GENI Instrumentation and Measurement Working Group

Paul Barford – University of Wisconsin Bruce Maggs – Duke University November, 2009

Session outline

- 9:00am Welcome and introduction
- 9:10am Initial view of WG objectives
- 9:20am Short presentations
 - Instrumentation and Measurement for GENI- P. Barford
 - Instrumentation Tools for a GENI Prototype, J. Griffioen
 - OnTimeMeasure, P. Calyam
 - Leveraging and Abstracting Measurements with perfSONAR, M. Swany
 - Scalable, Extensible, and Safe Monitoring of GENI, S. Fahmy
 - Virtual Machine Introspection for GENI, B. Hay
 - Embedding real-time substrate measurements, K. Bergman
 - Programmable Measurements over LEARN, D. Gurkan
 - Integrated Measurement Framework, R. Dutta
 - ORBIT measurements arrangement, M. Gruteser
- 10:20am Discussion of objectives
- 10:50am Wrap up

wail.cs.wisc.edu

A brief history of GENI I & M

- '06 '07: instrumentation and measurement systems discussed in facilities architecture WG
 - GENI design document 06-12
- '08 '09: several spiral 1 projects oriented around measurement capability
- June '09: first GENI measurement workshop

 Final report is nearly complete

Vision for I & M in GENI

- Instrumentation and measurement systems provides broad data gathering, analysis and archival capability
 - Sufficient to support GENI scientific mission
 - Sufficient to support GENI operations
- Key component for success of the infrastructure

Measurement requirements

- Ability to measure details of GENI behavior with high precision and accuracy across (all?) layers
- No (or at least measurable) impact on experiments
- Ubiquitous deployment
- Extensible
- Large capacity
- High availability
- Resilient
- Strong access control
- Seamless integration with control frameworks

Conceptual strawman

- Instrumentation
 - Taps in the network and systems that provide basic signals
- Collection & synthesis
 - Programmable systems that collect, combine and transform basic signals
- Archive
 - Measurement data index and repository

Instrumentation

- Link sensors
 - Deployed on network links via taps
 - Provide basic link signals
- Node sensors
 - Deployed on all systems connected by links
 - Provide basic utilization/state/configuration data
- Time sensors
 - Deployed at all sites
 - Provide fine-grained, synchronized timestamps

Collection & synthesis

- Programmable system(s) connected to sensors
 - Eg. DAG appliance
- Transform basic signals into data suitable for more standard analysis
 - Eg. framing and flow export
 - Eg. CAIDA's DatCat
- Transformations can be more sophisticated
 - Eg. streaming queries
- Select/transfer protocol moves data from node sensors
 - Eg. Simple Common Sensor Interface for PlanetLab
- Short term storage capability

Data archive

- High capacity data repository deployed across GENI sites
 - Interface with sensors and collection & synthesis systems
 - Access control & anonymization
 - Eg. Amazon S3
- Data catalog
 - Indexes data in the repository
 - Eg. DatCat

Security and access control

- Requirements
 - All systems and data must only be accessible to authorized users
 - Different views of the same data will be available depending on authorization level
 - Resilient to attack
 - User specify privacy
- Mechanisms for implementing security and access control are TBD

Objectives of I & M WG

- Create an architecture for measurement that enables GENI's goals to be achieved
 - Document and refine
- Facilitate dialog and coordination between teams focused on I & M development
- Identify key challenges in I & M that could otherwise inhibit the infrastructure
- Solicit feedback from users
- Mailing list, wiki, GEC's

Short presentations...

Discussion points

- What are the key components of an I & M architecture?
- What are the significant challenges in design, deployment and management of I & M systems?
- How should the I & M WG be organized?
- What are the objectives for the I & M WG over the next year?

