing or storage.  
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5.2 Instrumentation Tools for a GENI prototype 
Point of Contact: James Griffioen (griff@netlab.uky.edu) 
 

This project provides instrumentation capabilities that give the GENI users the ability 
to monitor and better understand the runtime behavior of their experiments. These 
capabilities are currently being integrated within the ProtoGENI cluster. Much of the 
work on testbeds is primarily focused on creating, setting up, and running an 
experiment but this is only the first of many steps in an experiment. The real 
challenge can often be monitoring and analyzing the behavior of an experiment as it 
is a very involved, time consuming, and usually a manual process that is repeated 
many times. It requires setting up a monitoring environment. 
 
While it is relatively easy to setup a monitoring and analysis environment for a single 
testbed, scaling it to federated testbeds and aggregates that span across the Internet 
can be extremely challenging due to bandwidth and storage constraints. In   the 
current prototype, each experiment has its own measurement controller (MC) that 
controls and collects all packets and network states from the measurement points in 
that experiment. A measurement point is a simple packet sensor or a node and 
network state sensor. Experiments that span multiple aggregates have a minimum of 
one measurement controller for each aggregate. The measurement controller is 
implemented as an additional sliver in the experiment, either as an additional node or 
a virtual node. As shown in the figure below, the measurement controllers do not 
depend on the experiment links for connectivity, they has their own out-of-band 
connectivity with each of the measurement points. The measurement controllers are 
also highly provisioned nodes, and thus have plenty of storage and network 
connectivity resources to support all the monitoring activity with the experiment.  

 
 



33 

 
Figure 12: Instrumentation tools for monitoring and analyzing a GENI experiment. Each aggregate 
has a measurement controller that correlates statistics from multiple measurement points within the 

experiment. 
 

The measurement point captures packet state information using tcpdump and node 
state using process daemons. Additionally, there is a control daemon to enable and 
disable monitoring. The first prototype accessed the experiment topological 
information directly from the Emulab database. However for integration with 
ProtoGENI, experiment topological information is accessed through XML-RPC calls 
on the clearinghouse and component managers and the monitoring is done from an 
SNMP daemon that has been specially configured to work inside Emulab's virtual 
nodes. Further the project uses experiment-specific (i.e., slice-specific) measurement 
nodes, thus creating a local measurement system within each experiment. This design 
matches the standard usage model in which users are primarily interested in collecting 
information about their own experiment. It allows users to keep measurement data 
private and local, but still allows data to be made public if desired. 

5.3 Million Node GENI  
Point of Contact: Justin Cappos (justinc@cs.washington.edu) 

 
The million-node GENI project provides an end host deployment platform called 
Seattle that enables networking and distributed systems research by users contributing 
resources as the second type of opt-in mechanism. Seattle's architecture is comprised 
of three components. First, at the lowest level the sandbox component called the 
vessel guarantees security and resource control for an individual program. Programs 
are written to the Seattle API in a subset of the Python programming language 
(restricted python). This API provides portable access to low level operations (like 
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opening files and sending messages). Vessels prevent the program running in them 
from performing unsafe actions (like opening the computer user's files) Vessels also 
have a specified number of resources they are allowed to consume. The vessel 
restricts the program from consuming more than the allowed number of resources.  
 
Second, at a higher layer, the node manager determines which sandboxed programs 
get to run on the local computer. A public key infrastructure is used to authorize 
control over programs running within the vessels. The node manager restricts access 
to the vessels to only authorized parties. For example, every vessel has an owner and 
a set of users. The owner can change the set of users, change ownership to another 
party, split the vessel into multiple vessels, and other similar operations. Users are 
allowed to upload files to the vessel, start and stop programs, read the vessel's log, 
and other simple operations. The node manager also ensures that the total amount of 
consumed resources does not vary as vessels are split and joined. Lastly, the 
experiment manager lets students control their program instances across computers. 
Seattle programs are portable as students' code can run across different operating 
systems and architectures without change. An experiment manager locates vessels 
that the user controls and interacts with the node manager to control those vessels. 
For example, an experiment manager may take a user's command to deploy foo.py 
everywhere and go to contact all of the vessels the user owns on each of the node 
manager. 
 

