GENI-VIOLIN:
Distributed Suspend and Resume
for GENI Experiments

Ardalan Kangarlou Pradeep Padala
Sahan Gamage Ulas C. Kozat
Dongyan Xu Ken Igarashi, Bob Lantz
PURDUE docomo

UNIVERSITY. DOCOMO USA Labs

Scientists Come up with a Great Idea

| have to run a nano-technology
experiment to test my theories

These are my requirements
» The experiment is long-running (hours)
« Requires resources from multiple sites

GENI-alpha: We can help!

Scientist builds a VIOLIN

Has its own I[P address space and admin privilege
completely decoupled from the physical network
domains

Appears like a single LAN
Contains VMs that are

o Customized for specific scientific program execution
and data access

o Created and torn-down on-demand
o Live-migratable across clusters
Can be suspended and resumed

VIOLIN = Distributed Virtual Appliance

Scientist Provisions a Slice of GENI

Utah ProtoGENI
cluster

! i
= SE —_— @)

Stanford EnterpriseGENI
cluster

Openflow
cluster

Slice spans multiple cluster sites

Scientist Deploys VIOLIN on a GENI slice

\ / Scientist’s virtual view
’ of his/her experiment

Phys:cal view containing
multlple clusters

>/tah ProtoGEN[
cluster

A GENI
network)""—

X /=

Openflow Stanford EnterpriseGENI
cluster cluster

Experiment begins running

Failures Happen in Distributed Environment

@\@K }ltah ProtoGENI

cluster

Stanford
cluster

Oh, No! Two nodes hosting my
VMs failed. | have lost thousands
yfqours of CPU time ®

EnterpriseGENI
cluster

GENI-alpha:
Wait! VIOLIN supports resume!

VIOLIN Resumes the Experiment

VIOLIN’s Snapshot/Resume saves the day

Secret Sauce: VIOLIN takes periodic snapshots of entire slices

<<<<<<

GENI-VIOLIN goals

Provide “live snapshot” facility to GENI-alpha
experiments

— Fault tolerance
— Debugging
— Slice management

Minimal disruption to application performance
Transparent to the applications and guest OSs
Non-stop execution of the application

GENI-VIOLIN: Distributed Suspend and
Resume for GENI experiments

GENI-VIOLIN status

VIOLIN is ported to Emulab environment

All Emulab experiments can use VIOLIN now!

Current VIOLIN uses UDP tunneling and a few
other tricks to create a single virtual L2 network

Openflow implementation is in progress that
provides same features with better performance

GENI-alpha/GEC9: VIOLIN + Openflow on
ProtoGENI

Snapshotting entirely in the network, no end-host
support other than hypervisor required

GENI-VIOLIN GEC8 demo

Fault-tolerance to
distributed GENI experiments

Challenge

How to do distributed suspend/resume?

Demo scenario: Recover from failures

@ Snapshot

/a
ot
/i

Application Progress Application Progress

L ARRNRNRNNN
I GENI Slice GENI Slice
| y N D N
e EEEE
@ Application Completes @ Resume from Snapshot

/A

a

Application Progress Application Progress

GENI Slice T GENI Slice
Resume

Emulab script

set ns [new Simulator]

source tb compat.tcl

set nodeA [$ns node
set nodeB [$ns node
set nodeC [$ns node

[]

[]

[]
set nodeD [$Sns node]
set nodeE |]
[]

set nodeF
set lan0 [$ns make-lan "$nodeA S$SnodeB SnodeC S$SnodeD $nodeE SnodeF" 1000Mb Oms]

tb-set-node-os $nodeA VIOLIN

tb-set-node-os $nodeB VIOLIN

tb-set-node-os $nodeC VIOLIN

tb-set-node-os $nodeD VIOLIN

tb-set-node-os $nodeE VIOLIN

tb-set-node-os $nodeF VIOLIN Our customized
Xen + Linux image

Sns run

Demo setup: 4 VMs and 2 snapshot servers

S

VM1

R
NS
Node A
= N

Snapshot Server 1

VM2
<

Node B

=
VM3

[¢]

X

Node C

L2 virtual network
Single subnet

Under the hood: VIOLIN

vM 1 VM 2
ethO ethO
vifl1.0 vif2.0

Dom O \/

VIOLIN-br

I
VIOLIN Switch

!

o

xend/libxc

Transaction
Controller

- — -

>

Snapshot
daemon

ethO B

Node A

Memory Disk

<

VM 1 VM 2

ethO ethO

vifl.0 vif2.0

Dom O \/

VIOLIN-br
I

— —* VIOLIN Switch

]]

Node E
(Snapshot Server)

UDP Tunneling

xend/libxc

ethO N

Node B

Physical Network Wire

Demo application: Distributed Mandelbrot

For each pixel on the screen do
{
while (x*x + y*y <= (2*2) AND
iteration < max iteration) {

xtemp = x*x - y*y + x0
y = 2*x*y + yO
X = Xtemp
iteration = iteration + 1

}

1f (iteration == max iteration)
color = black
else

color = iteration
plot (x0,y0,color)
}

* Color of pixel needs to be calculated
* Distributed MPI processes

Demo

