
Sponsored by the National Science Foundation

GENI Operational Monitoring:
status and next steps

Chaos Golubitsky

October 28, 2013
www.geni.net

Sponsored by the National Science Foundation 2 October 28, 2013

Introduction

•  Since GEC14, we’ve been prototyping pieces of
an operational monitoring system for GENI
–  Code contributed by GMOC and by AM operators

•  Benefits so far:
–  Outages in early rack deployments reported by

monitoring system (rather than by experimenters)
–  GENI metadata reported by monitoring used to

•  help plan outages and upgrades
•  get information about who is using GENI

•  Next: make the system robust and complete
•  Goal: largely complete system by GEC21

Sponsored by the National Science Foundation 3 October 28, 2013

Overview

•  “Complete” monitoring system functionality
motivated by three representative use cases:
–  LLR inquiry
–  usage and health report
–  Problem alerting and status

•  Components of system needed to support use
cases:
–  Overview of components
–  Current status (what’s complete, what’s not started,

what’s in progress)

Sponsored by the National Science Foundation 4 October 28, 2013

Use cases: a few comments

•  Please offer feedback:
–  What use cases are missing?
–  What details are missing/wrong for these use cases?

•  When investigating a problem, we always want as
much data as possible!
–  ...but programmer time is needed to add each data item
–  “everything that would be useful” is overwhelming

•  My proposed strategy:
–  List a broad range of useful pieces of data
–  Form vs. content – get a working system, then add
–  When adding data types, focus on “bang for buck”

Sponsored by the National Science Foundation 5 October 28, 2013

Use Case 1: LLR Inquiry (1)

•  Summary: a complaint is made to GENI LLR
about some resource misbehaving in some way.
The LLR needs to look up that resource and find
contact info for a person who is responsible for it.

•  Details:
–  Inquiry starts with a report about a misbehaving

resource at a time (maybe in the past)
–  What type of resource?
–  What type of contact info?

Sponsored by the National Science Foundation 6 October 28, 2013

Use case 1: LLR Inquiry (2)

•  What type of resource?
–  IPv4 address, which could be:

•  statically assigned control IP of a physical resource
•  dynamically-assigned control IP of a virtual resource
•  dynamically-assigned dataplane IP (e.g. on a shared VLAN)

–  VLAN assigned to an experiment on a device
–  Pattern of network traffic from a device or rack:

•  an unusually large quantity of traffic
•  traffic matching some specified pattern other than source IP

Sponsored by the National Science Foundation 7 October 28, 2013

Use case 1: LLR Inquiry (3)

•  What type of contact info?
–  Experimenter whose sliver is causing the observed

symptom
–  Project lead of the project under which the responsible

experiment is being run
–  Operational contact for the rack or for the location

where the rack is hosted
–  Name and some method of contact: e-mail, phone

•  Note:
–  Experimenter-identifying information must be protected
–  This use case doesn’t specify a particular interface

Sponsored by the National Science Foundation 8 October 28, 2013

Use case 2: usage and health report (1)

•  Summary: operators produce a periodic report
about GENI resource availability and utilization by
experimenters.

•  Details:
–  What can reports measure?
–  How can reports be run?

Sponsored by the National Science Foundation 9 October 28, 2013

Use case 2: usage and health report (2)

•  What can reports measure?
–  Experimental activity on GENI:

•  Number of slivers over time (breakdown based on distinct
experimenters, distinct aggregates, etc)

•  Active slivers over time (this is harder)

–  Saturation of GENI resources over time:
•  When are bare-metal nodes reserved?
•  CPU, memory, and disk utilization of shared nodes
•  Bandwidth utilization (dataplane, control plane)

–  State/health of aggregates and resources over time:
•  Aggregate version information
•  Number and type of resources on each aggregate
•  Reachability of aggregates (ping, AM API) and resources

Sponsored by the National Science Foundation 10 October 28, 2013

Use case 2: usage and health report (3)

•  How can reports be run?
–  Scriptable/self-service access to at least some

reporting (esp. current/recent state) is very desirable:
•  Have all aggregates updated?
•  How busy are resources needed for upcoming tutorials?
•  How many experimenters will be affected by an outage?

–  Manual intervention is probably okay for more detailed/
infrequent reports:

•  Breakdown of GENI experimental usage over the past 4
months

Sponsored by the National Science Foundation 11 October 28, 2013

Use case 3: problem alerting/status (1)

•  Summary: GENI operators are notified of certain
types of problems automatically, and can view/
query current status of those detected problems.

•  Details:
–  What conditions merit alerts?
–  Who receives alert notifications?
–  What does the status display need to do?

Sponsored by the National Science Foundation 12 October 28, 2013

Use case 3: problem alerting/status (2)

•  What conditions merit alerts?
–  Moving target, so it should be easy to add checks later!
–  Are aggregates reachable/responsive to AM API

(getversion, listresources, trust of expected anchors)?
–  Are resources alive and in an expected state?
–  Do important API state anomalies exist (e.g. slivers

outliving their slices)?
–  Are resources used up (no available VLANs, VM

servers out of memory, shared interfaces saturated)?
–  Are experimental network paths down?

Sponsored by the National Science Foundation 13 October 28, 2013

Use case 3: problem alerting/status (3)

•  Who receives alert notifications?
–  Rack operations, GMOC, and site admins (by request)
–  Operators of important non-API resources (e.g. I&M

web services) by request, if possible
•  What does the status display need to do?

