

GENI Stitching: Under the Hood Or, How did Heidi & Luisa do that?

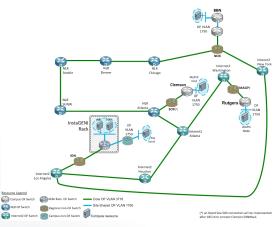
Aaron Helsinger July 22, 2013 <u>www.geni.net</u>

Sponsored by the National Science Foundation

GEC17: July 22, 2013

1

- A lot happened under the covers in that demo.
- A lot of work goes in to making stitching work
- But experimenters don't have to worry about it!


GENI Stitching is

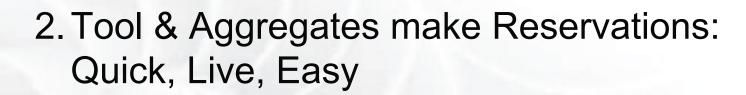
- Fast
- Instructions are posted so you can do it
- Connect InstaGENI to ExoGENI
- Connect a non GENI host to a GENI VM
 - Across CENIC to a machine at Stanford

- Custom circuits in GENI are not new
 - ('Slice around the World')
- Setting them up meant a lot of engineering work
 - Set up tunnels
 - Find free VLANs
 - Configure Switches
 - Coordinate with VMs
 - Debug circuits

- This can take weeks and much grief
- And then the circuit often becomes 'stale' and broken

- The demo you saw did it live in minutes
 - Instructions to do it yourself are on the wiki
- Create or find an RSpec that says
 - I want a VM at Utah with 1 interface
 - I want a 2nd VM at the GPO with 1 interface
 - NEW: I want a link between those interfaces connecting those aggregates.
 <rspec>

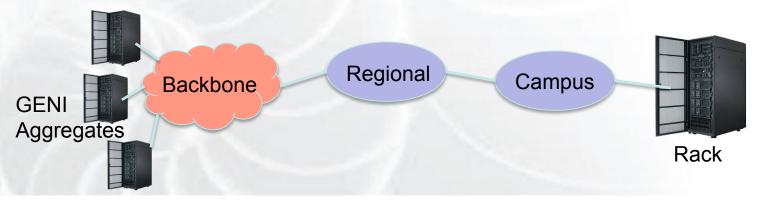
• Your tool and the aggregates do the rest.


<rspec> ^ב</rspec>
<node></node>
<node></node>
<link client_id="mylink"/>
<component_manager< th=""></component_manager<>
<component_manager< th=""></component_manager<>
<interface_ref></interface_ref>
<interface_ref></interface_ref>

GENI Stitching: Under the Hood

How does GENI Stitching Work?

1. Rack Configuration: Long. Done once in advance.


- Operator / Engineer Setup and Configuration
- Hard work that can take weeks

- Done ONCE when a new rack is configured
- Replaces most of the manual circuit work by doing it for multiple VLANs in advance
- Thank you to all the engineers who are working to make this possible!

- Identify a path or paths from the rack to other GENI aggregates.
 - Typically a connection to a national backbone
- Identify the network providers
 - Typically a campus, a regional, and the backbone
- Identify the endpoints and VLAN tags that can be used to connect to the rack

- 3 Options for controlling circuits at networks:
- Run an Aggregate over Dynamic Circuits
 We have an OSCARS aggregate. Others possible.
- Run an Aggregate for Static Circuits
 - Network manages the VLANs
- Delegate VLANs to the peer GENI aggregates to manage
 - Set up the VLANs, configure them at the aggregates

- Record this assignment by each intermediate network for easy searching and as the basis for configuring systems
- This work has been prototyped by Tom Lehman and Xi Yang of MAX:
 - A config file captures the information
 - A script generates a wiki page
 - This can be improved and expanded over time.