5.4 Enterprise GENI  
Point of Contact: Rob Sherwood (rob.sherwood@stanford.edu) 

The Enterprise GENI project is focuses on how GENI can be deployed on local 
networks, such as campus and enterprise networks, and to develop a kit that allows 
the easy deployment of OpenFlow in other networks. Specifically, in addition to 
deploying Enterprise GENI in a campus network, it will integrate the OpenFlow 
network with a GENI control framework, for example, PlanetLab, by an Aggregate 
Component Manager and provide access to Enterprise GENI testbeds to other GENI 
users. It also aims to define an Enterprise GENI deployment kit for research and 
potential commercial transition.  

OpenFlow is a way for researchers to run experimental protocols in regular 
operational networks. The OpenFlow design has an internal flow-table and a 
standardized interface to add and remove flow entries on a Ethernet switch. It allows 
researchers to rapidly evaluate their ideas and protocols in real-world traffic settings 
and OpenFlow could serve as a useful campus component in a large-scale testbed like 
GENI.  OpenFlow provides an open protocol to program the flow table in different 
switches and routers. A network administrator can partition traffic into production 
and research flows and researchers can control their own flows  by choosing the 
routes their packets follow and the processing they receive. In this way, researchers 
can try new routing protocols, security models, addressing schemes on the same 
network with the production traffic is isolated and processed without any changes. 
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An OpenFlow switch consists of at least three parts: (1) A Flow Table, with an action 
associated with each flow entry, to tell the switch how to process the flow, (2) A 
Secure Channel that connects the switch to a remote control process (called the 
controller), allowing commands and packets to be sent between a controller and the 
switch using (3) The OpenFlow Protocol, which provides an open and standard 
manner for a controller to communicate with a switch. 
 
An entry in the Flow-Table has three fields: (1) a 10-tuple packet header that defines 
the flow, (2) the action, which defines how the packets should be processed, and (3) 
statistics, which keep track of the number of packets and bytes for each flow, and the 
time since the last packet matched the flow.  
 
There are three basic actions that are currently supported within the OpenFlow 
switch:  
  

1. Forward this flow’s packets to a given port (or ports). This allows packets to be 
routed through the network. In most switches this is expected to take place at line 
rate. 

2. Encapsulate and forward this flow’s packets to a controller. Each packet is delivered 
to a Secure Channel, where it is encapsulated and sent to a controller. This 
mechanism is typically used for the first packet in a new flow, so a controller can 
decide if the flow should be added to the Flow Table. Alternately, in some 
experiments, it could be used to forward all packets to a controller for processing, 
albeit with potential performance impacts and limitations. 

3. Drop this flow’s packets. This can be used for security, to curb denial of service 
attacks, or to reduce spurious broadcast discovery traffic from end-hosts. 
 
For support within the GENI testbed, Enterprise GENI first developed a Network 
Virtualization Software that allows experimental use of the production networking 
infrastructure. The two basic components of this infrastructure are a FlowVisor and 
the Aggregate Manager. The FlowVisor virtualizes a physical OpenFlow switch into 
multiple logical OpenFlow switches, which can be controlled and operated by 
different experimenters. The FlowVisor basically appears to a network of OpenFlow 
switches as a single controller running as open-source software on a Linux PC. The 
switches continue to run an unmodified OpenFlow Protocol.  The FlowVisor is 
critical to allowing multiple experimenters to run independent experiments 
simultaneously in one physical campus network.  
 
The FlowVisor consists of two main parts:  

1. A policy engine that defines the logical switches (e.g. "all http traffic", "A’s traffic", 
"Network administrator's experimental traffic between 12midnight and 3am") 

2. An OpenFlow mux/demux that implements the policy by directing OpenFlow 
commands to/from an OpenFlow controller and its network of logical OpenFlow 
switches. 
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The Aggregate Manager is built on top of the FlowVisor, and can be defined as an 
OpenFlow controller that controls a subset of the network resources, as defined by the 
local administrator.  

5.4.1 Enterprise GENI and PlanetLab Integration 
 

 
Figure 13: PlanetLab and Enterprise GENI integration Sept 2009 

 
The high level idea of the integration between PlanetLab GENI and Enterprise GENI 
is to use the same control framework for the creation of a slice across both the 
substrates. Thus, a user can now create and run an end-to-end experiment across both 
the PlanetLab GENI and the Enterprise GENI substrates using the PlanetLab SFI 
interface tool. The computing resources are provided by PlanetLab whereas the 
networking resources are provided by Enterprise GENI for the experiment.  
 
