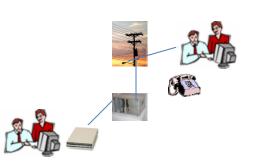
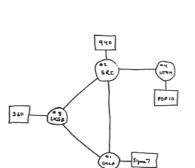
Network Science and Engineering:

Call for a Research Agenda


Jeannette M. Wing


Assistant Director

Computer and Information Science and Engineering Directorate
National Science Foundation

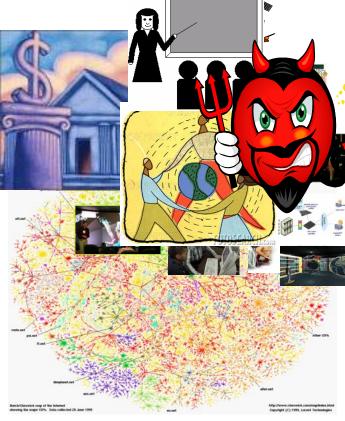
Engineering Conference, Arlington, VA, 3 March 2008

Our Evolving Networks are Complex

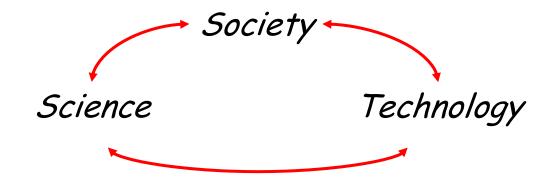


THE ARPA NETWORK

1970



1980



Challenge to the Community

Fundamental Question: Is there a science for understanding the complexity of our networks such that we can engineer them to have predictable behavior?

Call to Arms: To develop a compelling research agenda for the science and engineering of our evolving, complex networks.

Drivers of Computing

Network Science and Engineering: Fundamental Challenges

Science — Understand the complexity of large-scale networks

- Understand emergent behaviors, local-global interactions, system, failures and/or degradations
- Develop models that accurately predict and control network behaviors

Network science and engineering researchers

Technology Develop new architectures, exploiting new substrates

- Develop architectures for self-evolving, robust, manageable future networks
- Develop design principles for seamle's mobility support
- Leverage optical and wireless subgrates for reliability and performance
- Understand the fundamental prential and limitations of technology

Distributed systems and substrate researchers

Society-

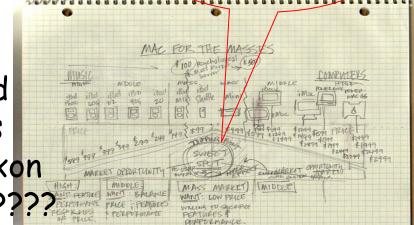
- Design secure survivable, persistent systems, especially when under attack
- Understand rechnical, economic and legal design trade-offs, enable privacy protection
- Explore 1.1-inspired and game-theoretic paradigms for resource and performance optimization

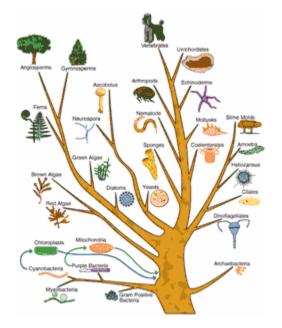
Security, privacy, economics, AI, social science researchers

Complexity Cuts Across Abstraction Layers

- A societal pull may demand technological innovation or scientific discovery
 - Society ← Technology: tele-dancing
 - Society ← Science: energy-efficient devices, privacy logics
- A technology push can lead to unanticipated societal uses
 - WWW to Google to YouTube/MySpace/FaceBook
 - Small and cheap sensors, palm-sized devices, RFID tags

- Implication to the broad community
 - Working outside your comfort zone


A Fundamental Question


Is there a science for understanding the complexity of our networks such that we can engineer them to have predictable behavior?

Characteristics of System "Tipping Point" Complexity

Tipping points

- Stampeding in a moving crowd
- Collapse of economic markets
- · "Mac for the Masses" P. Nixon
- · 1970s: ARPAnet -> Internet ????

