
Emulating Opportunistic Mobile Wireless Networks on ORBIT

Sankardas Roy, Jiang Li
Department of Systems and Computer Science, Howard University

sroy, lij@scs.howard.edu

1. Introduction

2. Pigeon Networks

3. An Overview of the ORBIT Testbed

4. Emulating a Pigeon Network on ORBIT

Our research project at Howard University deals with a special type of opportunistic

mobile wireless networks (O-MWNet) known as Pigeon Networks. One of the main

goals of the project is to emulate a pigeon network on ORBIT testbed which is

physically located at Rutgers University. This testbed is accessible online and we are

particularly interested in using its GENI interface for the emulation task. We measure

the performance metrics (e.g. latency, throughput, and loss ratio) of a pigeon network in

the emulation experiments. Simultaneously, we investigate the ease of using ORBIT

testbed to do these experiments to uncover its strengths and limitations.

ORBIT’’s GENI interface has two main elements: (a) the OMF interface allows an

experimenter to prepare the machines of the testbed for the particular experiment and

run the experiment., (b) the OML library provides the storage service for the experiment

data. We extensively use both of these elements to emulate a pigeon network.

The rest of the poster has the following sections: A background of a pigeon network, a

brief overview of the ORBIT testbed, how we emulate a pigeon network, our

visualization module, a part of the emulation results, and finally, the critiques.

 A pigeon network is a special type of Disruption Tolerant Network (DTN). The unique

feature of this specialized network is that each message carrier, also called a pigeon, is

owned by a host node. There can be multiple host nodes present in the network, which are

interested in communicating with each other. The owner host node of a pigeon is called the

home host of the pigeon, and other host nodes are known as the foreign hosts with respect

to that pigeon. A pigeon has dedication to its owner in the sense that it carries only those

messages which are currently located at the owner, or which are destined to the owner. The

fundamental unit of a pigeon network is a home host coupled with its pigeon, which is

known as a cell. The whole network can be considered as the interaction among multiple

cells.

 In the emulation work, we focus on one cell (involving one home host and one pigeon) and

its interaction with one or more foreign hosts. So, in a cell there are three kinds of nodes,

namely (a) the pigeon P, (b) the home host H, and (c) multiple foreign host Fi. These nodes

have the following characteristics. The pigeon node P is mobile and moves across the

home host H and the foreign hosts whereas H and Fi are static. The pigeon node P acts as

the message carrier. Figure 1 illustrates an example of such a network where the pigeon P

starts from the home host H and visits the foreign hosts (Fi) in some sequence while it

delivers/receives messages. The pigeon can return to the home host H before visiting all of

the foreign hosts, and P can start again from H to make more visits to foreign hosts. The

whole trajectory of the pigeon P is determined by the scheduling algorithm. We focus on the

scenario where H has messages to be delivered to any foreign host Fi, and Fi can also have

messages to be delivered to H. Of course, P is the message carrier for all of these

messages.

On ORBIT testbed we emulate a pigeon network which has one home host, one pigeon (i.e. message ferry), and multiple (say N) foreign hosts.

The pigeon network is built using (N+2) real nodes of the ORBIT grid, among which one (say node 1) emulates the home host, one (say node 2)

emulates the pigeon , and each of the rest (i.e. node 3, node 4, …, node N+2) emulates one foreign host. A packet filter e.g. iptables is used to

emulate the mobility of the pigeon node and its transient connectivity with other nodes. To perform the experiment, the experimenter mainly

needs two things: (a) an ED script which is run on the OMF interface, and (b) the emulation programs which are run on the grid nodes.

At the beginning of the experiment, the ED loads the driver module (e.g. ath5k) in each node, and configures the NIC as required. Then the ED

starts the emulation executables inside the nodes, and finally terminates the executables after the requested time interval to stop the experiment.

We need to produce different emulation programs for building the pigeon network. Recall that the roles of the home host, the pigeon, and a

foreign host are different. We have to a write a separate emulation program to realize each of the above roles. That means, we need one

emulation program (called home program) to run in the home host node (i.e. node 1), one emulation program (called pigeon program) to run in

the pigeon node (i.e. node 2), and one emulation program (called foreign program) to run in a foreign host node (i.e. node 3, node 4, …, node

N+2).

On the pigeon node (i.e. node 2), in addition to the regular pigeon emulation program we also run one emulation program called topology

controller (TC). The TC uses a packet filtering technique (e.g. iptables) to control the connectivity of the pigeon with the host nodes.

Figure 1: A pigeon network with multiple foreign hosts Fi – the pigeon P visits the seven

foreign hosts Fi following a scheduling algorithm. P can visit the home host H with higher

frequency, i.e. there can be multiple loops in P’s trajectory, e.g. two loops in this example.