As shown in the figure above, first the user is authenticated using an experimenter’s 
key with the authentication registry contacted through the PlanetLab Aggregate 
manager. Now the user can request a list of resources available of the PlanetLab 
substrate using the get_resources operation and identity the resources required for the 
experiment. Once the resources are identified by the user using an RSpec, the user 
can invoke the create_slice operation on the PlanetLab Aggregate manager so that a 
slice is created on the individual nodes and the resources are assigned to the 
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experiment. The user can now log into these nodes and start running the experiment 
on it.  However, the networking backend of the experiment is still not complete and 
thus any traffic generated by the nodes will be dropped.  
 
In order to allocate the networking resources, the experimenter uses the same SFI tool 
to create a slice on the E-GENI aggregate manager. First the experimenter invokes a 
get_resources operation on the E-GENI aggregate manager that in turn returns the list 
of all the networking resources available within the testbed. The user then identifies 
the switches and the interconnects required for the experiment, and creates and RSpec 
defining the resources and sends it to the E-GENI aggregate manager in a 
create_slice operation. The E-GENI aggregate manager forwards that request to 
FlowVisor that in turn allocates the slices on the switches in the network. Now all the 
individual switches can be controlled using the OpenFlow controllers the user is 
going to run for the experiment. Once the experimenter starts the controller and the 
experiment, all the traffic generated from the slice is routed to the controller and then 
the controller handles the traffic as setup by the user.  
 
Thus the extended SFI interface creates an end-to-end experiment across both the 
PlanetLab and the E-GENI substrate by controlling the computing resources and the 
networking resources using the same user interface.  

 

5.5 GMOC  
Point of Contact: Jon-Paul Herron (jph@grnoc.iu.edu) 
 

The scope of this project is to facilitate the sharing of operational and experimental 
information among GENI experimental components. The GENI Meta Operations 
Center (GMOC) has both technical development and operational requirements and 
would need a well-defined protocol to help generalize the operational details of GENI 
prototypes and for the providers of prototypes to send those details to an operational 
data repository. These requirements suggest a modular approach, with a generalized 
protocol rather than a restricted set of hardware and software that GENI prototype 
participants would be required to run. In other words, it would be largely up to the 
GENI Spiral project investigators to decide what data to share and how to collect this 
data from their prototype infrastructure as shown in the figure below. The GMOC 
would provide the standardized format for this data and the systems required to share, 
monitor, display, and act on this data. In addition, the GMOC could be used to help 
provide a repository for data collections passing into and out of GENI prototypes for 
the purpose of discovering and isolating prototypes that have caused problems. This 
might require additional instrumentation at the connection points and substrate 
elements between prototypes.  



38 

 

Figure 14: The GMOC Project Data Flow 

This would be accomplished with the help of the other prototypes that are part of 
GENI Spirals. The GMOC will work with these other projects to develop the 
operational data formats, processes, and systems needed for a consistent and useful 
suite of GENI infrastructures. During the project, participants will investigate how a 
Meta Operations Center might interact with various prototype participants to 
accomplish operations functions.  

The GMOC and SECARCH project are also currently discussing the requirements for 
a policy framework for the security and privacy of measurement data collected by the 
GMOC project. The GMOC project is focused on gathering operational and 
experiment data from components, aggregates and their interconnections within 
GENI to provide information that will aid in management and emergency shutdown 
functions. We envision during the initial prototyping stages, the security mechanisms 
for such a data repository will not be as critical, as in most cases it will be generic 
monitoring data which may not have privacy requirements and could be accessible to 
everyone in the GENI ecosystem. But as the GMOC starts to monitor and collect data 
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that comes from within experiment slices, we will need to define privacy of data and 
usage policies. We have already started a discussion on what are the possible 
implications and requirements to ensure the privacy of such data. 
 

