
Mobile Device Offloading Using Enterprise Network and
Cloud Resources

Aaron Gember, Aditya Akella
University of Wisconsin Madison

{agember,akella}@cs.wisc.edu

1. INTRODUCTION
Smartphones have become an important element of

enterprise computing infrastructure. In a recent sur-
vey, 34% of respondents reported using their smart-
phone more than their computer to conduct business
[1]. Paralleling this usage increase is an ever broaden-
ing range of mobile applications: speech-to-text, image
recognition, etc. Mobile devices need more processing,
memory, and battery resources to support these appli-
cations, but increases in hardware capabilities are not
keeping pace with application demands. In addition, an
asymmetry remains between the computing resources of
desktop PCs and smartphones.

We propose an offloading framework that takes ad-
vantage of local resources in enterprise networks to si-
multaneously address the resource, performance, and
security demands of mobile applications. Idle desktops
serve the needs of mobile device by executing arbitrary
offloaded applications. A remote cloud can supplement
local resources for offloading security- and delay-insensitive
applications. Which applications to offload and what
secondary computing resources to use is determined by
a central enterprise-wide controller configured with ap-
propriate policies. The controller considers resource de-
mands, resource availability, and the network topology
to seamlessly leverage all possible computational capac-
ity and elastically adjust to changing conditions.

2. DEMONSTRATION
Our demonstration focuses on the application migra-

tion component of our offloading system. Mobile ap-
plications are assumed to execute in a virtual runtime
environment, creating a relatively clean separation be-
tween operating system and application execution state.
Our prototype offloads Java applications running in a
modified Dalvik Virtual Machine (VM) on a Google
Android smartphone. The Dalvik VM is modified to
capture a running application’s execution state (thread
stacks and objects), transfer the state and application
code across the network, and resume the application in
a new Dalvik VM on an idle desktop (Figure 1).

We offload an application from an Android phone
to a laptop (representing an idle desktop) connected
via a mini OpenFlow network. After the application is
launched on the phone, we manually specify an offload-

Figure 1: Application migration to idle desktop

Figure 2: Application migration to remote cloud

ing destination—automatically selecting a secondary re-
source is future work. The destination is communicated
to a NOX controller which installs the appropriate flow
entries in the OpenFlow switch. The Dalvik VM on
the Android phone is halted and the execution state is
sent across the network to the idle desktop (laptop). An
agent on the idle desktop receives the state and launches
a new Dalvik VM. The Dalvik VM loads the execution
state and starts execution from where it was halted.
After the application is executing on an idle desktop
(laptop), we imagine resource conditions have changed;
we migrate the application to a different laptop.

The second half of the demonstration offloads an ap-
plication to a remote cloud. It follows the same proce-
dure as above, but application state traverses the Inter-
net to arrive on a desktop connected to the University
of Wisconsin–Madison OpenFlow network (Figure 2).

3. FUTURE WORK
Work on our system prototype is ongoing. In the

future, the decision of what and where to offload will
be made by a central decision module which consid-
ers resource usage information from mobile devices and
desktops and selects an offloading destination based on
an administrator specified policy. The decision module
will communicate with the NOX controller to install the
appropriate flows or gather network topology details.

[1] RingCentral. Smartphones changing the way business
professionals work and live.
http://blog.ringcentral.com/2010/04/smartphones-changing-
the-way-business-professionals-work-and-live.html,
2010.

1


