
Sponsored by the National Science Foundation

GENI OpenFlow Service Abstraction

Tim Upthegrove, GPO

June 22, 2014



Sponsored by the National Science Foundation 2

Overview

• Existing solution

• Current problems

• Proposed solution

• Example deployment



Sponsored by the National Science Foundation 3

Existing Solution

● Operators run and install 
slicer (Flowvisor) for OF 
aggregate

● Flowvisor can do a lot:
● Can slice by anything
● Flowmod augmentation

● Operators run a diverse 
substrate of OpenFlow gear

● Experimenters deal with 
complexity of substrate and 
limitations of slicer



Sponsored by the National Science Foundation 4

Current Problems

• The substrate is intentionally diverse and necessarily 
complex, but it shouldn't be so difficult to use

• Slicing layer is more complex than necessary, and it is 
difficult to update GENI-wide

• Researchers are working around the same GENI-specific 
problems that have nothing to do with their research...

• And aggregate developers with OpenFlow substrates are 
solving some of those same problems!



Sponsored by the National Science Foundation 5

Proposed Solution

● Operators run and install 
simpler slicer with fewer 
requirements and features

● Add community driven 
service abstraction layer for 
solving GENI-specific issues

● Operators run a diverse 
substrate of OpenFlow gear

● Experimenter can focus on 
research problem



Sponsored by the National Science Foundation 6

Proposed Solution (cont'd)

• Overarching goals: Hide complexity where it is not required and 
increase stability

• Potential features of service abstraction layer
– Normalize experimenter view of network

– Layer of indirection for compilers or translators

• Benefits of splitting service abstraction layer from slicer

– Slicer will require fewer GENI-wide updates

– Service abstraction layer can develop at its own pace

– Service abstraction layer can be used to develop GENI 
services regardless of choice of slicer

• The service abstraction layer is not required for experimenters, 
developers, or operators who want to deal directly with substrate



Sponsored by the National Science Foundation 7

Example Deployment: Internet2



Sponsored by the National Science Foundation 8

Example Deployment: Internet2



Sponsored by the National Science Foundation 9

Questions?

Opinions on slicer or
service abstraction layer?



Sponsored by the National Science Foundation 10

Experimenter Problems

• Diverse set of switches
– Different match support, action support, and capabilities

– VLAN hybrid vs. port hybrid vs. non-hybrid

• All data plane traffic must be VLAN tagged, but control plane 
traffic sometimes has VLAN tags and sometimes doesn't

• VLAN IDs change across data plane of a slice (and sometimes 
sliver!)

• Parts of spec not supported due to slicer limitations or bugs

• Many controller platform features don't work out of the box



Sponsored by the National Science Foundation 11

Observations about Operations

• Slicing is the lowest fundamental layer of control plane in GENI
– MUST be stable

– Can decrease complexity of code at slicing layer if we consistently slice 
infrastructure in the same way (for GENI, VLAN ID)

– Experimenter abstractions should be solved on top of slicing function

• Updating OpenFlow slicing layer across GENI is difficult
– Testing and validation have to happen for each bug fix or feature release

– Many different operators must take action

• Most OpenFlow substrates can support many different services

– Experimenter OpenFlow control

– GENI stitching point-to-point transport



Sponsored by the National Science Foundation 12

Developer Use Case

● If substrate is complex, can 
simplify service controllers

● Can still directly access 
slicer for important 
operational functions

● Allows for diversification of 
substrate over time with less 
new glue code

● In the end, the entire stack is 
run by operators



Sponsored by the National Science Foundation 13

Complexity Sausage

RFC 6670 Section 3.4:

“... simplification in one element of the system 
introduces an increase (possibly a non-linear one) 
in complexity elsewhere. This creates the 'squashed 
sausage' effect, where reduction in complexity at 
one place leads to significant increase in complexity 
at a remote location.”


	Slide 1
	Slide2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