5.6 CMULab  
Point of Contact: David Anderson (dga@cs.cmu.edu) 
 

This project builds upon CMU’s existing cluster, neighborhood wireless/broad-band, 
and wireless emulation testbeds to identify and build prototypes of the authentication, 
resource arbitration, and node management primitives needed to deal with a very 
diverse set of resources. The CMULab project will integrate its testbeds with the 
ProtoGENI control framework.  The CMUlab project will extend the Emulab network 
testbed, adding/extending support for a new types of nodes. Traditional Emulab nodes 
reside in a machine room near (in a network sense) the management systems and the 
traditional way of handling those nodes is built around this assumption. The project 
extends that model to allow for nodes that reside, as individual PCs, on non-
controlled networks, utilizing the internet to reach the management system.  
 
Since the CMULab uses a range of heterogeneous devices that may not be located in 
close proximity to the traditional Emulab control and data (boss, ops, and user 
servers) path model, it is facing new challenges in ensuring it the control and data 
paths can operate reliably. The devices may reside behind a NAT, and in a typical 
experiment their notion of control and data planes will often involve the same 
physical network interface. The nodes will not be able reimage themselves for the 
same reasons standard emulab nodes will as reimaging is too time and bandwidth 
expensive, and these nodes must be considerate of the network on which they reside. 
Also, ensuring the security and privacy of the control and data paths is a new 
challenge in this project.  

The CMUlab project is in the process of developing software to create, allocate keys, 
start and stop, OpenVPN configurations to completely automate VPN operation for 
their diverse set of nodes. The goal is to integrate this software into Emulab and into 
ProtoGENI.  They are also attempting to define rspec designs to encapsulate and 
configure bridging of these VPNs and the SEC-ARCH project is engaging with them 
at the GENI conferences to understand the security implications of the various design 
choices. 

5.7 GpENI 
Point of Contact: James Sterbenz (jpgs@iitc.ku.edu) 
 

The project Great Plains Environment for Network Innovation aims to integrate its 
state of the art fiber optic network into the PlanetLab cluster. GpGENI has four 
university connections, University of Kansas, Kansas State University, University of 
Missouri-Kansas and University of Nebraska-Lincoln. Additionally, it also has three 
research network connections to the Great Plains Network, KanREN (Kansas 
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Research and Education Network) and MOREnet (Missouri Reasearch and Education 
Network) and two industry participants in Ciena and Qwest.  
 
The project aims to develop a system with programmability at all layers that has open 
access to all in the research and experimentation community. This project is currently 
connecting the various participants with fiber and routers. The SEC-ARCH project is 
engaging with them at the GENI conferences to understand their progress and the 
security implications as their network comes online.  
 

5.8. Instrumentation and Measurement for GENI (GIMS) 
Point of Contact: Paul Barford (pb@cs.wisc.edu) 
      Joel Sommers (jsommers@colgate.edu) 
 

The primary objective of the Instrumentation and Measurement project is to develop, 
test and deploy a prototype implementation of the network instrumentation and 
measurement systems that will eventually be widely available in the GENI 
infrastructure. The specific components of the instrumentation and measurement 
system include sensor nodes that will passively gather packets from links in a 
network, a measurement data repository and the experimental interfaces that enable 
users to specify the passive data components that will be gathered for their 
experiments. Another key component is the security and access control mechanisms 
that address the important issues of how the instrumentation and measurement 
systems can be accessed by GENI users and operators, how users are given different 
levels of access to packet capture capabilities in different environments, how fields in 
packets are anonymized and how the instrumentation and measurement systems 
themselves are made secure. 
 
Conceptually the system can be thought of in terms of user activity and control flow 
that results in data flow as show below. Users specify experiments and their 
associated measurement configurations through an interface in the control framework 
(create slice). Among other things, this results in filters deployed on measurement 
systems and storage allocation. As experiments are run, packets are captured and at 
the conclusion of the experiment (destroy slice), the filters and storage are 
deallocated. The interface and aggregate manager facilitate the flow of control data 
and maintain the current state of the measurement systems. 

 



41 

 
 

        Figure 15: Control and Data Flow within the Instrumentation and Measurement Project 
 

There are significant issues of security and privacy. The sensors, collection/synthesis 
and archival systems must only be accessible by authorized users, and the authorized 
users must only be allowed access only a specific proportion of the resources 
connected with their slice on the measurement systems. The storage repository should 
also be secure, GIMS has a good plan for anonymization, and the interfaces are still 
underspecified. Further, all of the measurement systems themselves must be secured 
against attack and the data that is collected will not compromise or violate the privacy 
of individuals or organizations that source/sink the data. 
 
