Design/Setup: Setup Omni with Multiple Users

Omni gives you the capability of giving access to other users on your compute resources.
Depending on which AM you are using to get resources from, this is done in a different way. If
you are reserving resources in a ProtoGENI AM, then you can specify a comma separated list of
users in the users attribute of the [omni] section, and specify the information for each user in a
corresponding section. Let's try this now:

Ask the your neighbor for his/her usernane.
While in a terminal, generate a public key for them under ~/.ssh/
o cd ~/.ssh
o ssh-keygen -f id_rsa_<neighbor;_ username>
Make a copy of your omni_config
cp ~/.gcf/omni config ~/.gcf/omni config multiuser
Open the omni_config_multiuser file; its under
~/.gcf/omni_config multiuser
Add the new user in the users list and add a new section using as
his/her public key the key you just generated.

In the example below, Alice is reserving compute resources and wants Bob to also have access
to the reserved ProtoGENI resources:

<snip>

[omni]

default cf=portal

users=alice, bob

default project=GECl6AdvNetw
#default project=GECl60penFlowTutorial

[alice]
urn=urn:publicid:
keys=/home/geni/.

[bob]
urn=urn:publicid:
keys=/home/geni/.

[portal]
type = pgch

IDN+panther+user+alice
ssh/geni key.pub

IDN+panther+user+bob
ssh/id_rsa bob.pub

ch = https://panther.gpolab.bbn.com:8443/
sa = https://panther.gpolab.bbn.com:8443/
cert = /home/geni/.ssl/geni cert portal.pem
key = /home/geni/.ssl/geni cert portal.pem

</snip>

Next: Click Example Experiment

Click Router Example Click Router Example
Expelfiment Desc_:ription
Experiment Description Tutorial Instructions

In this example experiment, you will configure and run a '
non-IP software routing configuration, using :

e Click modular router
e ProtoGENI hosts

In this example, we'll be running click in user mode.

Please note that you can't just cut and paste all of the .
commands. There are additional instructions in the text. !

Tutorial Instructions

e Part I: Design/Setup
Design/Setup o Obtain Resources: Create a slice and reserve resources

e Part II: Execute

o Configure and Initialize Services: Configure the Click Routers
Execute o Execute Experiment: Use custom routing to forward traffic
over multi-path topology

e Part III: Finish
o Teardown Experiment: Delete Resources

Finish

Click Example

Execute Finish

1. Obtain Resources

In this step, we are going to setup the experiment. In this tutorial we assume that you are
sufficiently comfortable with omni to verify that a listresources command works and to know
when your slice is ready using sliverstatus.

i. Create a slice, where <slicename> is click<initials>:
omni.py createslice <slicename>
ii. Create a sliver :

omni.py createsliver -a pg-utah <slicename> <rspec_ url>

o If you are doing this exercise as part of a tutorial then the <rspec_url> is:
http://www.gpolab.bbn.com/experiment-
support/ClickExampleExperiment/rspecs/click-XX.rspec
where XX is given to you.

o If you are doing this exercise at home use : http://www.gpolab.bbn.com/experiment-
support/ClickExampleExperiment/rspecs/click.rspec

iii. Check the status of your sliver

omni.py sliverstatus -a pg-utah <slicename>

Install scripts

While you wait for your sliver to become ready, we will see how we can automate the
installation of our experiment with install scripts. In this experiment we are going to use
software routers in order to write our own forwarding scheme. This means that in any
experiment we are going to run we want the basic installation of the software router to always
be present. The configuration might change from run to run, but the software should always be
installed. The software to be installed, and the scripts to be executed at boot time, are defined in
the rspecs. Follow these steps to locate your install script and identify the different parts.

i. Download the hellogeni rspec from http://www.gpolab.bbn.com/experiment-
support/HelloGENI/hellogeni.rspec

cd /tmp
wget <rspec_url>

ii. Open your rspec and look for the install tag and copy the value of the URL attribute.
iii. Loof for the execute tag and write down the name of script to be executed
iv. Download and untar the software

cd /tmp

mkdir click

cd click

wget <software url>

tar xvfz <software name>

v. Look in your rspec and locate the execute tag. Note what script is being executed at boot
time.
vi. Locate the script and open it. Can you identify the different parts?

