Cooperative packet recovery over heterogeneous wireless networks

Fraida Fund, Thanasis Korakis

Department of Electrical and Computer Engineering, Polytechnic Institute of NYU

Introduction

Challenge: It is difficult to guarantee the reception reliability of multiple wireless multicast/broadcast receivers because each receiver experiences different channel conditions.

Solution: We take advantage of the multiplicity of radios on modern devices to allow cooperative packet recovery over a secondary network. *

Evaluation

With no cooperative recovery, we see packet loss over the WiMAX link when testing with *iperf*:

[ID] Interval		Transfer	Bandwidth		Jitter	•	Lost/Total		Datagrams
[3] 0.0	- 1.0 sec	47.9 KBytes	392	Kbits/sec	3.465	ms	0/	35	(0%)
[3] 1.0	- 2.0 sec	47.9 KBytes	392	Kbits/sec	4.310	ms	1/	36	(2.8%)
[3] 2.0	- 3.0 sec	47.9 KBytes	392	Kbits/sec	3.354	ms	1/	36	(2.8%)
[3] 3.0	- 4.0 sec	46.5 KBytes	381	Kbits/sec	4.023	ms	1/	35	(2.9%)
[3] 4.0	- 5.0 sec	49.2 KBytes	403	Kbits/sec	5.180	ms	0/	36	(0%)
[3] 5.0	- 6.0 sec	47.9 KBytes	392	Kbits/sec	3.941	ms	1/	36	(2.8%)
[3] 6.0	- 7.0 sec	49.2 KBytes	403	Kbits/sec	4.573	ms	0/	36	(0%)
[3] 7.0	- 8.0 sec	46.5 KBytes	381	Kbits/sec	3.912	ms	1/	35	(2.9%)
[3] 8.0	- 9.0 sec	47.9 KBytes	392	Kbits/sec	3.981	ms	1/	36	(2.8%)
[3] 9.0	-10.0 sec	49.2 KBytes	403	Kbits/sec	4.238	ms	0/	36	(0%)
[3] 10.0	-11.0 sec	47.9 KBytes	392	Kbits/sec	4.269	ms	0/	35	(0%)
[3] 11.0	-12.0 sec	47.9 KBytes	392	Kbits/sec	4.531	ms	1/	36	(2.8%)
[3] 12.0	-13.0 sec	49.2 KBytes	403	Kbits/sec	3.405	ms	0/	36	(0%)
[3] 13.0	-14.0 sec	49.2 KBytes	403	Kbits/sec	2.759	ms	0/	36	(0%)
[3] 14.0	-15.0 sec	46.5 KBytes	381	Kbits/sec	2.337	ms	1/	35	(2.9%)

- Wireless devices are connected to the principal network (e.g. WiMAX) to receive multicast or broadcast data.
- A wireless device may lose some of the data sent over the principal network.
- The wireless devices form an assistant network over WiFi to recover the lost data cooperatively from their peers.

Implementation

With *coopshim*, we observe that the lost packets are effectively recovered:

[ID] Interval		Interval	Transfer	Bandwidth	Jitter	Lost/Total	Datagrams	
E	3]	0.0- 1.0 sec	46.5 KBytes	381 Kbits/sec	5.943 ms	0/ 34	(0%)	
E	3]	1.0- 2.0 sec	47.9 KBytes	392 Kbits/sec	8.135 ms	0/ 35	(0%)	
E	3]	2.0- 3.0 sec	49.2 KBytes	403 Kbits/sec	5.063 ms	0/ 36	(0%)	
Ε	3]	3.0- 4.0 sec	47.9 KBytes	392 Kbits/sec	4.724 ms	0/ 35	(0%)	
Ε	3]	4.0- 5.0 sec	50.6 KBytes	414 Kbits/sec	6.504 ms	0/ 37	(0%)	
E	3]	5.0- 6.0 sec	46.5 KBytes	381 Kbits/sec	6.343 ms	0/ 34	(0%)	
E	3]	6.0- 7.0 sec	47.9 KBytes	392 Kbits/sec	6.472 ms	0/ 35	(0%)	
Ε	3]	7.0- 8.0 sec	49.2 KBytes	403 Kbits/sec	4.866 ms	0/ 36	(0%)	
E	3]	8.0- 9.0 sec	47.9 KBytes	392 Kbits/sec	5.877 ms	0/ 35	(0%)	
E	3]	9.0-10.0 sec	47.9 KBytes	392 Kbits/sec	32.814 ms	0/ 19	(0%)	
E	[3] 9.0-10.0 sec 16 datagrams received out-of-order							
E	3]	10.0-11.0 sec	47.9 KBytes	392 Kbits/sec	9.115 ms	0/ 35	(0%)	
Ε	3]	11.0-12.0 sec	49.2 KBytes	403 Kbits/sec	6.566 ms	0/ 36	(0%)	
E	3]	12.0-13.0 sec	47.9 KBytes	392 Kbits/sec	5.574 ms	0/ 35	(0%)	
E	3]	13.0-14.0 sec	49.2 KBytes	403 Kbits/sec	5.861 ms	0/ 36	(0%)	
Ε	3]	14.0-15.0 sec	47.9 KBytes	392 Kbits/sec	4.832 ms	0/ 35	(0%)	
Ε	3]	15.0-16.0 sec	49.2 KBytes	403 Kbits/sec	4.835 ms	0/ 36	(0%)	

Conclusions

- Built on *shims*, a framework that was developed as part of the Seattle project.
- Shims add or modify network functionality in a way that is transparent to the application.

- The cooperative recovery scheme is an effective way to ensure more reliable delivery of multicast/broadcast traffic over a wireless link.
- The scheme does not place any additional burden on the multicast service, and uses the WiFi hardware that is already present on most modern wireless devices.

References

* Sinkar, K.; Jagirdar, A.; Korakis, T.; Liu, H.; Mathur, S.; Panwar, S.; "Cooperative Recovery in Heterogeneous Mobile Networks," Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON '08. 5th Annual IEEE Communications Society Conference on , vol., no., pp.395-403, 16-20 June 2008

