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Goals
• Provide system state in real-time
−Both network and node state

• Active and passive
• E2E or leverages network element info when available

• Flexible and extensible• Flexible and extensible
−Easy to add new measurement tools to be developed!
−Configurable time scales (start time, frequency, number)Configurable time scales (start time, frequency, number)
−Support complex queries

• To which node do I have the largest bandwidth?
Whi h i ithi 10 l t ?• Which game server is within 10ms latency?

• Share measurement info across applications
−Eliminate redundant expensive measurements
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Eliminate redundant expensive measurements
• Scalable, secure, and reliable



ChallengesChallenges
• Tools previously tested only in point-to-point 

configurationsconfigurations
• Deployment in a large scale setting exposed several 

issues
H d d d t b l di t t fli t− Hard-coded port numbers leading to port conflicts

− Need to be started at source and destination simultaneously
− Large resource requirements leading to end-node crashes
− Long running times leading to web server timeouts

• On-demand measurements at user defined times, 
frequencies, and tolerance to error/stalenessq

• Estimation of load introduced by measurement probes
• Dynamic invocation of inference mechanisms based on 

measurement request workload
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measurement request workload



Scalable Sensing Service (S3)

• Sensor pods
−Measure system state from a node perspective−Measure system state from a node perspective
−Web-Service enabled collection of sensors

• Backplane• Backplane
−Distributed programmable fabric
−Connects pods and aggregates measured system stateConnects pods, and aggregates measured system state

• Inference engines
− Infer O(n2) E2E path info by measuring a few pathsInfer O(n ) E2E path info by measuring a few paths
−Dynamically schedules measurements on pods
−Aggregates data on backplane
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Sensor PodSensor Pod
Web-Service (WS) enabled collection of sensors
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Sensing Backplane
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−E.g., SDIMS [SIGCOMM 2004]



Scalable Inference EnginesScalable Inference Engines
• Large overhead for probing and data exchange

• O(N2) measurements in a network of N nodes• O(N2) measurements in a network of N nodes
• Dynamically changing  Need frequent probing

• Measurement/Monitoring failures
• Failed or slow end machines
• Measurement tool failures

• Inference based on incomplete informationInference based on incomplete information
− Exploit properties such as triangular inequality
− A coarse estimate may suffice for many applications

• Prediction based on archived information
• Tradeoff between accuracy and overhead

f ? C CS
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• When and where to use inference? [Blanton et al., ICDCS09]



Prototype Deployment on PlanetLab
• 700+ nodes scattered across 350+ sites
• Running since January 2006

All pair network metrics: E2E latency BW Capacity Loss• All pair network metrics: E2E latency, BW, Capacity, Loss
• Simple backplane: central server

− Maintains pods, schedules measurements, collects and publishes p p
data

• Stats:~14GB raw data every day, ~1GB compressed
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S3 Data Usage 250 40S Data Usage
• Web server stats (2006): 
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• Projects
Unique Visitors Download BW

−HP Labs: Bandwidth inference, Resource-aware 
monitoring, semantic store 

−Others: Purdue University MSR U of WashingtonOthers: Purdue University, MSR, U of Washington, 
Georgia Tech, Harvard, Princeton, Boston University, 
etc.
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Screenshot: Hop-by-hop Loss SensorScreenshot: Hop-by-hop Loss Sensor
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S3 ScreenshotS Screenshot
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