
A High Level Rule-based Language for OpenFlow

Mehdi Mohammadi, Ph.D. Student

Mentors: Ala Al-Fuqaha, Ph.D.; James Yang, Ph.D.

Western Michigan University

Abstract

We studied the creation of rule-based Network

policies to describe the controller’s logic in Software

Defined Network environments. We rely on existing

OpenFlow controllers specifically Floodlight but the

novelty of this project is to separate complicated

language- and framework-specific APIs from policy

descriptions. This separation makes it possible to

extend the current work as a northbound higher level

abstraction that can support a wide range of

controllers that might potentially utilize different

programming languages. This approach would

enable network engineers to develop and deploy

network control policies easier and faster.

Open Challenges

 Interaction between concurrent modules

 Support of low-level interface to switch hardware

 multi-tiered programming model

Conclusions and Future Work

 A new approach to software-defined networking

which presents a higher level of abstraction

compared to current software-defined network

programming languages was investigated.

We defined a scripting language based on the

XML notation that network administrators can

utilize to define control policies without worrying

about the complexities of the underlying

controller framework. Indeed, this will make

software-defined networking easier and more

attractive for network administrators.

 This work opens up the opportunity of using

service oriented architectures and web services

as a model of collaboration between SDN

controllers (e.g. controller offering load

balancing or firewalling services).

OpenFlow High Level Languages

OpenFlow is a framework and protocol that realize

the concept of Software-Defined Networking (SDN) in

separating the data plane from the control plane.

OpenFlow simplifies network management by

providing high level abstractions to control a set of

switches remotely.

In a typical OpenFlow network, if a switch can find a

rule match to the received packet in its flow table,

then it proceeds with that rule. Otherwise, the packet

is sent to the controller for more processing. These

rules are imposed by the programmer of the

controller.

There are many OpenFlow controller frameworks that

expose a high level abstraction above the OpenFlow

APIs in their development frameworks such as POX,

NOX, Beacon, Floodlight, Frenetic, Pyretic and Ryu.

Motivation and Significance of the Work

 An OpenFlow framework requires network

engineers or administrators to write complete

programs to control and manage data traffic in

their network and control network devices.

 The programming languages that support

OpenFlow are complex and administrators are

required to know many irrelevant programming

details.

 The problem is more prohibitive for a beginner

network engineer who does not have a good

background in the programming language of the

controller.

 A simple and unified language in a higher

abstraction level that does not expose all the bells

and whistles of a complete programming language

can fill this gap.

 In this work, we propose a rule-based syntax to fill

that gap and it would serve as a user-friendly

approach to describe the controller’s policies.

The overall architecture of the system

Sample Application Scenarios

 Express what you want:

 All the packets that are destined to IP

address 10.0.0.2 or are originated from IP

address 192.168.0.1 should be forwarded to

port 1 of the switch.

 Each packet originated from Telnet service

(port 23) should be dropped.

 Describe it in XML:

 The following two rules satisfy these tasks.

<SDN class="Demo">

 <rules>

 <rule>

 <condition>destIP=10.0.0.2

 </condition>

 <condition connector="or">

 srcIP=192.168.0.1

 </condition>

 <action>outPort=1</action>

 </rule>

 <rule>

 <condition>srcPort=23

 </condition>

 <action>outPort=0

 </action>

 </rule>

 </rules>

</SDN>

Contribution of the Work

I. Introduced an XML-based scripting language for

describing network control policies.

II. Implemented a translator that converts the XML

file to Java source code containing the controller

program for Floodlight.

III. This contributes to hide the complexities of the

underlying APIs using a rule-based language.

Language Specifications

 Rule description is defined in a hierarchical

structure in which at the top level, we define the

class name in the SDN element.

 Then a list of rules containing zero or more rule

elements are declared.

 Inside each rule, one or more conditions are

expressed. To have compositional conditions,

condition elements support logical operators

which are specified by the attribute “connector”.

 The conditions themselves comply with a simple

pattern “variable operator value”.

 We designed a parser and code generator for

that XML format using the YACC tool.

Experiment Design

 Generate the Java source code for a desired

XML file

 Compile the generated Java files and deploy

them on the controller machine.

 Configure this module to be loaded by the

controller.

 We setup a simple network topology containing

one switch (s0) and three hosts (h1, h2, h3)

connected to the switch.

 Verify that the module is running (e.g., ping

command).

Comparison of XML and Java source code

 # Line of code Size (KB)

XML file 18 1

Java file 147 5

Format of Policy Description file

SDN

 Attributes

Rules

Conditions

Actions

Attributes

GENI Engineering Conference 22

George Washington University – Washington, D.C,

March 23-26, 2015