There is a constant tension between desired visibility into measurement data and 
privacy that is faced by multiple projects within GENI and is further discussed in 
Section 7.  

 

5.9 Digital Object Registry Services  
Point of Contact: Giridhar Manepalli (gmanepalli@cnri.reston.va.us)  
 
This project attempts to adapt the Handle System and/or the CNRI Digital Object 
Registry to create a clearinghouse registry for principals, slices, and components in the 
ProtoGENI control framework. The project will also analyze ways in which the Handle 
System and the Digital Object Registry could be used to identify and register GENI 
software, including experimenter’s tools, test images and configurations, and test results. 
Finally, they will define the operational, scaling, security, and management requirements, 
plus recommended design approaches, for implementing GENI clearinghouse and 
software registry services. CNRI has developed an initial technical approach to creating a 
clearinghouse registry,  
 
The Handle System provides a unified, distributed, and secure identification system that 
can be directly used to identify all discreet resources and entities within GENI, for 
example, principals, slivers, aggregates, and components. One of the key features of the 
handle system, of particular interest in this context, is the ability to associate any data, or 
references to data, with each handle identifier, either directly within the handle record or 
through a pointer to external data. This allows the rapid and reliable resolution of any of a 
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large set of identifiers to the current state data for the identified entity. Another critical 
functional aspect of the Handle System, beyond its ability to provide distributed storage 
and retrieval, is its secure administration mechanisms, which guarantee that only 
authorized entities can appropriately create, modify or delete handle records. This is of 
special importance within the GENI environment, as much of the information will have 
to be locally managed but globally accessible and trusted. For relatively small data items, 
such as the latest version number, the Handle System could be used directly to serve part 
of the GENI clearinghouse function. In other cases it will provide one or more pointers to 
external data, in registries or not.  
 
The CNRI Digital Object Repository provides an object storage and retrieval protocol 
that can be used to provide a common overlay across multiple back-end storage systems. 
 
It can be used to provide storage capacity beyond that of the handle system while 
providing the same level of distributed access and security. This technology could 
provide a standard distributed storage mechanism for experimental data sets, code 
modules, documentations and any other resources. The digital object generic registry 
system could be used for registering, indexing and providing search capability over any 
XML data. More specifically, this system could be to use it to validate, register, index 
and provide search capability over Rspecs, principals, and code within the GENI 
framework. A more dynamic application of this registry system could be extended to 
registering slices with the intent to record or share slice information with other 
researchers. Multiple instances of the digital object registry can be federated to provide a 
single search and access point across multiple registries. 
 
For the clearinghouse, the project will utilize the registry technology and the handle 
system technology to provide a principal, component and slice registry. The principal 
registry will be the least dynamic of the three but will require the highest level of security 
to make sure that each principal’s identification, authentication and authorization are kept 
up to date within the GENI framework. This registry will primarily leverage the handle 
system but could also use the registry for user discovery. The handle system would be 
used to identify, consistently and authoritatively define policies and permissions within 
the entire GENI framework.  

5.10 GENI LEFA  
Point of Contact: Kenneth J. Klingenstein (kjk@internet2.edu) 
                            Steven Carmody, (Steven_Carmody@brown.edu) 
 
The LEFA project is exploring the role of existing trust management infrastructure and 
systems in GENI, and in particular the Shibboleth In-Commons service deployed widely 
throughout academic institutions. Shibboleth supports the abstractions of identity 
provider (IdP) and service provider (SP). End-users (GENI researchers in our context) 
authenticate to the IdP’s; typically there is an IdP at each campus that would already have 
a well-known and established authenticated identity for each member of the University 
community, including faculty, post-docs, graduate and undergraduate students. IdP’s in 
turn pass attributes, such as the role as faculty or student, as well as specific course 
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enrollments or research project participation; to the service provider which is enforcing 
an authorization policy. SPs may guard access to control framework resources such as 
those provided by aggregate managers to acquire slices on physical nodes or wide-area 
network infrastructures. SPs would base their authorization policy decisions on the 
attributes supplied by IdPs, rather than on specific identities of each individual. 
 
