
1) Launch compute

intensive application

on Android Phone

2) Offload point reached;

application asks

phone agent to request

resources from the

central controller

SONOMA: Secure Opportunistic Network-Wide Offload for Mobile Applications

Aaron Gember & Aditya Akella, University of Wisconsin - Madison

What information is at risk?

Data accessed or generated by an application becomes

part of its runtime state and may be included in the

state transferred during offloading. We consider three types of data:

1) No-private: data raises no privacy or security concerns.

2) Enterprise-private: should not be leaked outside the enterprise.

3) User-private: data should be accessed only by the current user.

SONOMA is our mobile application offloading system designed to

opportunistically leverage available resources and offer security

guarantees and performance/energy improvements to smartphones.

Measurements show there are significant idle computational

resources in a typical enterprise. SONOMA pairs these resources

with offloading requests to provide the most benefit to as many

mobile devices as possible. Every time an application reaches an

offload point, the mobile device asks the central controller where to

offload. The controller assigns the application to a desktop, server,

or cloud with sufficient resources, optionally throttling back already

offloaded applications to provide some benefit to the mobile device.

SECURITY

RESOURCE SCHEDULING

DEMONSTRATION

Why are existing systems not widely adopted?

1) No mechanisms are in place to maintain the security

and privacy of data used by an offload application.

2) The focus is on what to offload instead of where to offload, and

they assume dedicated local resources are available for offloading.

Offloading migrates part of a running mobile application and

executes it on a secondary resource (desktop, server, etc.).

BACKGROUND

What does SONOMA do to ensure security?

A security policy on the central controller defines which resources

provide the necessary trust for user- and enterprise-private data. The

decision of where to offload limits the resources considered based on

this policy. Also, communication will be encrypted for user-private

data, but not for the other data types to avoid undue overhead.

3) Controller pairs available resource with offload request

4) Application connects to desktop agent and sends package name;

desktop agent launches new Dalvik VM and listens for state

5) Phone transfers execution state to new VM instance

6) Desktop executes code and returns result; desktop VM is killed

Multiple phones and desktops perform this process simultaneously.