Next: Execute

Click Example Click Example
1. Configure and Initialize Services: Configure the Click Routers
la. Login and remote execution
Test remote execution
1b. Configure your routers
1c. Turn off internet protocol
2. Execute Experiment: Use custom routing to forward traffic over ...
2a. Start Click Routers
2b. Send some traffic
2c. Looking under the hood
Packet transformation
Simple Forwarding
Monitoring your core network
Next: Teardown

Design/Setup Finish

1. Configure and Initialize Services: Configure the Click Routers

Once our sliver is ready we will go ahead and configure our click routers. In this example we
have 4 routers, so instead of logging into each one of them and configuring it, we are going to
use remote execution and configure them from our VM.

First lets reset our environment:

cd
rm .ssh/config
touch .ssh/config

1a. Login and remote execution

Run the readyToLogin.py script to get information about logging in to nodes. The script has a lot

of output so lets put that in a file so that we can easily search for the information we want.

readyTologin.py -a pg-utah <slicename> -o

This will save all the information to different files. We want to use the ssh configuration file that

the script produced:
mv ./sshconfig.txt ~/.ssh/config

Let's login to our two hosts, the nicknames are hostA and hostB

i. Open two new terminals
ii. In one terminal type

ssh -A hostA

and in the other

ssh -A hostB

Test remote execution

You can execute commands in a remote host using ssh. There is an omni script,
remote-execute.py that automates this.

i. In your local terminal type :

remote-execute.py -a pg-utah <slicename> -m "ls -a"

This will list all the files under the home directory of all hosts. To run it in only one host
use the --host option

remote-execute.py -a pg-utah <slicename> -m "ls -a" --host top

1b. Configure your routers

We are going to use remote execution to configure our routers. For this specific command we
will use ssh directly.

i. On a local terminal run the following command four times, each time substituting the
<router_nickname> with one of the top, bottom, left, right:

geni@geni-virtualBox:~$ ssh -A <router nickname> "/local/click-exampl
You'll get output something like this:

Your host information:
hostA: hostA.<slicename>.emulab-net.emulab.net pc347.emulab.net
top: top.<slicename>.emulab-net.emulab.net pc336.emulab.net
left: left.<slicename>.emulab-net.emulab.net pc358.emulab.net
right: right.<slicename>.emulab-net.emulab.net pc278.emulab.net
bottom: bottom.<slicename>.emulab-net.emulab.net pc348.emulab.n
hostB: hostB.<slicename>.emulab-net.emulab.net pc353.emulab.net

Done.

(If you are prompted for a password, check to make sure that you provided the -A switch
in your ssh command above.)

i. The extractClickConfig script produces router configurations for your experiment. It also
creates a diagram of your experiment. Get a copy locally from one of the routers, by
typing in a local terminal:

scp top:myslice.png ./
ii. View the diagram by typing :
eog myslice.png &
Your slice will look something like the one below. The overall configuration should be the
same, with two end hosts, named hostA and hostB, and four routers (top, left, right,

bottom) in a diamond configuration. The host names, interface names, and MAC addresses
will be different, depending on the actual resources assigned to your slice.

hostA
(pe545.emulab.net)

mv9.11
02:06:f7:9a:4a:58
T

mvl0.12
02:£2:¢8:23:2d:ce

top
(pe545.emulab.net)

mvl10.9 mvl0.10
02:87:cb:66:45:5a | 02:18:03:92:93:a5

[\

mvl.3 mv2.2
02:27:ca:5b:26:e3 02:fa:84:d9:55:68
left right
(pc403.emulab.net) (pc4 1 l.emulab.net)
mvl.4 mv2.3
02:b0:6b:fe:cl:bb 02:ca:4c:96:6f:b6
mvl.l mvl.2

02:48:64:a0:d4:79 | 02:72:c2:ef:0e:06

bottom
(pc490.emulab.net)

mvl.3
02:cb:d4:f8:¢7:c5

mv2.4
02:05:86:ac:7d:8f

hostB
(pc490.emulab.net)

The four routers interconnected by solid lines are your "core network," which will run a non-
standard, non-IP protocol. The dashed lines out to the end hosts carry standard IP traffic.

1c. Turn off internet protocol

At this point, your network is still running IP. You can check by running a ping. In your hosta
terminal window, run this command.

ping -c 3 hostb
The command should succeed, with output like this:

PING hostB-1link-B (10.10.6.2) 56(84) bytes of data.