Another important point of the LEFA approach is that management and administration of 
identities, keying material and public key certificates is essentially hidden behind the 
Shibboleth mechanisms. For end-users and GENI operators, this is potentially a very 
significant advantage, as this management and administrative burden is amortized over 
all the uses of Shibboleth identities on each campus, rather then being borne by the GENI 
infrastructure, and primarily the control frameworks or clearinghouses. 
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6. Security Guidelines and Policies  
 

This section is a placeholder, to be expanded and presented at GEC 8, 9 and 10. 
 
Specifically, best practices for projects contributing resources to GENI, including 
wired and wireless aggregates and components, their managers, as well as control 
frameworks and clearinghouses, will be defined based on input solicited from across 
the GENI community. In addition, best practices will be based on study, observations, 
and insights gained from researchers and campus organizations operating open 
network testbeds. 
 
It is clear that some tensions exist between traditional IT operating practices and the 
overarching goals of the networking research community. From an operational 
mindset, networking research poses risks of misuse of available shared networking 
resources, and potential for spillover of traffic or collateral impact on non-research 
networking infrastructure and services. Security guidelines and policies in GENI 
therefore must aim to “level-up” all participating elements of the GENI research 
infrastructure. By doing so, participants, and especially campuses, can integrate and 
deploy GENI infrastructure within their networking infrastructure with the confidence 
that doing so will support researchers and CIOs in using, managing and securing 
GENI. 
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7. Security Mechanisms  
Over the course of the development and prototyping spirals, we anticipate 
documenting a substantial set of security mechanisms that play a role in securing the 
GENI system. We define a core set of mechanisms, which well-designed secure 
systems will need to incorporate, either through implementation or integration within 
their solutions. The five mechanisms listed below are identity, authentication, 
authorization, access control, and audit.  
 

7.2 Identity  

Identity is defined as who someone or what something is, for example, the name by 
which something is known. Traditionally, identity requires identifiers—strings or 
tokens that are unique within a given domain, (that is globally or locally within a 
specific network, directory, application). Identifiers are the key used by the parties to 
an identification relationship to agree on the entity being represented. Identifiers may 
be classified as resolvable or non-resolvable. Resolvable identifiers, such as a domain 
name or e-mail address, may be referenced into the entity they represent, or some 
current state data providing relevant attributes of that entity. Non-resolvable 
identifiers, such as a person's real-world name, or a subject or topic name, can be 
compared for equivalence but are not otherwise machine-understandable. 

In a federated environment such as GENI, an identity could be a union of a 
principal’s, information stored across multiple distinct identity management systems. 
The databases could be joined together by the use of a common token. A principal's 
authentication process will thus occur across multiple networks or even across several 
organizations. 

The GENI Management core [GENI-SE-SY-SO-02.0] defines unambiguous 
identifiers—called GENI Global Identifiers (GGID)—for the set of objects that make 
up GENI.  GGIDs form the basis for a correct and secure system, such that an entity 
that possesses a GGID is able to confirm that the GGID was issued in accordance 
with the GMC (GENI Management Core) and has not been forged, and to 
authenticate that the object associated with the GGID is the one to which the GGID 
was actually issued. 

Specifically, a GGID is represented as an X.509 certificate that binds a Universally 
Unique Identifier (UUID) to a public key. The object identified by the GGID holds 
the private key, thereby forming the basis for authentication as discussed in the next 
section. Each GGID (X.509 certificate) is signed by the authority that created and 
controls the corresponding object; this authority must be identified by its own GGID. 
There may be one or many authorities that each implement the GMC, where every 
GGID is issued by an authority with the power and rights to sign GGIDs. Any entity 
may verify GGIDs via cryptographic keys that lead back, possibly in a chain, to a 
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well-known root or roots. Every entity within GENI will have a GGID for 
accountability and these identities will map to real world identities such as email and 
physical location address. A principal may have multiple identities.  

[n.b. The definition of GGIDs, GIDs, or even public-key based identities is subject to 
change or evolution within the GENI control framework.] 

7.3 Authentication and Authorization 
Authentication verifies the identity of an entity in GENI. It is a key aspect of trust-
based identity attribution, providing a codified assurance of the identity of one entity 
to another. Traditionally, authentication and identification mechanisms rely on 
maintaining a centralized database of identities, making it difficult to authenticate 
users in different administrative domains across federated networks. Each federated 
network keeps track of its users in a users account database and hence granting access 
to resources across networks is challenging. Each control framework may have its 
own mechanism of authentication at the early spiral prototypes. 
 
