Optical Service Chaining by Combining Optics, SDN, and NFV

Ming xia
Ericsson research, u.S.A.

Workshop on software defined optical networking
Geni conference 2014, davis, ca
Network Function Virtualization

Network Function Virtualization

- Middlebox services or network functions are realized in software running on generic hardware and in virtualized environments.
- Motivated by CAPEX savings and faster time to market of new offerings and solutions.

Source: ETSI NFV Whitepaper 2012

Benefit

- CapEx/OpEx saving
- Shorter development cycles for new services
- Automation of NF configuration and management
- Support multi-tenancy of NF
End-To-End Path of Traffic Flow

Operator's Access Network with Legacy NFs (e.g. middleboxes)
Operator's DC/Cloud with virtualized network functions

Internet
Challenge in Data Center Networks

- Steering traffic across core network functions in data centers requires high efficiency and scalability
 - How to efficiently handle ~10s of Gbps traffic steering?
 - How to dynamically shape network infrastructure to support bulky traffic transmission?
- Data center network infrastructure and cloud manager needs to be interacted to optimizing networking and server resources

Source: A Scalable, Commodity Data Center Network Architecture
Scalability Issue – An Example

- \(f_1 \) and \(f_2 \) are 5 Gbps flows
 - \(f_1 \) needs to go through vNF\(_1\) and vNF\(_2\)
 - \(f_2 \) needs to go through vNF\(_3\) and vNF\(_4\)
 - \(f_1: S_1\rightarrow ToR_1\rightarrow vNF_1\rightarrow ToR_1\rightarrow S_1\rightarrow ToR_2\rightarrow vNF_2\rightarrow ToR_2\rightarrow S_1 \)
 - \(f_2: S_1\rightarrow ToR_3\rightarrow vNF_3\rightarrow ToR_3\rightarrow S_1\rightarrow ToR_4\rightarrow vNF_4\rightarrow ToR_4\rightarrow S_1 \)

- \(f_1 \) and \(f_2 \) are 10 Gbps flows
 - \(f_1 \) needs to go through vNF\(_1\), vNF\(_2\), and vNF\(_3\)
 - \(f_2 \) needs to go through vNF\(_4\), vNF\(_5\), and vNF\(_6\)
 - \(f_1: S_1\rightarrow ToR_1\rightarrow vNF_1\rightarrow ToR_1\rightarrow S_1\rightarrow ToR_2\rightarrow vNF_2\rightarrow ToR_2\rightarrow S_2\rightarrow ToR_3\rightarrow vNF_3\rightarrow ToR_3\rightarrow S_1 \)
 - \(f_2: S_1\rightarrow ToR_4\rightarrow vNF_4\rightarrow ToR_4\rightarrow S_2\rightarrow ToR_5\rightarrow vNF_5\rightarrow ToR_5\rightarrow S_2\rightarrow ToR_6\rightarrow vNF_6\rightarrow ToR_6\rightarrow S_1 \)
Motivation of Using Optics

› The throughput of the packet steering domain increases as traffic volume grows.
› Power consumption goes up correspondingly as throughput.

A new scheme is needed:

- Insensitivity to traffic growth and number of virtual network functions
- High power efficiency
Introducing an optical steering domain
- ROADM dispatches traffic to the two domains
- Optical domain is complement to packet domain
Optical Steering Domain

Architecture for traffic steering for NFV using optical technology.
Performance Analysis-Setting

Table 1 Scenarios for scalability analysis (2 flows).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Flow rate (Gbps)</th>
<th># of needed vNFs per flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2 Power consumption at different flow rates (W)*.

<table>
<thead>
<tr>
<th></th>
<th>Core switch</th>
<th>ToR switch</th>
<th>Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GbE</td>
<td>3.91</td>
<td>1.3</td>
<td>/</td>
</tr>
<tr>
<td>40GbE</td>
<td>15.625</td>
<td>5.21</td>
<td>/</td>
</tr>
<tr>
<td>100GbE</td>
<td>46.875</td>
<td>15.63</td>
<td>/</td>
</tr>
<tr>
<td>WSS per port</td>
<td>/</td>
<td>/</td>
<td>2.0</td>
</tr>
</tbody>
</table>

*Source: Ericsson DCX series for core and ToR Switch)
Performance Analysis-Result

Total packet throughput by core switches.

Power consumption for the six scenarios.
Summary

We propose a circuit based (optical-layer) solution for efficient traffic steering to support network function virtualization (NFV).

• Based on software-defined networking (SDN) principles
• High scalability and power efficiency for bulky traffic steering
• Complement to existing packet-based solutions