The ORBIT testbed (also called grid) has 400 computers which a user (i.e. an experimenter) can reserve for performing experiments. Each of these computers possesses a wireless antenna

for communicating with others. If the user runs proper emulation programs in all or some of these computers, each such computer can take the role of one node of the emulated network. It is

the responsibility of the experimenter to build the emulation executables and load them on the corresponding grid nodes before starting the emulation experiment.

The ORBIT testbed provides an interface known as the OMF interface through which the users can manage the resources. In particular, through the OMF interface a user can load image

(with proper OS and precompiled executables) onto the grid nodes, and run the experiment on the grid nodes; the OMF interface can also save the current node image to permanent storage

for future use.

A user is expected to write an Experiment Description (ED) script (which is in Ruby language) and run it via the OMF interface. ED is capable of acquiring the requested resources from the

grid, configuring the nodes for the experiment, starting the emulation programs inside the nodes, and finally stopping the emulation programs after the requested time interval.

To help the user save the experiment data ORBIT testbed provides a measurement library called OML. The emulation program which runs on a grid node can use the OML APIs to save the

experiment data during the experiment into a database server called the OML server. After the experiment is done, this data can be analyzed to compute the values of the intended metrics.

To further help the user explore the experiment data the ORBIT provides the result service. This service allows the user to retrieve the experiment data over the Internet in real time or after

the experiment. The user can view the data on a web browser window on his/her local machine. Moreover, the user can add sql query to the browser URL to analyze the experiment data.

An ED script is run via OMF

(version 5.3) interface. The ED

starts the home program H, pigeon

program P and foreign host

programs Fi in the grid nodes. Our

ED script is flexible to variable

number of foreign hosts.

We extensively use OML APIs (oml2 library) inside the

emulation programs which allows them to keep on

injecting observed data during the experiment into the

OML server. The data are analyzed using a query

language (e.g. sqlite3) after the experiment to compute the

intended performance metrics.

We have explored how to extend the ED to run an

experiment with multiple instances. The motivation is that in

real life the experimenter often needs to run multiple

iterations of an experiment with some varying parameters to

collect statistically significant results. We have tried to design

the ED in such a way that we move towards automating the

whole experiment. However, we have not been fully

successful.

The ED also starts one emulation

program called topology controller (TC)

which runs in the pigeon node in

addition to the regular pigeon program

P. The TC uses a packet filter to control

the connectivity of the pigeon.

Figure 2: The design of pigeon network emulation – the experimenter runs an Experiment Descriptor (ED) via the

OMF interface, which manages (N+2) nodes on the grid. Node 1 runs host program H, node 2 runs the pigeon program

P as well as the topology controller TC, and each of the rest of the nodes runs a foreign host program Fi. H

F2

F1

F4

F3

F5

F6

F7

P

5. Building a Visualization Module 6. Emulation Results 7. Critiques on ORBIT testbed

We build a visualization module which shows the topology (location of the nodes) of the

pigeon network on a browser window. It displays the real-time movement of the mobile

nodes (e.g. the pigeon) in addition to the static nodes of the network as emulated on the

ORBIT grid. We use d3.js module on the browser side which is a Javascript library for the

visualization task.

We build a proxy server in the local machine which intermittently retrieves over the Internet

the real-time experiment data from the OML server through the ORBIT result service. The

data is stored in a local file and the browser keeps on receiving the data from the proxy

server via asynchronous read operation. Figure 3 illustrates the whole system and shows

the data flow path.

Figure 3: The real-time data flow in the visualization system– the experiment data are

injected by the ORBIT grid nodes into the OML server, and then the wget program of

the Proxy Server downloads the data in a local file. Finally, the Browser retrieves the

data asynchronously and displays the emulated network.

Figure 4: the average message delay Vs. pigeon’s speed.

We analyze the OML data after the experiments to compute the intended matrices such as

message latency. As an example, below we present one plot of the average message delay Vs.

the pigeon’s speed in emulation. It also compares the result with the numerical computation

(NC). We notice that NC outputs less latency because (a) in emulation the connectivity of the

pigeon with a host is discrete, (b) NC does not consider the message pickup and delivery time.

 Strengths

 (a) The administrators of ORBIT are always ready to provide with their kind help, detailed

instructions, and suggestions through numerous emails. (b) the web service which an

experimenter uses to reserve the resources works fine. It allows the experimenter to

reserve the grid or a sandbox for a specific time interval over the next one week.

 Limitations

 (a) Lack of detailed/consistent information on ORBIT wiki, (b) unavailability of ED features

(to the best of our knowledge) specialized for running a long duration experiment with

multiple instances, (c) experiment involving tens of nodes on the ORBIT grid occasionally

fail because some node may become unresponsive in the middle of the experiment.

 Our suggestions

 (a) A user can get information about ORBIT way faster had the wiki delivered updated and

consistent information. It would be even better had the wiki possessed a tool to search for

specific information via key words. (b) Unfortunately, we have found that with the current

infrastructure, it is not possible to fully automate an experiment with multiple runs with

varying parameters. A couple of new features need to be introduced with ED, which could

help in achieving full automation in future.