–  Some real-time way to see current state besides
notifications, to find out whether debugging succeeded

–  If no alerts contain sensitive information, maybe this
can be public (or ACLs may be needed)

–  Some mechanism for seeing historical status
information (could be part of a different system)

Sponsored by the National Science Foundation 14 October 28, 2013

Components: introduction

•  General principles for building functionality:
–  Centralization:

•  Not everything needs to be centralized, but simplify data
storage/polling/access where we can

•  We require a global definition for GENI metadata used by
monitoring, to tie slices, slivers, and resources together

–  “Store” and “query” as requirements:
•  To answer questions about the past or about trends, we need

to store data, not just cache most recent value
•  If automated alerting is to use collected data, need interfaces to

collect or query programmatically

Sponsored by the National Science Foundation 15 October 28, 2013

Components: high-level functionality

•  What we need:
1.  Store and query GENI-specific relational data
2.  Store and query measurement data associated with

GENI objects
3.  Run real-time checks of health checks, send

notifications, and update live status
4.  ...and a lot of glue code and aggregate support

•  What we have:
–  Existing tools fully or partially implement these pieces
–  I’ll lay out what i think the existing tools still need
–  What tools should we be using in addition/instead?

Sponsored by the National Science Foundation 16 October 28, 2013

Components: relational data (1)

•  GRNOC maintains:
–  relational state model (schema) for GENI metadata
–  APIs for submitting and retrieving data via

authenticated HTTP
–  Python client, gmoc.py, which implements those APIs
–  Webserver, gmoc-db.grnoc.iu.edu
–  Web UI for real-time view of current relational data

•  This is running code --- GPO has been using it for
health checks of rack and mesoscale AMs since
GEC16

Sponsored by the National Science Foundation 17 October 28, 2013

Components: relational data (2)

•  What’s needed to make this complete and robust?
–  Missing pieces of GENI relational model, e.g.:

•  “projects” (being added now, needed for LLR)
•  slivers from non-GENI slices
•  interfaces and circuits exist, but not yet tested

–  Provide access to historical relations, currently stored
but only accessible via SQL

–  Debug state anomalies found during use so far
–  Make queries much faster

•  ...or use something else?

Sponsored by the National Science Foundation 18 October 28, 2013

Components: measurement data (1)

•  What’s needed for measurement data?
–  A reasonable disk storage format (e.g. RRD)
–  API for aggregating data from sources
–  API for querying data (for alerting, trending)
–  Tagging of data with GENI metadata on both storage

and retrieval
–  Realistically, a UI for displaying graphs

•  Does not need to be centralized
•  ...but consistency is very helpful

Sponsored by the National Science Foundation 19 October 28, 2013

Components: measurement data (2)

•  Operational prototypes we’ve looked at:
–  GRNOC SNAPP (not tagged with GENI metadata)
–  ganglia (not tagged with GENI metadata)
–  GPO graphite prototype (not tested at scale)

•  ...or use something else?

Sponsored by the National Science Foundation 20 October 28, 2013

Components: real-time status checks

•  Nagios:
–  Well-known and widely deployed
–  Supports alerting and red/green status display out of

the box
–  GPO nagios currently running ~700 “GENI-specific”

checks against CHes, AMs, and web services
–  Issues:

•  default UI customization – how to integrate with ops workflow?
•  dependency logic is hard to get right

•  ...or use something else?

Sponsored by the National Science Foundation 21 October 28, 2013

Components: User interfaces

•  Not a primary focus of monitoring system except
where specified:
–  Tool builders should retrieve monitoring data and

display it for their own users
•  However, some UI tools are useful:

–  Diagnostic UI for real-time view of relational data
(GRNOC has an implementation of this)

–  Tools for visualizing circuit/topology data: any ideas?

Sponsored by the National Science Foundation 22 October 28, 2013

Components: glue code

•  Code needed for components to exchange data:
–  Real-time alerting system needs to retrieve relational

data to run checks against it
–  Real-time alerting system needs to retrieve

measurement data to run checks against it
–  Real-time alerting system needs to report live check

results as measurements so trending can be done
–  Measurement stores may need to retrieve relational

data to use it for tagging
•  Nagios relational and measurement retrieval are

prototyped at GPO

Sponsored by the National Science Foundation 23 October 28, 2013

Components: AM/CH code

•  Support needed by AMs and CHes for all desired
relations and measurements:
–  CHes report experimenter projects, contacts, slices
–  AMs report relational and measurement data using

APIs or client modules
–  Real-time alerting runs custom network checks against

CH and AM APIs
•  FOAM, ORCA, and ProtoGENI support this code:

–  Need support from new AM types (e.g. stitching AMs)

•  ...or do this another way?

Sponsored by the National Science Foundation 24 October 28, 2013

Components: statically maintained data

•  A variety of data has to be maintained statically in
order for monitoring to work:
–  List of clearinghouses to monitor
–  List of aggregates to monitor
–  Contact info for CH/AM operators and POP (CH/AM

physical location) operators
–  Set of non-AM health checks to run (e.g. web services)
–  Contacts to whom health check results should be sent
–  Dependency logic about what checks rely on what

other checks

Sponsored by the National Science Foundation 25 October 28, 2013

Summary: what do we need?

•  Relational data service: complete and fix bugs
•  Measurement data service: choose/implement

one or more solutions
•  Real-time alerting: maintain and hand off
•  GENI topology data: choose/implement solution
•  Glue code and AM/CH code:

–  Submit/retrieve glue for measurement store
–  Add measurements for existing AMs
–  Add relational support for all GENI CHes
–  Add relational/measurement support for all AMs
–  Statically maintained data: hand off as needed

