

Leveraging OpenFlow for Resource Placement of Virtual Desktops

Project Team: Prasad Calyam, Ph.D. pcalyam@osc.edu, Sudharsan Rajagopalan, Arun Selvadhurai, Alex Berryman, Saravanan Mohan, Prof. Rajiv Ramnath

Research Sponsors: NSF (CNS-1050225, CNS-1205658), VMware

GEC15 Plenary Session Talk October 2012

Topics of Discussion

- VDCloud-GENI Experiment Context
- 'VDC-Sim': Virtual Desktop Cloud Simulator
 - Research use cases
 - Education use cases
- VDCloud Experiment Demonstration
 - GENI Slice setup
 - OpenFlow integration
 - VDC-Sim results 'with' and 'without' load balancing

Virtual Desktop Clouds (DaaS)

Roller Coaster Track Design

- Understand energy transfer (potential to kinetic)
 - Build cool coasters, study tsunamis similar science
- Optimal design: hills, bigger loops, more cars, safe stop

Credit: National Geographic, The Jason Project

Roller Coaster Test

Roller Coaster Performance

VMLab-GENI Experiment Context

VDC Research "Big Picture"

VDC-Sim Features

Resource allocation of thin-clients to data centers

VDC-Sim Demo-1

VDC-Sim Demo-2

Use Cases

- Research
 - Plug-in new provisioning and placement schemes
 - Study cloud dynamics to see how they affect net-utility
- Education
 - Explore server-side adaptation
 - E.g., write a macro script to reduce user interaction roundtrips for control actions during network health bottlenecks
 - Explore client-side adaptation
 - E.g., select thin-client encodings that delivers best QoE for different user groups *knowledge worker* vs. *designer/artist*

Marker Packet Header Format

Flow Setup Sequence Diagram

VDCloud Experiment w/o Load-Balancing

VDCloud Experiment w/ Load-Balancing

16

Demonstration

PG46

PG47

PG46

PG47

ATLANTA

ATLANTA

ATLANTA

ATLANTA

52

52

20

20

52

52

52

52

Video runs smooth, GUI applications are responsive

Video freezes, disconnects, GUI applications are not responsive

PG48

PG49

50

50

52

52

SUNNW

SUNNW

Video runs smooth, GUI 17 applications are responsive

Video runs smooth, GUI applications are responsive

Video freezes, disconnects, GUI applications are not responsive

Video runs smooth, GUI 18 applications are responsive

Thank you for your attention!