LINK#1	K#1											
InterfaceA	InterfaceA			InterfaceZ								
Description	ComponentId	AggregateManagerURL	Description	ComponentId								
BBN GPO-IG to Internet2 ION via NOX	urn:publicid:IDN+instageni.gpolab.bbn.com+interface+procurve2:5.24	https://www.instageni.gpolab.bbn.com:12369 /protogeni/xmlrpc/am/2.0	Internet2 ION to BBN GPO-IG via NOX	urn:publicid:IDN+ion.internet2.edu+interface+rtr.newy:ae0:bbn								
Intermediate	ntermediate Networks rn:publicid:IDN+nox.org											
urn:publicid:II												
Capacity	MaximumReservableCapacity	MinimumReservableCapacity	Granularity	AvailableVlanRange								
1000Mbps	1000Mbps	1Mbps	n/a	3747-3749								

Path Pre-Configuration

- Configure the VLAN ranges
 - Networks that provide **dynamic** circuit services (OSCARS) can run a GENI Aggregate Manager
 - Internet2 runs such an aggregate over ION.
 - Such networks configure their aggregate manager and their OSCARS interfaces.
 - Networks that provide static circuits will provision all of the promised VLANs between fixed switch/port endpoints
 - Relying on the GENI aggregates at the endpoints to control use of the VLANs.

ION Aggregate Manager

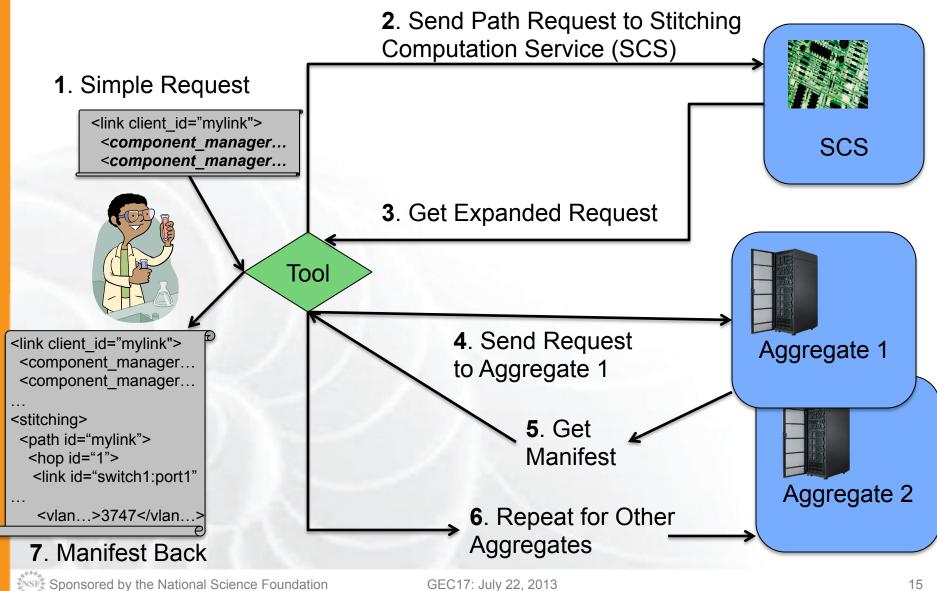
- ION is an Internet2 service that uses OSCARS to do dynamic circuits and does VLAN translation
- Tom Lehman and Xi Yang of MAX wrote an SFA based aggregate manager that translates GENI calls to OSCARS calls
- Internet2 operates this aggregate
 - Other OSCARS networks (regionals?) could use it too
- This is powerful:
 - GENI experimenters can connect arbitrary GENI ION endpoints when they need them.
 - This enables stitching to non GENI resources (i.e. through CENIC to a node in Stanford as in the demo).

d by the National Science Foundation you MAX and Internet2!

