VIRO-GENI: Deployment of a plug & play, scalable, robust UNIVERSITY OF MINNESOTA

Driven to Discover*

virtual Id routing in GENI

Braulio Dumba, Guobao Sun, Hesham Mekky, Zhi-Li Zhang Department of Computer Science, University of Minnesota-Twin Cities, MN, 55455

- Virtual Id space construction
- Routing tables computation
- Data forwarding using virtual Ids

- VIRO has its own "topology-aware" addressing and forwarding behavior, where forwarding is based on the destination vid and the forwarding directive

IMPLEMENTATION OF VIRO IN GENI

VIRO-GENI NODE

CONTROL PLANES

- Management Plane : VIRO remote controller is responsible for the following tasks:
- topology discovery/maintenance (host/switch added/removed) Vid assignment

- an Apache server at node G

DEMO SET-UP IN GENI

We use two GENI AMs (Wisconsin and Illinois), 11 XenVMs and 4 PCS in our experiment. EGRE tunnels were used to connect nodes at different GENI AMs.

VIRO PACKET FORMAT

0	32	2 4	8 8	0 96	5 11	2 14	14	r	n		
	DMAC		SMAC		VIRO Header		Ethernet Frame				
	DVID	DHost	SVID	SHost	VPID	FD	Ether Type	Payload			
$\underbrace{-} \ \ \ \ \ \ \ \ \ \ \ \ \ $											

ARP and DHCP Requests IP/VID Mapping (Global View)

Control Plane: VIRO local controllers are responsible for the following tasks:

- MAC/VID Mapping (Local View)
- Populate Routing Table
- Insert forwarding rules for the first packet of any flow

DATA PLANE

OVS Daemon:

- Translation between IP packets/VIRO packets (EtherType, Forwarding Directive)
- Insert rules for routing at Kernel **OVS Kernel:**
- Translation between IP packets/VIRO packets (End-Host)
- Forwarding IP packets among local machines
- Forwarding VIRO packets

Link Failure Experiment

Bucket Distance	Next hop	Gateway	Bucket Distance	Next hop	Gateway
1	D	С	1	D	С
2	В	С	2	В	С
3	D	D	3	В	А

Routing Table for node C (Round 3)

• VIRO handles node/link failures, without resorting to flooding of failure

In this experiment the client at node C downloads a large image from the server at node G **Before Failure:** Node **C** uses its level-3 gateway (node **D**) to communicate with the server

▶ After Failure:

- Node D updates its routing table and sends a gw
- withdraw message to level-3 rdv (node A)
- Node A updates its rdv store and sends a gw removal message to node C
- Node C updates its routing table and queries for level-3 gw
- Level-3 rdv (node A) returns itself as the new level-3 gw

notifications (as used in OSPF). Instead, it utilizes a withdraw & update mechanism.

VIRO topology-aware, structure virtual id (vid) space offers support for host mobility

Host mobility Experiment

- In this experiment the client host moves from node C to B while downloading a file from the server at node G The client is assigned a new vid, after moving to node B
- The server issues ARP request to the remote controller to find the client new vid
- The client TCP connection is unaffected during this process