64 bytes from hostB-1link-B (10.10.6.2): icmp seqg=1 ttl=61 time=1.38 ms
64 bytes from hostB-1link-B (10.10.6.2): icmp seqg=2 ttl=61 time=1.19 ms
64 bytes from hostB-link-B (10.10.6.2): icmp seqg=3 ttl=61 time=1.53 ms

——— hostB-1link-B ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 1.193/1.370/1.531/0.138 ms

Since our experiment doesn't want IP, let's turn it off :

i. On a local terminal run the following command four times, each time substituting the
<router_nickname> with one of the top, bottom, left, right:

remote-execute.py -a pg-utah <slicename> -m "sh ./stopIP.sh"

You'll get output like this (the interface names may be different):

Disabling IP on interface mv10.9
Disabling IP on interface mv10.10

i. Verify that IP is really off, try another ping. On hosta:
ping -c 3 hostb
The command should take twelve seconds to time out, then fail with output like this:

PING hostB-link-B (10.10.6.2) 56(84) bytes of data.

-—- hostB-1link-B ping statistics ---
3 packets transmitted, 0 received, 100% packet loss, time 11999ms

2. Execute Experiment: Use custom routing to forward traffic over multi-
path topology
2a. Start Click Routers

The extractor script produces a click configuration file for each of your routers.

i. On a local terminal run the following command four times, each time substituting the
<router_nickname> with one of the top, bottom, left, right:

remote-execute.py -a pg-utah <slicename> -m "sh ./startClick.sh"

You'll get output like this. (Don't worry about the warning messages, Click is just reminding
you that you have no IP addresses in your core network.) The output of the click router is
redirected to /tmp/click.out on each host.

Stopping any running Click routers
Starting Click router

top.click:34: While initializing ‘FromDevice@l8 :: FromDevice’:
warning: eth2: no IPv4 address assigned
top.click:35: While initializing ‘FromDevice@21l :: FromDevice’:

warning: eth4: no IPv4 address assigned

Congratulations! You are now running a non-IP core network on your four routers, along with a
(primitive) non-IP multipath routing algorithm. You're ready to experiment with this
configuration.

2b. Send some traffic

Now you'll use your two edge hosts, hostA and hostB to send traffic along your network. Since
these end hosts are not running your modified protocol, they'll rely on the top and bottom
routers to transform their IP packets into your modified protocol on entry to the core network

and back into IP packets on exit.

i. In your terminal window on hostB, instruct nc to listen for a UDP connection on port 24565
(or some other port that catches your fancy).

[mberman@hostb ~]1$ nc -ul 24565

ii. Connect to it from your terminal window on hostA:

[mberman@hosta ~]$ nc -u hostb 24565

You've established a simple text chat connection. Enter a line of text in either window, and it
should appear in the other. Of course to do this, the text is travelling through your core network,
using your non-standard protocol and routing. So type a message into each window, and make
sure it appears in the other.

That's it! Now, let's look inside to see what's going on.
2c. Looking under the hood

Please note: the interface names and MAC addresses below are for the sample configuration
shown in the figure above. You will want to refer to your network diagram to get the correct
interfaces and addresses for your configuration.

Let's take a look at what's happening in the four routers in your configuration. There are two
basic router configurations. (You can find all of these files on any of your router hosts.)

Packet transformation

i. The more interesting configuration appears here, in the top.click configuration file. In a
local terminal type:

ssh -A top "cat top.click"

The output will look like :

// This portion accepts IP packets,
// reformats them, and routes them
// to an internal router.

route :: Classifier(27/01%01,-);

modify :: Unstrip(2) ->
StoreData(0, "AliceWasHere3546") ->
route;

FromDevice(eth3, PROMISC true) ->
Classifier(12/0800) ->
modify;

route[0] -> left :: EtherEncap(0x7744, 00:04:23:b7:14:76, 00:04:23:b7:1
SimpleQueue ->
Print(outL) ->
ToDevice(eth2);

route[l] -> right :: EtherEncap(0x7744, 00:04:23:b7:1c:e0, 00:04:23:b7:
SimpleQueue ->
Print(outR) ->
ToDevice(eth4);

// This portion accepts non-IP packets

// with an ether type of 0x7744

// from an internal router, restores

// them to IP format, and forwards.