GENI Stitching: Rack Configuration

1. Rack Configuration: Long. Done once in advance.

2. Tool & Aggregates make Reservations: Quick, Live, Easy

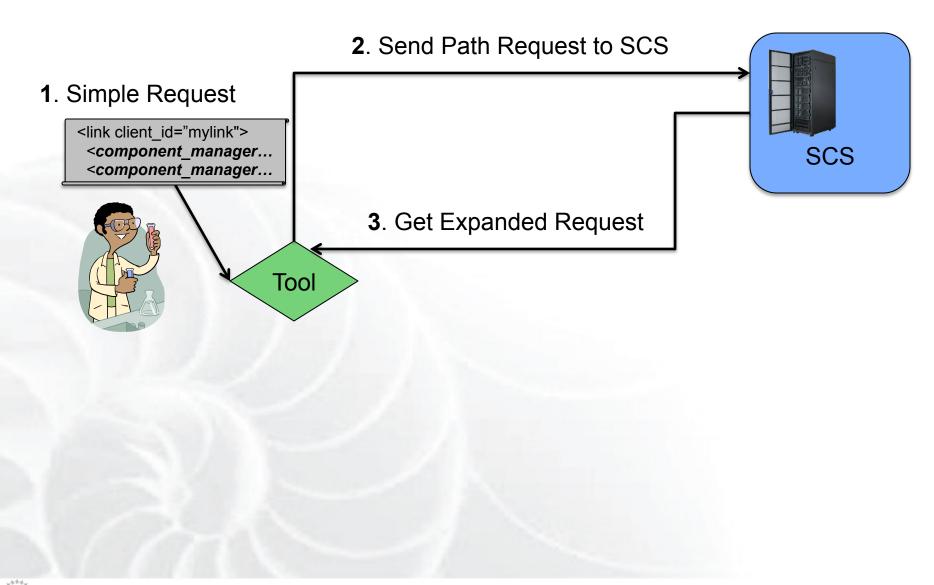


- GENI Stitching means experimenters don't have to worry about all that work. It's already done for you.
- The demo showed what an experimenter sees and does.
 - Quick, Simple, and Documented
- What happens under the covers?
 - Remember: Experimenter just says they want a link; tools and aggregates do the rest. It is easy and getting easier.

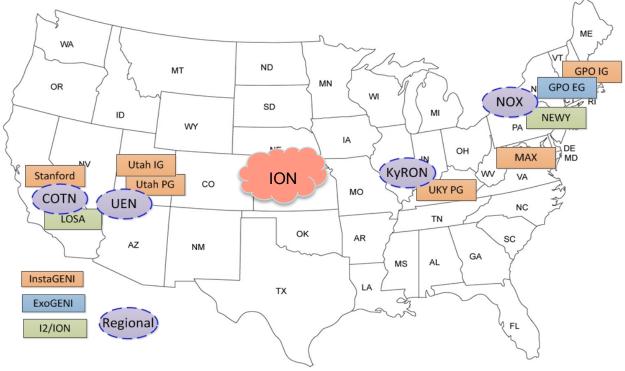
Experimenter View: Creating a Circuit

- Design your Experiment to include
 - 2+ nodes in different places (could be IG, EG, even a non-aggregate node as in the Stanford/CENIC demo)
 - A link between them
- Tool helps you create an RSpec with a new link:
 From MyNode: Interface to MyOtherNode: Interface2
 Connecting ThisFirstAggregate to ThatOtherAggregate
- One RSpec for whole slice
- Done.
 The rest is done for you.

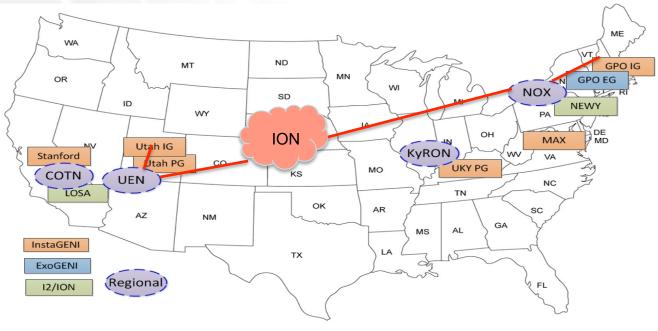
<node></node>	
<node></node>	
<link client_id="mylink"/>	
<component_manager< td=""><td></td></component_manager<>	
<component_manager< td=""><td></td></component_manager<>	
<interface_ref></interface_ref>	
<interface_ref></interface_ref>	
0	



- No central GENI stitching authority
 - Stitching is just a set of resource reservations at multiple aggregates.
- Any tool can do this.
 - The demo used an Omni script called 'stitcher.py'.
 - 1. Expand your request to find a path for your circuit
 - 2. Generate a request RSpec for each aggregate and make the reservations
 - 3. Check if any dynamic circuits were successfully created
 - 4. Report back a combined summary of what you have at all the aggregates


Experimenter View: Find a Path

1. Find a Path


- Connecting 2 aggregates means finding a path
 - May include intermediate aggregates, like ION
 - Must check available VLANs
- Find connections in Aggregate advertisements