Authentication methodologies include public-private (asymmetric) key pairs, the 
provision of confidential information such as a password, or utilizing encryption 
methodologies. The use of a Public Key Infrastructure (PKI) will allow establishing 
strong identities for facility users.  Although PKIs are hard to bootstrap, GENI has a 
natural advantage since every site will have a local administrator who can establish 
and vouch for the credentials for each specific GENI research user and physical 
device.  Authentication is required for both the network (local site) facility itself, to 
grant access to applications and services and provide a basis for resource isolation, 
but also for applications and users. A flexible and accessible public-key or other 
authentication service, along with the software libraries and resources to manage it, 
will facilitate the operation of GENI and the development of a large range of 
applications on top of it.  This service must include the development of libraries to 
allow a variety of applications to use the service and the development of guidelines 
for how and when applications should use the service. 
 
Even though GENI will allow an entity to have multiple identities, authentication is 
still required in order to verify that the identity presented for a particular GENI 
operation is a valid registered identity. The authentication in this case is of the GGID 
itself, and not of the entity represented by it.  
 
As mentioned in section 6.1, a GGID binds a Universally Unique Identifier (UUID) 
to a public key. The object identified by the GGID holds the private key, thereby 
forming the basis for authentication. Each GGID is signed by the authority that 
created and controls the corresponding object; this authority must be identified by its 
own GGID. A name repository maps strings to GGIDs, as well as to other domain-
specific information about the corresponding object. There may be multiple name 
repositories. Depending on the entity, the domain-specific information can be any of 
the following: (a) the URI at which the object’s manager can be reached, (b) an IP 
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address, (c) a hardware address for the machine on which the object is implemented, 
(d) the name and postal address of the organization that hosts the object. 
 
[n.b. Authentication and Authorization systems based upon previously deployed 
identity and trust management services, such as Shibboleth In-Commons, may also 
play a role, and perhaps a preferred role, in GENI.] 
 
Authorization is the process of allowing access to resources only to those permitted to 
use them. In GENI the resources include data, slices, component devices, network 
bandwidth, and functionality provided by services. The problem of authorization is 
often thought to be identical to that of authentication; however, more precise usage 
describes authentication as the process of verifying a claim made by a entity that it 
should be treated as acting on behalf of a given principle (person), whereas 
authorization is the process of verifying that an authenticated subject has the authority 
to perform a certain operation. Authentication, therefore, must precede authorization 
and many times the term authorization is used to mean the combination of 
authentication and authorization. 
 
Authorization is traditionally implemented as permissions, such as an access control 
list or a capability. Authorization determines the access control rights of an entity, 
that is, is user X allowed to access resource R? The traditional way of performing 
authorization is to lookup a user’s rights in an access control matrix, which has rows 
that represent users and columns that represent resources, The value in the matrix 
represents the read/write/execute or other access permission set. The columns in an 
access control matrix represent the access control lists (ACLs) and the rows represent 
capabilities. An ACL is associated with every resource in the system, and lists all 
entities that are authorized to access the object along with their access rights. The 
identity of an entity must be known before access rights can be looked up in the ACL. 
Thus, authorization depends on prior authentication and systems that rely on ACLs 
for authorization must use a decentralized authentication mechanism to work across 
administrative boundaries. Capabilities correspond to rows of the access control 
matrix and thus a capability is an unforgeable token that identifies (names) one or 
more resources and the access rights granted to the holder of that capability. Any user 
that possesses a capability can access the resources listed in the capability with the 
specified rights. In contrast to ACLs, capabilities do not require explicit 
authentication.  However, it is typically the case that an initial set of capabilities is 
distributed only to an entity after authentication to some trusted service that mints 
these capabilities. 
 
Capabilities can be transferred among entities, which make them suitable for 
authorization across organizational boundaries. Because capabilities explicitly list 
privileges over a resource granted to the holder, they naturally support the property of 
least privilege. However, because possession of a capability conveys access rights, 
capabilities must be carefully protected against theft (e.g. unauthorized transfer). In 
addition, capabilities may make it more difficult to perform auditing or forensic 
analysis. Especially for large-scale decentralized systems such as GENI where the 
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logs themselves or the meaning of the information contained in the capabilities may 
be spread across several networks, collecting all the necessary information may 
involve considerable effort. 