Emergent phenomena

- Evolution of new traits
- Development of cognition,
 e.g., language, vision, music
- · "Aha" moments in cognition
- Spread of worms and viruses????
- Open source phenomena ????

Predictable Behavior

Predictable is ideal

A complicated system is a system with lots of parts and whose behavior as a whole can be entirely understood by reducing it to its parts.

A Car

A Car and Driver

A complex system is a system with lots of parts that when put together has emergent behavior.

Towards Predictable Behavior

Behavior

- Performance
 - Usual: time and space, e.g., bandwidth, latency, storage
 - New: power, ...

- Usual: safety and liveness
- · New: resilience (to failure and attack), responsive
- -ables
 - · Adaptable, evolvable, measurable, ...
- Quantifiable and qualitative measures

 Most importantly, our understanding of behavior must reflect the dynamic, evolving nature of our networks

Sources of Network Complexity

· Inherent

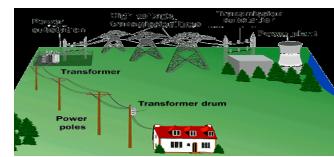

- People: unpredictable at best, malicious at worst
- Mother Nature: unpredictable, unforgiving, and disruptive

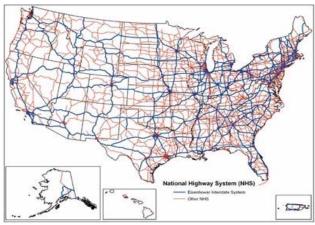
· Scale, in terms of

- numbers of, sizes of, types of elements (e.g., users, nodes, connectors), and recursively, ... of networks
- distance and time, also at different scales

Design

- Mismatched interfaces, non-interoperability
- Unanticipated uses and users
- Violation of assumptions as environment or re-
- Lack of requirements




Network Models

- Poisson, heavy-tail, self-similar, chaotic, fractal, butterfly effect, state machines, game theoretic, disease/viral, ...
 - We know some are wrong or too crude
 - We are trying others
 - None consider all "usual" performance and/or correctness properties at once, let alone new ones
 - Composable models, e.g., per property, would be nice
- Maybe our networks are really different from anything anyone has ever seen (in nature) or built (by human) before
 - Implication: A BRAND NEW THEORY is needed!

Beyond Computer Networks

Utility networks e.g., electric power

Transport networks e.g., for cars, trains

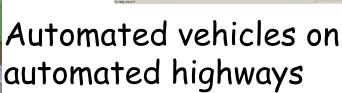
Social networks e.g., friends, family, colleagu Economic networks
e.g., a community of
individuals affecting
market

Political networks e.g., voting systems

Understanding Complexity

- Is there a complexity theory for analyzing networks analogous to the complexity theory we have for analyzing algorithms?
- If we consider The Internet as a computer, what can be computed by such a machine?
 - What is computable? [From J.M. Wing, "Five Deep Questions in Computing," CACM January 2008]
- Let's call such computer a Network Machine, then much as we have a Universal Turing Machine, what is the equivalent of a Universal Network Machine?
 - Challenge to us: Could we build one?

What-if Applications


Five-sensory tele-presence, e.g.,

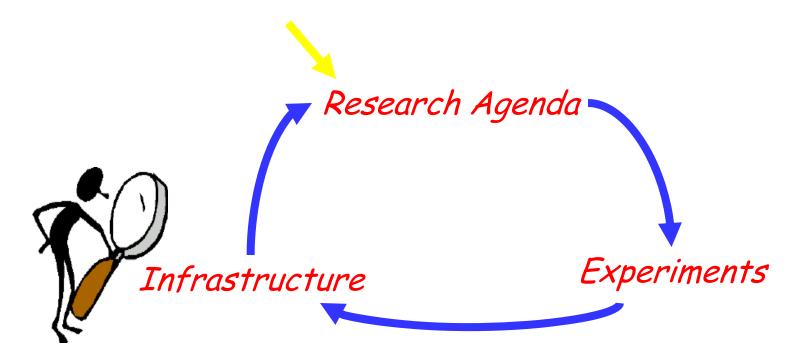
- tele-meetings (social aspects)
- tele-surgery (safety critical)

