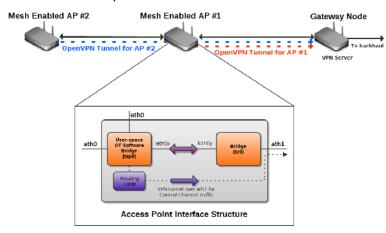

Clemson OpenFlow Trials

CLEMSON COMPUTING AND INFORMATION TECHNOLOGY

G. Hamilton Evans, Jr., Sajindra Pradhananga, Bob Strecansky Aaron Rosen, Kuang-Ching Wang, Jim Pepin, Dan Schmiedt


Wired Network Architecture

- 6 OpenFlow switches deployed (all running OF v. 0.8.9r2):
 - 3 HP Procurve 3500yl, 3 Toroki LS 4810
- 3 Campus buildings wired:
 - OpenFlow Research Offices / Lab (~10 computers)
 - ECE Security Lab (~15 Tor Nodes)
 - CPSC Cloud Computing Lab
- Controller Setup:
 - Production: SNAC w/ pyswitch
 - Experimental: Flowvisor w/ OpenRoads NOX (pyswitch)

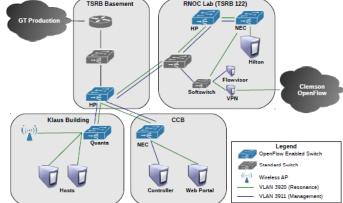
Wireless Network Architecture

- 9 PC Engine APs (all running UserSpace OF v. 0.8.9r2):
 - 5 Deployed on Poles (1 Gateway, 4 Mesh)
 - 4 Used for Lab Testing (1 Gateway, 2 Mesh, 1 Testing)
- OLSR used for mesh networking (Private subnet)
- Control traffic sent over OpenVPN L2 tunnels
- Datapath traffic uses virtual interfaces to provide interconnectivity between OF and Mesh interfaces

Cross-campus Interconnectivity using OpenVPN

• Current Implementation:

- GT and Clemson connect via two L2 tunnels provided by OpenVPN.
- Each campus has publicly accessible computer that acts as both an OpenVPN client and server.
- Bridges are configured to allow for virtual L2 connectivity from one campus to the other.


• GT Resonance System:

- Provides GT researchers located at Clemson University the ability to securely connect via Clemson's OpenFlow network as though they were located on GT's campus.
- Tested and verified correct operation of Resonance System for simulated GT researchers at Clemson.

• Future Implementation:

- Direct L2 VLAN connectivity between campuses.
- Campus IT discussion of OpenFlow-based remote authentication.

GT Resonance Network

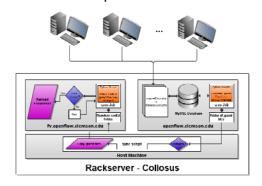
Clemson OpenFlow Trials

G. Hamilton Evans, Jr., Sajindra Pradhananga, Bob Strecansky Aaron Rosen, Kuang-Ching Wang, Dan Schmiedt, Jim Pepin

Clemson OpenFlow Website

• Trac-based Installation:

- Provides wiki, ticket system, milestones, etc.
- Allows Clemson OF users to add information and provides links to external OF knowledge bases.
- Gives new users basic OF understanding, tutorials for NOX installation and slice creation.
- User-facing slice management engine
 - Allows users to manage their slices (via secure page)
- ONAP interface for network management



User-facing Slice Management

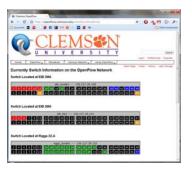
• User Management Portal:

- Users request a slice via openflow.clemson.edu.
 - MySQL database is updated and a confirmation email is sent to the user containing a passcode.
- Scripts on the server generate the .guest file and load it into Flowvisor (slicing via MAC address).
- Users can later update slice information, disable the slice, or add additional computers via the user slice management portal.

 OpenFlow Users

OpenFlow Network Administration Portal and Features

• ONAP Architecture:


- Custom PHP pages interface to MySQL database backend.
- Administration pages are only available to authenticated users.
- Integrates fully with Trac installation for one-stop management and information collection.

• Administration Portal Features:

- Monitor Port Usage
 - Wall port to switch port mapping and VLAN association
- Generate network performance graphs
 - Network throughput, RTT, Switch CPU Utilization, etc.
- Manage MySQL database containing:
 - Currently running slices
 - Deployed switches with port information

Administration Portal and Examples

