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Scientists Come up with a Great Idea

| have to run a nano-technology
experiment to test my theories

These are my requirements
» The experiment is long-running (hours)
« Requires resources from multiple sites

GENI-alpha: We can help!



Scientist builds a VIOLIN

Has its own I[P address space and admin privilege
completely decoupled from the physical network
domains

Appears like a single LAN
Contains VMs that are

o Customized for specific scientific program execution
and data access

o Created and torn-down on-demand
o Live-migratable across clusters
Can be suspended and resumed

VIOLIN = Distributed Virtual Appliance



Scientist Provisions a Slice of GENI
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Scientist Deploys VIOLIN on a GENI slice
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Failures Happen in Distributed Environment
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GENI-alpha:
Wait! VIOLIN supports resume!




VIOLIN Resumes the Experiment

VIOLIN’s Snapshot/Resume saves the day

Secret Sauce: VIOLIN takes periodic snapshots of entire slices

<<<<<<



GENI-VIOLIN goals

Provide “live snapshot” facility to GENI-alpha
experiments

— Fault tolerance
— Debugging
— Slice management

Minimal disruption to application performance
Transparent to the applications and guest OSs
Non-stop execution of the application

GENI-VIOLIN: Distributed Suspend and
Resume for GENI experiments



GENI-VIOLIN status

VIOLIN is ported to Emulab environment

All Emulab experiments can use VIOLIN now!

Current VIOLIN uses UDP tunneling and a few
other tricks to create a single virtual L2 network

Openflow implementation is in progress that
provides same features with better performance

GENI-alpha/GEC9: VIOLIN + Openflow on
ProtoGENI

Snapshotting entirely in the network, no end-host
support other than hypervisor required



GENI-VIOLIN GEC8 demo

Fault-tolerance to
distributed GENI experiments

Challenge

How to do distributed suspend/resume?



Demo scenario: Recover from failures
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Emulab script

set ns [new Simulator]

source tb compat.tcl

set nodeA [$ns node
set nodeB [$ns node
set nodeC [$ns node

[ ]

[ ]

[ ]
set nodeD [$Sns node]
set nodeE | ]
[ ]

set nodeF
set lan0 [$ns make-lan "$nodeA S$SnodeB SnodeC S$SnodeD $nodeE SnodeF" 1000Mb Oms]

tb-set-node-os $nodeA VIOLIN

tb-set-node-os $nodeB VIOLIN

tb-set-node-os $nodeC VIOLIN

tb-set-node-os $nodeD VIOLIN

tb-set-node-os $nodeE VIOLIN

tb-set-node-os $nodeF VIOLIN Our customized
Xen + Linux image

Sns run



Demo setup: 4 VMs and 2 snapshot servers
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Under the hood: VIOLIN
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Demo application: Distributed Mandelbrot

For each pixel on the screen do
{
while (x*x + y*y <= (2*2) AND
iteration < max iteration) {

xtemp = x*x - y*y + x0
y = 2*x*y + yO
X = Xtemp
iteration = iteration + 1

}

1f (iteration == max iteration)
color = black
else

color = iteration
plot (x0,y0,color)
}

* Color of pixel needs to be calculated
* Distributed MPI processes



Demo