Ask anyone anything anytime anywhere

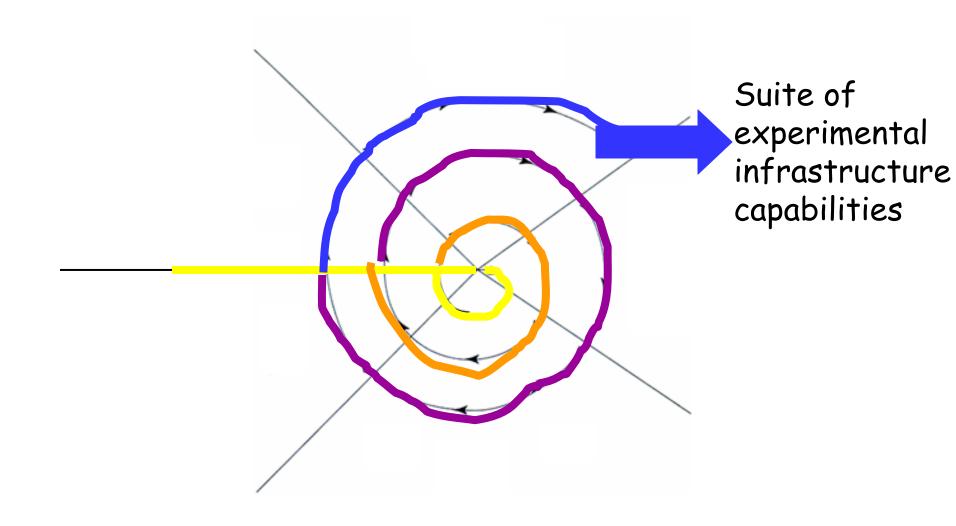
Modeling the earth, modeling the brain

Secure and private communication and data for all

From Agenda to Experiments to Infrastructure


Research agenda

- Identifies fundamental questions to answer
 - · aka the "science story"
- Drives a set of experiments to conduct
 - to validate theories and models


Experiments

- Drives what infrastructure and facilities are needed
- Infrastructure could range from
 - Existing Internet, existing testbeds, federation of testbeds, something brand new (from small to large), federation of all of the above, to federation with international efforts

Feedback Loop

Prototyping the Infrastructure Needs

Secret Weapons

Exploiting Computing's Uniqueness

- Software is our technical advantage
 - Plus: We can do anything in software
 - Minus: We can do anything in software
- Unlike other sciences, prototypical process
 advantage
 - Feasibility sai
 - Possibility spo
- · Implications
 - Power of softv the nature of our infrastructure is different
 - Power of prototyping implies the nature of our infrastructure building process is different
- · We are breaking new ground at the NSF!

People

- Project Office: Chip Elliot and team at BBN
 - Hard work in short period of time
 - Organizing and challenging the community to push the frontiers of experimental infrastructure
 - · Engineering Conferences, Infractry to Competition (prepared)
 - Working with
 - Establishme
- Working Groen in the experimental frastructure
- Community participation in working groups is welcome and encouraged!

Breaking New Ground Together

- Unexplored territory in network science and engineering
 - Broad scope for research agenda
 - New relationships among theoreticians, experimentalists, and systems and applications builders
 - New relationships with social science, law, economics, medicine, etc.
- Big Science is new for Computer Science
 - Science at scale, experimental settings at scale, real users at scale, user opt-in at scale
 - Scientists, engineers, technicians, managers, and funding agencies must work together

Challenge to the Community

Fundamental Question: Is there a science for understanding the complexity of our networks such that we can engineer them to have predictable behavior?

Call to Arms: To develop a compelling research agenda for the science and engineering of our evolving, complex networks.

We're a Team.

Thank you!