1. Find a Path

- Tool computes possible paths and VLANs
- Order of reservations impacts chance of success
 - Some aggregates must pick the VLAN
 - VLAN translating aggregates can go last
- Your tool does all this for you

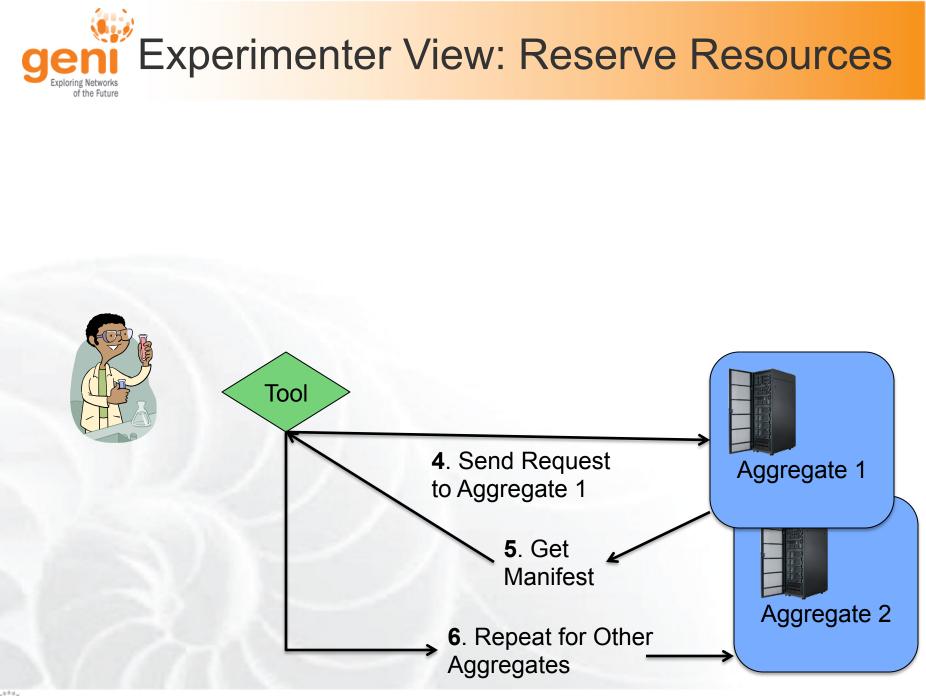
- That is hard, lots of heuristics
- Stitching Computation Service (SCS) for path and workflow computation
 - Includes many heuristics to optimize path, chance of success
 - Allows excluding particular connection points, VLANs
- Tom Lehman and Xi Yang wrote this optional service

Other tools may use different heuristics

 Stitcher uses the SCS <u>http://geni.maxgigapop.net/twiki/bin/view/GENI/</u>

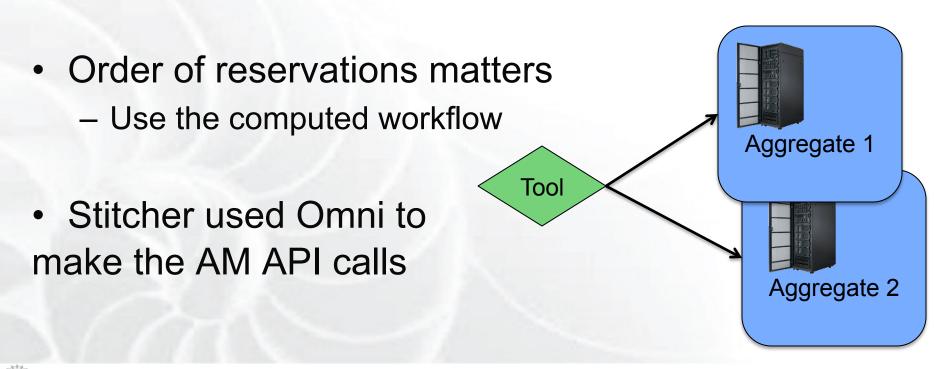
- Stitching RSpec Extension describes connections, paths, and requested or allocated VLANs
- This is how tools and aggregates talk about stitched circuits

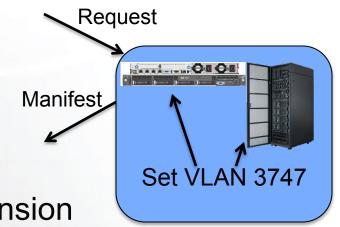
http://www.geni.net/resources/rspec/ext/stitch/


<stitching> <path id="mylink"> <hop id="1"> <link id=switch1:port1"> <vlan...>3747</vlan...> <hop id="2">....