Permissions are traditionally based on the principle of least privilege discussed above 
where an entity is granted specific permissions that they need to do their jobs and no 
more. Exceptions to this principal may allow some “trusted” principals that are 
granted unrestricted access to resources, such as for monitoring usage on the network. 
Anonymous or guest entities that are not required to authenticate themselves are 
given very few permissions, although even a limited degree of access may be 
problematic.  Pseudo-anonymity of various types may be used instead of truly 
anonymous access, although we defer this point to future prototyping spirals. 

The main function of the GENI control frameworks is to allow the authorization and 
assignment of resources from multiple GENI or federated aggregates to GENI 
researchers following pre-established policies. This will involve the interaction of a 
variety of elements, such as, the researcher, the designated slice, the aggregate, 
(including its resource availability and local policies), policies associated with other 
entities, (such as the GENI clearinghouse or an intermediate broker), policies based 
on other parameters, such as researcher/slice lineage and status, and lastly, resource 
availability. 
 
In all cases, a decision to grant a resource is made as a request from a researcher to an 
aggregate. In a simple case, supported by the current control framework architecture, 
an aggregate can check the slice lineage of a request against a local list of supported 
slices. However, ideally the control framework architecture should support richness in 
resource allocation and policy mechanisms. In particular, there should be a way to 
include policies that are associated with a clearinghouse or an intermediate broker.  
 
The GENI control framework makes use of exchange of tokens (called credentials or 
tickets) to authorize principals within GENI. These tokens are then used to permit 
access to registries and authority services and are also used to authorize resource 
assignment and management. Further, tokens must be signed (certified) by the 
appropriate authorities and objects (principals, aggregates and slices) to associate 
value to them in the GENI network. This approach to authorization is very flexible, 
allowing entities to be widely dispersed and even disconnected for a short period 
within the GENI network.  
 
Various resource allocation and policy mechanisms will be explored in Spiral 2 
implementations and are discussed in the subsequent sections. The above 
authorization approach is widely used within the ORCA control framework.  
 

7.4 Access Control 
The core of our proposed security architecture for GENI is a pervasive and unified 
access control infrastructure.  Access control refers to the mechanism used to reach a 
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yes-no decision as to whether an access request should be granted.  The decision is 
typically reached by a resource monitor based on security policy defined for the 
resource.  The goal of the ABAC architecture we propose in Section 8 is to provide a 
unified and yet flexible mechanism for resource monitors to reach such decisions. 
Access control is often intimately tied to authentication and authorization as 
discussed above, however, we propose separating the entities authentication 
mechanisms from access control especially for components.  We propose using 
access control methods that are not based on the public—private key pairs to provide 
additional flexibility that may be useful for certain classes of components that may 
not have the resources to support PKI. 
 
All access rights for slices originate with a Slice Authority (SA) and it is responsible 
for approving the research users associated with the slice. All rights regarding 
component resources originate at the Management Authorities (MA). The MAs 
define the resource allocation policies for the components they manage and approve 
all research users that operate those components. Each component implements a 
resource allocation policy that determines how many resources, if any, to grant each 
slice. A researcher that is granted the instantiate capability for a given slice can be 
viewed as having the right to ask for resources from the component—the credential 
essentially confirms that some slice authority vouches for the slice—but it is up to the 
component to decide if it is willing to host the slice, and if so, how many resources to 
grant it. 
 

7.5 Audit 
 

Auditing actions post-mortem is often required by forensic investigators or other 
parties to ascertain precisely what happened after a security related incident. 
However, audit mechanisms depend on the logging of sufficient information to tie 
together the identity (and authentication mechanism or series of mechanisms) used to 
acquire the login or rights sufficient to wield that identities privileges; the recording 
of which operations were performed by which clearinghouses, slice or management 
authorities, aggregate and component managers, and individual components – 
including where feasible details of what parameters were supplied, and the results of 
each operation invocation. 
 
Additionally, integrity of audit logs is necessary, both to prevent tampering with audit 
logs and to ensure that logs are managed in a way that safeguards them and retains 
them for sufficiently long durations so that they can be consulted after a security 
incidents, e.g. to determine the earliest point in time at which a break-in or other 
problem first occurred. 

 