restore :: SimpleQueue ->
Strip(30) ->
EtherEncap(0x800, 00:04:23:b7:14:77, 00:04:23:b7:20:00) ->
ToDevice(eth3);

FromDevice(eth2) -> Classifier(12/7744) -> Print(inL) -> restore;

FromDevice(eth4) -> Classifier(12/7744) -> Print(inR) -> restore;

As indicated in the comments, the top portion of the configuration listens

() WRP ' HYIFH for IP packets arriving on the interface connected to KRVV® (that's
HVWK in this example). It then creates a new 16-byte field at the head of the packet
(two bytes added by the 8 QWS operation, plus the existing 14-byte Ethernet
header. It fills that field with what could be important routing instructions, but in this
case is just graffiti (6VRW' DVI). The WRXWoperation then routes the packet via
either the ®lIVWr W KWouter toward KRVW% In either case, it wraps the packet in a
fresh Ethernet header ((VKHUY QFDS) with a distinctive ether type code (0x7744), logs
the new packet on its way out (3UQWand sends it out on the correct interface

(7R HYLFH.

The bottom portion of the configuration is intended for packets coming out of the
core network to KRW®. It accepts packets from either the ®lIWr W KWouter, logs
them, strips off thirty bytes (Ethernet header plus your 16-byte new header field),
puts on a fresh Ethernet header, and sends them along to KRWS.

The configuration for the ERWRP router is exactly symmetric, routing packets
between KRVWband the core network, but using different graffiti.

Simple Forwarding

The ®lIWouter configuration is much simpler. In a local terminal type:
ssh -A left "cat left.click"”
The output will look like :

// Copy packets from top to bottom.
FromDevice(eth2) ->
StoreEtherAddress(00:04:23:b7:42:b6, dst) ->
StoreEtherAddress(00:04:23:b7:18:fb, src) ->
SimpleQueue ->
Print(top) ->
ToDevice(eth3);
// Copy packets from bottom to top.
FromDevice(eth3) ->
StoreEtherAddress(00:04:23:b7:14:76, dst) ->
StoreEtherAddress(00:04:23:b7:18:fa, src) ->
SimpleQueue ->
Print (bottom) ->
ToDevice(eth2);

This configuration just blindly forwards packets. It picks up any packet from the VRSrouter,
updates the Ethernet header, and passes it along to the ERWRP router. The same applies in the
reverse direction. Again, the configuration for the WJKWouter is exactly analogous.

Monitoring your core network
Let's watch how the packets travel through the network.
i. In a local terminal type:

ssh -A top "tail -f /tmp/click.log"

ii. Go to your window for hostA, where your QFcommand is still running. Type a message
into this window. You should see a log message in three of your four router windows. In
this example, you might see:

iii. In the local terminal you will see:

outR: 76 | 000423b7 192e0004 23b71lce0 7744416c 69636557 61734865

This log entry says that the top router received a packet from hostA, modified it, and sent
it out to the right router. If the entry started with outL, that would indicate that it sent the
packet out to the left router. Let's look a bit at the start of the packet (the first 24 bytes
are logged). It starts with an Ethernet header. The first six bytes are the MAC address of
the destination interface, that's 00:04:23:B7:19:2E, the MAC address of eth4 on right. The
next six bytes are the MAC address of the source interface, 00:04:23:B7:1C:EO, or eth4 on
top. Next comes your ether type, 0x7744. The remaining bytes, "416¢c 69636557
61734865" are the start of the first field in your new protocol, "AliceWasHe" in ASCII.

iv. Try typing a few different lines to hostA. You should see some packets routed to the left
and some to the right. The routing decision is based on the route ::
Classifier(27/01%01,-); entry in the top router configuration. Here, the router is looking
at the low-order bit of the checksum on the initial IP packet (now at byte position 27 with
the addition of the new sixteen byte field at the start of the header). Packets with odd
checksums go to the left; those with even checksums go right.

Next: Teardown

ClickExample

Fo

Design/Setup Finish

Cleanup resources

Although all your reservations, have expiration times, you should always release your resources
once you have completed your experiment to make them available to other experimenters.

i. Logout from your hosts.
ii. In the terminal, where you have been running your omni commands do:

omni.py deletesliver -a pg-utah <slicename>