Stitching Extension

- In Aggregate advertisements
 - Local switch ports and VLAN ranges, and the remote switch port they connect to
- The SCS adds to your request a stitching extension
 - For each circuit, a series of switch ports / VLAN tags (hops) requested
- Manifests:
 - Your request with the
 VLAN tags assigned for each hop


```
<stitching>
<path id="mylink">
<path id="mylink">
<path id="mylink">
<path id="mylink">
<path id="mylink">
```

- Circuits and VLANs are resources
- Reserve through GENI AM API 'CreateSliver' calls

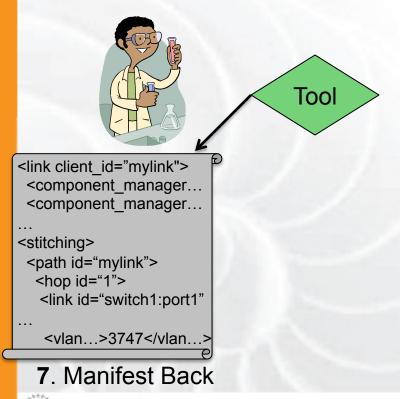
- Read Request and Stitching Extension
 - Is (a) VLAN available?
 - Is node available?
- Handle Request
 - Configure the node
 - Configure the switch to connect the VLAN to the node
- Book-keeping
 - Node and VLAN are taken
- Return manifest
 - VLAN is reported in stitching extension

- Tool reads VLAN out of manifest
- VLAN is inserted into request at next aggregate
 GPO IG picks tag 3747, so request to ION uses 3747

k client_id="mylink"> <component_manager... <component_manager...

<stitching> <path id="mylink"> <hop id="switch1:port1"> <vlan>3747</vlan>

- Tool handles many problems
 - VLAN is in use? Tool should try another
 - No VLANs available here? Try a different path
 - Something else, like no node available? Tell the user
- Stitcher checks for and handles these things.



- Dynamic Circuits take Time
 OSCARS is configuring all your routers
 - This is real work
- While circuits sometimes fail...
- Tool can check and retry if it fails
 - Wait while the tool does the work for you

Experimenter View: Report Results

4. Report Results

- You have your circuit connecting your nodes!
- What do you have?
 - Details aren't usually interesting
 - Which VLAN tag, etc

```
k client_id="mylink">
<component_manager...
<component_manager...
...
<stitching>
<path id="mylink">
<hop id="switch1:port1">
```

```
<vlan>3747</vlan>
```

- Stitcher combines the manifests from all your aggregates
 - You may have reservations places you didn't expect, like ION
- This might seem like a lot. But you saw it live in minutes.

Stitching: What Next?

- Testing Continues
 - Detailed Test Plan
 - Early network and aggregate partners helping
- More Sites
 - After testing, all GENI racks
- More Providers
 - NLR, regionals, and campuses
- More VLANs
 - VLAN ranges are small now a scarce resource
 - GPO & rack teams will work to expand these
- Monitoring
 - VLAN use and circuit availability

- Omni 2.4 (improved stitcher) is coming soon
- Flack stitching support is in testing

st 🍵	stitched-vlan								
ahtest									
	Interfaces								
	Node Interface Physical				IP				
		VM-0	VM-0:if0	Bound to			192.168.1.1		
		VM	VM:if0	Bound to		-	192.168.1.2		

- Portal? Other tools?
- Other kinds of circuits
 - VLANs that support OpenFlow controller routing
 - Multipoint?

GEC17: July 22, 2013

33

 While this basic capability has existed for years, this is now more broadly available or simpler to use.

GENI makes custom topologies easy

- It is getting bigger and easier.

- GENI Stitching provides experimenters the ability to create
 - Custom circuits
 - On-demand
 - Across all of GENI.

