
Enterprise Centric Offloading System
Aaron Gember & Aditya Akella {agember,akella}@cs.wisc.edu

APPLICATION-INDEPENDENT OFFLOADING

Handheld users are running increasingly complex mobile

applications with (1) high processing and energy demands,

e.g., speech recognition, and (2) operations on sensitive data,

e.g., health records. Application-independent offloading is a

widely proposed solution to address handheld performance

and energy demands without re-writing applications: MAUI

[Cuervo ‘10], CloneCloud [Chun ‘11], Amazon Silk, etc. Offloading

frameworks divide a mobile applications’ execution between a

handheld device and a compute resource.

We posit there are several key roadblocks limiting the adoption

of existing offloading frameworks:

Privacy and trust: sensitive data in application state

can be leaked in transit or on compute resources

Resource availability: applications may be

offloaded to a diverse set of compute resources with

varying availability and processing capabilities

Scalability: many handhelds with different goals

(energy savings, latency improvements) must be

able to simultaneously offload

OFFLOADING FOR ENTERPRISES

We focus on making offloading feasible for enterprises, which

feature (1) increasing handheld usage for business, (2) a

plethora of compute resources, e.g., idle desktops, dedicated

servers, remote clouds, and (3) a single administrative domain.

How do we assign offloads to diverse compute resources

to provide the most benefit for many handheld users?

Several factors must be considered in assigning resources:

 Varying user goals — latency improvement, energy savings

 Limited set of trusted compute resources

 Potentially changing resource availability

 Diverse processing capabilities

 Overhead of execution state transfer — depends on state

size and latency/bandwidth to compute resource

?

?

?

EXPERIMENTATION IN GENI

ECOS PROTOTYPE

Enterprise Centric Offloading System (ECOS) is our

in-progress prototype that addresses the roadblocks inhibiting

the adoption of offloading. In practice, ECOS can be used in

its entirety, or the security and resource assignment principles

we employ can be used to augment any of the existing

offloading proposals (CloneCloud, MAUI, etc.).

Our ECOS prototype currently has the following features

 Modified Android runtime environment capable of capturing,

transferring, differencing, and restoring execution state

 Handheld offload agent responsible for “trapping” at offload

points, requesting resources, and initiating offloads

 Resource offload agent responsible for reporting processing

capabilities and managing offload runtime environments

 Logically central controller which allocates resources and

populates switch flow tables based on policy-specified trust

relationships, resource availability, and handheld users goals

We leverage GENI to (1) diversify our compute resource base

and (2) identify key factors and mechanisms to include in our

resource assignment algorithm. Android emulators running at

Wisconsin serve as handheld devices, while Linux boxes at

Wisconsin and ProtoGENI nodes at GPO serve as compute

resources. All communication occurs over OpenFlow switches

at Wisconsin, NLR, and GPO.

Our results have already identified the importance of

 Assigning offloads with different goals to different resources

 Preferring the same compute resource for subsequent

offloads to reduce state transfer overhead

We are currently using experiments in GENI to understand

 How significantly throughput impacts offload overhead?

 Whether we can learn, based on execution times on

compute resources, which offloads provided no benefits and

adapt our offload and resource assignment decisions?

